
PROFESSIONAL MASTER’S DISSERTATION

An Open-Source Testbed Based on the Modbus Protocol
for Cybersecurity Analysis of Nuclear Power Plants

Israel Barbosa de Brito

Professional Graduate Program in Electrical Engineering
DEPARTMENT OF ELECTRICAL ENGINEERING

FACULTY OF TECHNOLOGY
UNIVERSITY OF BRASÍLIA

UNIVERSITY OF BRASÍLIA Faculty of Technology

PROFESSIONAL MASTER’S DISSERTATION

An Open-Source Testbed Based on the Modbus Protocol
for Cybersecurity Analysis of Nuclear Power Plants

Israel Barbosa de Brito

Professional Master’s Dissertation submitted to the Department of Electrical

Engineering as partial requirement for obtaining

the degree of Master in Electrical Engineering

Board of Examiners

Prof. Rafael T. de Sousa Jr., Ph.D., FT/UnB
MSc Advisor

Prof. William Ferreira Giozza, Ph.D., FT/UnB
Internal Examiner

Prof. Rodney A. Busquim e Silva, Ph.D., IAEA
External Examiner

Prof. Demétrio A. da Silva Filho, Ph.D., FT/UnB
Substitute Examiner

PUBLICATION: PPEE.MP.023
BRASÍLIA-DF: DECEMBER/2022

CATALOG INDEX CARD

BRITO, ISRAEL BARBOSA DE
An Open-Source Testbed Based on the Modbus Protocol for Cybersecurity Analysis of Nuclear Power
Plants [Distrito Federal] 2022.
xvi, 94 p., 210 x 297 mm (ENE/FT/UnB, Master, Electrical Engineering, 2022).
Professional Master’s Dissertation - University of Brasília, Faculty of Technology.
Department of Electrical Engineering

1. cybersecurity 2. nuclear power plants
3. Asherah nuclear power plant simulator 4. Modbus
5. industrial control systems (ICS) 6. SCADA
7. PLC 8. GNS3
9. OpenPLC 10. ModRSsim2
11. ScadaBR
I. ENE/FT/UnB II. Title (series)

BIBLIOGRAPHIC REFERENCE
BRITO, I.B. (2022). An Open-Source Testbed Based on the Modbus Protocol for Cybersecurity Analysis
of Nuclear Power Plants . Professional Master’s Dissertation, Department of Electrical Engineering,
University of Brasília, Brasília, DF, 94 p.

CESSION OF RIGHTS
AUTHOR: Israel Barbosa de Brito
TITLE: An Open-Source Testbed Based on the Modbus Protocol for Cybersecurity Analysis of Nuclear
Power Plants .
DEGREE: Master in Electrical Engineering YEAR: 2022

The University of Brasília is granted permission to reproduce copies of this Master Dissertation and to
lend or sell such copies only for academic and scientific purposes. Likewise, the University of Brasília
is granted permission to disseminate this document in a virtual library, in a format which allows access
via communication networks and the reproduction of copies, provided the integrity of the content of these
copies is protected and access to isolated parts of this content is prohibited. The author reserves other
publication rights, and no part of this document may be reproduced without written permission from the
author.

Israel Barbosa de Brito
Dept. of Electrical Engineering (ENE) - FT
University of Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

ii

DEDICATORY

I would like to express my deep gratitude to my lovely wife Amanda and my young daughter Nicole
for their understanding on the occasions when, in order to advance this work, I could not give them as
much attention as I would otherwise have preferred.

iii

ACKNOWLEDGEMENTS

This research was funded by the Agência Brasileira de Inteligência – ABIN – grant number 08/2019.
The author gratefully thanks the support of International Atomic Energy Agency (IAEA) which provided
the Asherah NPP Simulator (ANS). The author is also grateful for the technical and computational sup-
port of the Decision-Making Technologies Laboratory - LATITUDE, of the University of Brasilia, which is
supported by CNPq - Brazilian National Research Council (Grant 312180/2019-5 PQ-2, and 465741/2014-
2 INCT on Cybersecurity), by CAPES - Brazilian Higher Education Personnel Improvement Coordina-
tion (Grant 88887.144009/2017-00 PROBRAL), by FAP-DF - Brazilian Federal District Research Sup-
port Foundation (Grant 0193.001366/2016 UIoT, and Grant 0193.001365/2016 SSDDC), by the Brazil-
ian Ministry of the Economy (Grant 005/2016 DIPLA, and Grant 083/2016 ENAP), by the Institutional
Security Office of the Presidency of Brazil (Grant ABIN 002/2017), by the Administrative Council for
Economic Defense (Grant CADE 08700.000047/2019-14), by the General Attorney of the Union (Grant
AGU 697.935/2019), by the National Auditing Department of the Brazilian Health System SUS (Grant
DENASUS 23106.118410/2020-85), by the General Attorney’s Office for the National Treasure (Grant
PGFN 23106.148934/2019-67), and by the University of Brasilia – UnB COPEI (Grant 7129).

iv

ABSTRACT

The possibility of cyber-attacks against critical infrastructure, and in particular nuclear power plants,
has prompted several efforts by academia. Many of these works aim to capture the vulnerabilities of the
industrial control systems used in these plants through computer simulations and hardware in the loop
configurations. However, general results in this area are limited by the cost and diversity of existing
commercial equipment and protocols, as well as by the inherent complexity of the nuclear plants.

This situation motivates the present dissertation to introduce a testbed for the study of cyber-attacks
against a realistic simulation of a nuclear power plant. Our approach consists in surveying issues regarding
realistic simulations of nuclear power plants and to design and experimentally validate a software testbed
for the controlled analysis of cyberattacks against the simulated nuclear plant.

The proposal integrates a simulated Modbus/TCP network environment containing basic industrial
control elements implemented with open-source software components.

We validate the proposed testbed architecture by performing and analyzing a representative cyberattack
in the developed environment.

The chosen Insider cyberattack was successful in modifying an operational variable that is used to
manage the nuclear power plant, while the unmodified value was displayed to the control operators. This
attack also allows to explain how the proposed testbed can be used for the analysis of other cybernetic
attacks.

The potential use of the proposed testbed to study intrusion detection was also explored. To show how
Artificial Intelligence techniques could be used to detect attacks; we collected 6 datasets from our testbed,
each containing data from normal operation as well as different attacks. These datasets were used to train
5 different Machine Learning algorithms, and their relative accuracy was evaluated.

This kind of analysis promisse new utilizations and future directions for the work, as for instance, for
implementing defensive mechanisms in the network topology of the industrial control system to better
protect the nuclear power plant from cyberattacks.

v

SUMMARY

1 INTRODUCTION . 1

2 RELATED WORKS . 4

3 PROPOSED TESTBED FOR CYBERSECURITY ANALYSIS OF NUCLEAR POWER PLANTS . . . 7
3.1 MODBUS/TCP PROTOCOL AND THE MODBUS SIMULATOR . 9
3.2 ASHERAH NPP SIMULATOR (ANS) AND ITS ADAPTED MODBUS COMMUNICA-

TIONS INTERFACE . 11
3.3 GNS3 TOPOLOGY . 14
3.4 SCADABR HMI AND HISTORIAN . 15

4 CONDUCTING THE CYBER-ATTACK SCENARIO AND EVALUATING THE RESULTS 18
4.1 ANS PREPARATION. 19
4.2 ROGUE PLC .. 20
4.3 ATTACK PLATFORM . 21
4.4 COMBINED CYBER-ATTACK . 25
4.5 IMPACT ASSESSMENT . 28

5 INTRUSION DETECTION AND DEFENSIVE CAPABILITIES . 31
5.1 NETWORK APPROACH . 32
5.2 OPERATIONAL VARIABLES APPROACH . 33
5.3 BLENDED APPROACH AND THE POTENTIAL FOR EMPLOYING MACHINE LEARNING

TECHNIQUES . 35
5.3.1 FEATURE SELECTION . 36
5.3.2 FEATURE EXTRACTION AND DATASET BUILDING . 37
5.3.3 PREPROCESSING AND EXPLORATION OF THE DATA . 38
5.3.4 TRAINING AND EVALUATION OF DIFFERENT ML ALGORITHMS . 43
5.3.5 OPTIMIZATION OF THE SUPPORT VECTOR MACHINE (SVM) CLASSIFIER 45
5.4 DEFENSIVE CAPABILITY STUDIES . 50

6 CONCLUSIONS . 52

ABBREVIATIONS . 54

BIBLIOGRAPHIC REFERENCES . 55

APPENDICES . 60
I - MODBUS INITIALIZATION MATLAB SCRIPT . 61
II - MODBUS MODULES MATLAB CODE . 65
III - VYOS CONFIGURATIONS . 69
IV - ETTERCAP GUIDE . 72
V - PYTHON CODE EMPLOYED FOR MACHINE LEARNING . 75

vi

LIST OF FIGURES

1.1 Industrial Control System Levels. .. 3

3.1 Methodological flowchart. ... 7
3.2 MITM Attack against the nuclear testbed. ... 9
3.3 Modbus/TCP client-server communication. ... 11
3.4 Modbus TCP packet structure. .. 11
3.5 General View of the ANS subsystems. .. 13
3.6 Mapped holding registers area of ModRSsim2.. 13
3.7 ANS Modbus communications interface.. 14
3.8 GNS3 nuclear testbed topology. .. 15
3.9 ScadaBR HMI—Synoptic Panel 1 (Numerical and Main Control)................................... 17
3.10 ScadaBR HMI—Synoptic Panel 2 (Graphical).. 17

4.1 CD Press CTRL. .. 18
4.2 CD Press CTRL module commented out. .. 19
4.3 CC control variables communications activated. ... 20
4.4 ESP8266 NodeMCU v1.0 OpenPLC address mapping. .. 21
4.5 Rogue PLC ladder program in OpenPLC Editor. ... 22
4.6 Metasploit Modbus injection attack example (CC_PumpSpeedCmd = 75). 24
4.7 Ettercap ARP poisoning (ANS and ScadaBR). ... 25
4.8 Ettercap MITM changing values filter script... 25
4.9 Attack ON—Rogue PLC. .. 26
4.10 Ettercap MITM (CC_PumpSpeedCmd transmitted as 100). ... 26
4.11 ANS and HMI under attack. ... 27
4.12 Attack with Wireshark packet analysis example. ... 27
4.13 ANS reactor protection system (RPS). .. 28
4.14 Simulated results (CC—Condenser Cooling).. 29
4.15 Simulated results (CD—Condenser). .. 29
4.16 Simulated results (TB–Turbine)... 29
4.17 Simulated results (RX—Reactor)... 30

5.1 Time from request—Wireshark snapshot. .. 32
5.2 TFR comparison—normal.. 32
5.3 TFR comparison—MITM. ... 33
5.4 CC_PumpSpeed nominal oscillations (around 102).. 33
5.5 CC_PumpSpeed and CD_Press simultaneous transients. ... 34
5.6 CC_PumpSpeed and CD_Press—data normalization. .. 34
5.7 CC_PumpSpeed and CD_Press Data—scatter plot. ... 35
5.8 Box plots for Group 1 of high sensitive operational variables under the 3 scenarios 40
5.9 Box plots for Group 2 of marginally sensitive operational variables under the 3 scenarios 41

vii

5.10 Box plots for Group 2 of marginally sensitive operational variables under the 3 scenarios 42
5.11 Evaluation of diverse ML Classifiers for Scenario 1 (Reconnaissance MITM Attack).......... 44
5.12 Evaluation of diverse ML Classifiers for Scenario 2 (PLC Injection and Simple Masking) ... 45
5.13 Evaluation of diverse ML Classifiers for Scenario 3 (PLC Injection and Double Masking) ... 46
5.14 Confusion Matrix Diagram .. 48
5.15 Performance improvement after hyper-parameter tuning for Group 1. 49
5.16 Performance improvement after hyper-parameter tuning for Group 2. 49
5.17 IAEA Method for computer security of Nuclear Facilities - "graded approach" and "defense

in depth". ... 51

1 Modbus Modules. .. 65
2 Modbus Write AO_1... 65
3 Modbus Write AO_2... 66
4 Modbus Write DO. ... 67
5 Modbus Read. ... 68

viii

LIST OF TABLES

2.1 Proposed testbed and related work testbeds features - Comparison. 6

3.1 Nuclear testbed. List of components. .. 10
3.2 Common Modbus function codes... 12
3.3 Modbus addressing scheme. ... 12
3.4 Nuclear testbed IP addressing. .. 15

4.1 OpenPLC slave configuration parameters. ... 21
4.2 Rogue PLC ladder program local variables. ... 23

ix

1 INTRODUCTION

The main question addressed by this research is the design and validation of an easily reproducible
and accurate testbed for nuclear power plant (NPP) cybersecurity research. It is important to bring re-
sults regarding the protection of such cyber-physical infrastructures because there is concern of attacks
against the instrumentation and control systems used in real nuclear plants. However, there are inherent
risks associated with the safe operation of radioactive materials. We must also consider the high costs
involved in suspending the operation of nuclear power plants for the purpose of testing cyber-attacks and
defense measures. This scenario makes the use of nuclear power plant simulations almost unavoidable in
these situations. Therefore, presently and in the foreseeable future, this question needs to be addressed to
comprehend the possible cyber-attacks, their related risks, and to compose adequate protection measures.

As lately increased computing power allows the operation of realistic simulations of nuclear reactors
on personal computers, this work contributes with the design of a robust simulation-based testbed for
NPP cybersecurity studies, combining low-cost hardware and software, to enable realistic simulations of
the controlled physical processes and the used communications networks. The validation of the proposal
raises another contribution in the form of a method for simulating cyber-attacks, presenting a case scenario
that illustrates how to minimize the cost, difficulty, and complexity of NPP cybersecurity analysis, while
maximizing the accuracy, reproducibility, and scalability of this type of experimental setup.

In recent years we have seen a rise in cases of cyber-attacks against critical infrastructure. The impact of
these attacks covers a spectrum that ranges from essential service interruption and financial loss to physical
destruction. These attacks have been facilitated by the increasing digitalization in critical infrastructure
sectors, and the convergence between information technology (IT) and operational technology (OT).

Examples taken from industry at large include: in 2013, the cyber-attack that paralyzed a German steel
processing plant; and the attacks of 2015 and 2016 against Ukraine’s power distribution grid, responsible
for disrupting the power supply of thousands of homes [1]. Specifically in the nuclear industry, cases are
known such as: in 2003, in the USA, the Slammer worm disabled the safety monitoring system at the
Davis–Besse nuclear power plant (NPP); in 2006, in the USA, controller data traffic overload caused the
shutdown of unit 3 at the Browns Ferry NPP; in 2010, in Iran, the Stuxnet worm destroyed uranium enrich-
ment centrifuges; in 2014, in South Korea, hackers gained access to critical information about the operation
of Korea Hydro & Nuclear Power NPP and demanded the shutdown of 3 reactors [2, 3]. In response to the
growing perceived cybersecurity threat against nuclear power plants, the academia has sought to contribute
on several fronts. Research in this area encompasses proposals such as: qualitative assessments; best prac-
tice proposals; risk evaluations; cyber-attack scenario studies; development of intrusion detection systems
(IDS); precautions with supply chain; and cyber-physical protection systems; among others.

Many of these studies rely on computer simulations as their main working tool, be it purely software-
based, or in a hybrid configuration (hardware-in-the-loop, HIL). Indeed, for many decades, the use of
computer simulations has turned into established practice in the nuclear industry, particularly for training
purposes, but also in the design and licensing phases of the construction and operation of the reactors. The
inherent risks associated with the safe operation of radioactive materials and the high costs involved make

1

the use of simulations unavoidable in these situations [4].

Nuclear codes and full scope simulators are of high complexity and financial value, and are generally
beyond the wider reach of the academic community. Additionally, they offer little flexibility, as they are
designed specifically for the NPP model where they will be employed. Finally, they do not address im-
portant aspects for real-world cybersecurity studies, such as industrial communications networking and the
interfacing of OT with the company’s IT structure. This scenario leaves researchers with the task of devel-
oping appropriate testbeds in order to: on the one hand, be able to draw sufficiently general conclusions
about the cybersecurity of nuclear power plants; and, on the other hand, avoid oversimplification of the
simulated scenarios.

Fortunately, in recent years, computing power has increased enough to allow the operation of realistic
simulations of nuclear reactors on personal computers. Examples are the series of simulators developed
and made available to the public by the International Atomic Energy Agency (IAEA) [5, 6]. On the other
hand, operating system (OS) virtualization technology has become popular to the point of enabling, by
means of virtual machines (VM), the integration of these simulations with other typical OT elements in the
form of software, such as supervisory control and data acquisition system (SCADA) and programmable
logic controllers (PLC); in communication networks that use protocols specific to the automation industry.
Together, these techniques enable the conformation of robust testbeds for NPP cybersecurity studies.

The purpose of this research is to take advantage of these developments to propose one such testbed.
Centered on the possibility of carrying out cyber-attacks against the Asherah NPP Simulator (ANS), devel-
oped by the University of Sao Paulo (Brazil) for IAEA Coordinated Research Project (CRP) “Enhancing
Computer Security Incident Analysis at Nuclear Facilities” [4, 7]; integrated into a Modbus/TCP virtual
network communicating with complementary OT elements based on open-source software.

Specifically, we seek to present the following contributions: 1) development of the tesbed; 2) vali-
dation of the tesbed by performing cyber-attacks; 3) generation of datasets; 4) suggestions related to the
automation of intrusion detection systems (IDS), in particular based on Machine Learning (ML), and to the
implementation of defensive capabilities; 5) publication of a scientific paper in an international journal.

The testbed seeks to reproduce in a virtual environment an industrial control system (ICS) of a nuclear
power plant. The ICS can be represented in four levels, as shown in Figure 1.1 (ANSI/ISA-95 model [16]).

• Level 0: I/O Network - sensors and actuators (motors, valves);

• Level 1: Control Network - PLCs (Programmable Logic Controllers) ;

• Level 2: Supervisory LAN - HMI (Human Machine Interface) and Historian (logs);

• Level 3: Corporate Network.

This model helps to define boundaries between the enterprise systems and the control systems. And
also to address questions like which tasks can be executed by which function and what information must
be exchanged between the applications. Using it as a reference we sought to model the ICS levels from 0
to 2 in our testbed. Locating the sensors and actuators of the NPP at level 0, the PLCs at level 1 and the
supervisory system at level 2. The corporate network and the Internet are not object of this study.

2

The supervisory system, called SCADA (Supervisory Control and Data Acquisition) allows the central
monitoring and control of the physical processes of the entire industrial plant. The SCADA interacts with
the local control performed by the PLCs (Programmable Logic Controllers); which are robust, simple,
and reliable computers used in the production environment. Communication between these levels takes
place using special industrial protocols (Modbus, OPC-UA, Profibus, etc.). Its nature has evolved from
segregated analog networks to digital versions based on the TCP/IP protocol, which facilitates the action
of hackers. In particular, if a hacker has access to these early levels of the ICS layers, (also called the Air
Gap, because it is segregated from the corporate intranet and also from the Internet), he is known as an
Insider. His actions are simulated by the testbed being able to internally launch cyber-attacks against the
industrial communication network and replace trustworthy PLCs for rogue ones.

Figure 1.1: Industrial Control System Levels.

The detection of attacks on SCADA networks can be achieved by monitoring diverse data that travel
through the system. In our testbed we chose to monitor network and operational parameters in an integrated
way. These values are then extracted from several points in the topology and used to assemble datasets;
containing information of the testbed in normal situations and under cyber-attack. These datasets constitute
the raw material for training machine learning algorithms, with the purpose of creating an automatic IDS.
In this way we indicate a direction for future studies in this area, with the proposed testbed.

The remainder of the text is organized as follows: Chapter 2 review the literature and explore research
gaps to be improved; Chapter 3 describes how the proposed testbed was designed and implemented; Chap-
ter 4 applies the testbed to perform a specific cyber-attack scenario and evaluates the experimental results;
Chapter 5 discusses the possibility of employing the testbed for intrusion detection and defensive capabili-
ties research; and Chapter 6 draws general conclusions, discusses limitations and suggests areas for future
studies.

3

2 RELATED WORKS

Our general proof of concept argues for the potential benefits of adoption of purely software-based
industrial testbeds or in combination with low-cost hardware, for cybersecurity research purposes. Fur-
thermore, we believe that these need to be based, as far as possible, on realistic simulations of the con-
trolled physical processes and of the communications networks used, both in its OT and IT dimensions. In
this way, we will be able to minimize the cost, difficulty, and complexity while maximizing the accuracy,
reproducibility, and scalability of this type of experimental setup.

From this perspective, we list below some related work (this does not focus on the uses of a HIL
configuration for training purposes such as [8]); by way of example and without any attempt to exhaust
the list of initiatives in the area. At the same time, we recognize that some of these works consider testbed
development to be only a preliminary step to achieve diverse specific research goals. Nonetheless, we
believe that the principles that guided the development of our testbed can be of value to the cybersecurity
community in general.

C. N. Boldea, 2011 [9], suggested an open-source software framework to setup a SCADA testbed where
the network would be provided by the application GNS3, connecting at one end a Modbus client simulator
(ModRSsim2) and at the other end a SCADA server (Free Scada). The author indicates the possibility of
performing DoS attacks from a VM situated in the same network against port 502 of the Modbus client.
The article presents some good ideas, but does not offer further elaboration or describe practical results
eventually obtained.

J. Z. Thornton, 2015 [10], designed a virtual SCADA laboratory where the physical process (gas
pipeline) was modeled out of complex mathematical equations simulated by the Simulink/Matlab software
[11]. This allows for a more complete study of the behavior of a physical system during a cyber-attack.
The control logic expressed in ladder language was emulated by Python programming. The communi-
cation via Modbus/TCP by Python libraries (modbus_tk). The SCADA was partly implemented with a
proprietary solution (GE iFix) and partly by Python libraries (TKInter). The pervasive use of Python on
the testbed, while positive from a monetary perspective, could have contributed to diminishing the realism
of the proposed virtual lab. Furthermore, the use of proprietary software should be avoided, if possible, in
our view.

M. Andrey Teixeira et al., 2018 [12], present the development of a SCADA testbed to be used for
cybersecurity research. Their setup was dedicated to controlling a water storage tank in a HIL configuration
via the Modbus protocol. The effects of reconnaissance industrial network cyber-attacks on the testbed
were assessed and used to train machine learning (ML) algorithms, in order to develop an automated IDS.
However, the choice of the industrial subprocess to be simulated is too simple, and thus limits the possible
practical applications of the model. Furthermore, it resorts to specific commercial hardware such as the
Schneider PLC model M241CE40, which restricts the generality of its conclusions and complicates the
reproducibility of the experiment.

S. Figueroa-Lorenzo et al., 2019 [13], in order to test their proposal to improve the security of the Mod-

4

bus protocol, have built a virtual testbed, containing TCP/IP software network elements (firewall, routers
and switches) made available by Cisco for use in the network simulator GNS3. Since the authors’ ap-
proach was based on applying the Transport Layer Security (TLS) technique to traditional Modbus TCP/IP
protocol, they assumed that the cybersecurity of the model is guaranteed by design. It then remained to
evaluate possible problems arising from implementation flaws and low performance, which could be veri-
fied with the help of the arranged setup. This article shows the power and flexibility of virtualized testbeds,
for exploring various aspects of cybersecurity of industrial control systems (ICS). However, it relied on
proprietary software in its choice of implementation (Cisco GNS3 Appliances).

F. Zhang et al., 2019 [14], describe a testbed architecture to demonstrate a multilayered defense-in-
depth-based IDS. That included an engineering workstation to run the SCADA, a data storage unit, a
National Instruments cDAQ9188 Ethernet chassis, and a malicious computer running the Kali Linux OS.
This setup allowed for different attacks, such as Denial of Service (DoS) and man-in-the-middle (MITM).
However, the physical process representing a nuclear reactor subsystem was simulated only notionally.
This limitation was remedied in a later work by the authors, as in 2020, F. Zhang et al. [15] proposed a
HIL testbed built with the Asherah NPP Simulator (ANS), which is capable of a realistic simulation. It
also comprises a PLC, in order to conduct false data injection attacks and collect data to ML training of a
PLC process data anomaly detector. Still, it could be argued that the choice of commercial PLC (Siemens
S7-1200) and proprietary software (Prosys OPC UA) contribute to prevent the widespread applicability of
the proposed framework.

O. Pospisil et al., 2021 [1], summarize recent works in the area of industrial testbeds; motivated by the
lack of quality real data in the quantities and features required for ML applications aimed at automating
cybersecurity tasks. Although not specific to the nuclear industry, the study describes concepts and strate-
gies common to the development of these testbeds. As choices related to the following factors: industrial
processes to be studied; project category (physical, simulation, virtual, hybrid); application scenario (cyber-
security, education, functional testing, standards development); industrial communication protocols (Eth-
ernet/IP, Profinet, EtherCAT, Modbus, Siemens S7); and levels of the automation pyramid to be modeled,
according to the ANSI/ISA-95 model (ISO 62264) [16]. Specially levels L0 to L2, where: L0 deals with
production processes (sensors and actuators); L1 with control (PLCs); and L2 with supervision (SCADA).
The paper goes on to describe several testbeds set up in their university’s laboratory for data collection
purposes. The wealth of scenarios explored, however, may pose difficulties for researchers with fewer
laboratory resources. In particular, in relation to testbeds assembled from a great diversity of physical
equipment and proprietary protocols.

E. Aboah Boateng et al., 2022 [17], set up a testbed based on open-source software to compare the
performance of the ML one-class neural network (OCNN) training algorithm on a Modbus/TCP network
against previous works aimed at developing automated IDS for ICS. Those last employed one-class support
vector machine (OCSVM) and isolation forest (IF) ML algorithms to detect PLC operation anomalies. The
authors made the fortunate decision to implement the traffic light operation program; originally developed
for the Siemens S&-1212C PLCs, in the open-source soft PLC OpenPLC instead. The human-machine
interface (HMI) was also chosen to be provided by the free supervisory system ScadaBR. Despite this, we
consider the simplicity employed for the network, consisting only of Modbus communication occurring
between the HMI and the Soft PLC, to be overly limiting. This could explain why the anomalous scenarios

5

described in the article were not really emulated, but only imagined. Moreover, the physical process of
low complexity controlled by exclusively binary variables would hardly occur in real situations involving
critical industrial subsystems.

In contrast to the works listed above, our proposal is intended to be both close to industrial practice
and financially effective (see the Table 2.1 below). We resort to a complex simulation of a nuclear power
plant. This is in turn monitored and controlled by a supervisory system and PLC, based on opensource soft-
ware and low-cost microcontroller, actually used for factory operations and remote monitoring by certain
companies. The emulated network environment allows both the reproduction of communications by the
popular industrial protocol Modbus, and the launch of cyber-attacks actually developed to be used against
real ICS.

Table 2.1: Proposed testbed and related work testbeds features - Comparison.

Work Software Hardware Protocol Realistic
Process?

Realistic
ICS Net?

Realistic
Attacks?

Replicability

Testbed(our) F F F Y Y Y H
Boldea[9] F - F N Y Y L
Thornton[10] B - F Y N N M
Teixeira[12] F P F N N Y M
Figueroa[13] B - F - Y N M
Zhang[14] B P - N N Y L
Zhang[15] B P P Y N N L
Pospisil[1] B B B Y Y N L
Boateng[17] F - F N N N H

LEGEND: F - Free or Cheap; P - Paid and Expensive; B - Both free and paid were used; Y - YES; N - NO; H - HIGH; M -

MEDIUM; L - LOW.

6

3 PROPOSED TESTBED FOR CYBERSECURITY
ANALYSIS OF NUCLEAR POWER PLANTS

In this chapter, we present the requirements considered in building up the proposed testbed, and we
discuss the idea that guided the validation of our design. Then, the testbed components are detailed and
discussed. The followed methodological process can be seen in the flowchart depicted in Figure 3.1.

Figure 3.1: Methodological flowchart.

The requirements that guided the assembly of our testbed were as follows:

• Choice of a NPP simulator analogous to the physical processes associated with its operation. In
order to achieve a distinct advantage compared to related work that uses very simple processes, or
that oversimplifies the complexity of the real system.;

• Use of the Modbus/TCP protocol. This is one of the most widespread industrial communication
protocols, which nevertheless has serious vulnerabilities from a cyber security point of view.;

7

• Employment of a realistic network simulator. In particular one that allows the use of faithful emula-
tions and/or simulations of communication processes and/or equipment over TCP/IP networks. This
way we are able to get even closer, in the environment created by the testbed, to the real situation in
the industry.;

• Selection of open-source software for the OT and IT elements to be incorporated. The goal is
twofold: to lower costs and to facilitate testbed replicability.;

• Have the ability to perform cyber-attacks against the testbed elements. In particular to elect tools
currently available to hackers interested in attacking ICS.;

• Having the capability to monitor and log events to record historical data. This is necessary so that the
testbed can produce datasets for further processing. That can be intended for a number of tasks, such
as assessing impact, detecting intrusions, or training machine learning algorithms, among others.

The next components have been integrated to meet these requirements. The network topology was
provided by the GNS3 software, with virtual machines used to enable the simulation of the different Air
Gap zones typical of an ICS: the supervisory by ScadaBR; the malicious or rogue PLC by a combination
of OpenPLC and Arduino Wifi ESP8266; the Nuclear Power Plant simulator and Modbus Server by the
ANS running on Matlab/Simulink and the ModRSsim2, and; the cyber attack platform by KALI Linux. A
router was provided by VyOS that was configured to enable communication with the internet and the wifi
of the test environment, and thus enable the installation and configuration of the software, and the attack
via Arduino.

After the choice, integration and basic configuration of its components, the steps followed in the as-
sembly of the testbed, described in detail in this section 3, were: 1) creation of the Network Topology
in GNS3; 2) integration of the ANS simulator to the testbed through the Modbus/TCP protocol, and; 3)
construction of the supervisory system (HMI).

The execution of the testbed validation cyber-attacks as well as their impact assessment, described in
section 4, followed the steps: 1) choosing the Insider attack type to be employed and specifying its details;
2) preparing the ANS; 3) preparing Rogue PLC; 4) preparing the Kali Linux; 5) performing the attacks,
and; 6) performing the impact assessment.

To take the first steps and perform an initial exploration on the use of the testbed for IDS automation
studies, through artificial intelligence, as described in section 5, the following order was obeyed: 1) estab-
lishment of 3 attack scenarios and 2 training feature groups; 2) extraction and preparation of 6 datasets,
from the possible combinations between attack scenarios and feature groups; 3) performinng a prior visual
exploration of the datasets; 4) use of the datasets for training and obtaining the accuracy of several machine
learning algorithms; 5) discussion of the results; 6) demonstration of the automatization of the optimization
of the parameters of one of the chosen algorithms.

We consider this testbed capable of emulating a variety of cyber-attacks against Modbus/TCP-based
nuclear power plant simulated ICS. In order to validate this proof of concept, we planned to use it to
perform an insider cyber-attack. This consisted in simultaneously: (a) replacing a local PLC by a Rogue
PLC (Level 1 of the ANSI/ISA-95 model [16]), to modify the values of the registers used to control an

8

actuator critical to the NPP operation (Level 0); and (b) interpose and modify the communication between
Levels 1 and 2, so that the SCADA shows a normal situation in relation to the physical process, effectively
blinding the system to the attack in progress (men-in-the-middle attack or MITM). The described levels
and their respective roles can be seen in Figure 3.2.

Figure 3.2: MITM Attack against the nuclear testbed.

This testbed also allows the application of the IAEA concepts of defensive computer security architec-
ture (DCSA) [18, 19] (not part of this study), a practical technique to protect facility functions that support
safety and security that make use of, depend on, or are supported by digital technologies. Therefore, a
researcher can implement the concepts of computer security levels (implementing a graded approach) and
computer security zones (delivering defense in depth) and develop cyber-attack scenarios to assess ways in
which an adversary could exploit vulnerabilities in systems performing facility functions.

The requirements and envisioned cyber-attack in turn guided the choice of the components shown in
Table 3.1 below.

In what follows, we briefly explain the capabilities and justify the selection of the above listed com-
ponents. We also describe the adjustments made in order to integrate them into the testbed and enable the
proposed cyber-attack.

3.1 MODBUS/TCP PROTOCOL AND THE MODBUS SIMULATOR

Modbus is a protocol for industrial communications that was created more than 40 years ago (by
PLC manufacturer Modicon, now Schneider Electric) and still enjoys great popularity for real world
SCADA/ICS implementations. There are several reasons for this: it is an open standard that is easy to
implement and optionally available for almost all commercial automation equipment. This allows the
same plant to easily integrate equipment from different manufacturers into its operations.

The Modbus protocol is also a favorite for cybersecurity studies, since in its standard form it has no

9

Table 3.1: Nuclear testbed. List of components.

Role Performed Component

NPP Simulator Asherah NPP Simulator (ANS) 1

Communications Protocol Modbus/TCP
Modbus Simulator ModRSsim2 [20]
Network Simulator GNS3 2 [21]
Software Router VyOS (GNS3 Appliance) [22]
Software PLC and Ladder Program Editor OpenPLC 1.3 (Editor and Runtime) 3 [23]
Arduino PLC ESP8266 NodeMCU v1.0 ESP-12E
SCADA/HMI ScadaBR 1.2 [24]
Cyber-attack Plataform Kali Linux [25]
MITM Tool Ettercap [26]
Historian MySQL Workbench 4 [27]
Network protocol analyzer Wireshark [28]

1 Note: running inside Simulink/MATLAB on a Windows 10 (64-bit) VM., 2 Note: VMware Workstation Player [29] and Oracle

VirtualBox [30] used as hypervisors for the GNS3 appliances and VMs., 3 Note: installed on an Ubuntu 20.04 VM., 4 Note: visual

tool to manage the open-source MySQL Community Edition [31] database, utilized by ScadaBR.

mechanisms to ensure confidentiality or data integrity, among other vulnerabilities. It is also possible use
search engines for Internet connected devices, like Shodan [32], to locate and remotely attack Modbus
systems. Furthermore, since different brands of PLC accept the protocol as an option and it responds to
external commands regardless of authentication, they can easily be victimized by injection attacks [33, 34].

Last but not least, the open-source software chosen to build our testbed; specifically, ScadaBR and
OpenPLC, both support the Modbus protocol. It should be noted that commercial PLC brands in gen-
eral feature their own proprietary protocols and in some cases accompanying simulation software, also
proprietary.

Modbus/TCP is one of three variants of the protocol and allows communication over Ethernet networks
on standard port 502 (the other two being Modbus ASCII and Modbus RTU). It uses the client-server
architecture and its communications are based on exchanging Ethernet Request and Response frames, as
can be seen in Figure 3.3.

Figure 3.4 shows how the Modbus TCP packet is encapsulated in the data section of the conventional
Ethernet Frame. It is structured as follows: MBAP (Modbus Application Protocol) header followed by
the PDU (Protocol Data Unit) section. This last section contains the message itself, consisting of: (a)
function code, which indicates the desired operation (such as read and write); and (b) data, related to the
operation defined in the previous field, such as addresses or values to write. Table 3.2 shows common
Modbus function codes.

The target protocol has a particular addressing scheme that consists in dividing its memory area into
four sections; for discrete (Boolean) and analog values (Coils and Registers), read-only or read-write, as
can be seen in Table 3.3. Each of these addresses can store data types of up to 16 bits. Therefore, to use
32-bit data types, it is necessary to use two consecutive addresses for each of these values. In the particular
implementation of our testbed, characterized by simulated physical processes of mainly continuous nature,
we chose to use only the Holding Registers section of Modbus memory. There, all values simulated by the

10

Figure 3.3: Modbus/TCP client-server communication.

Figure 3.4: Modbus TCP packet structure.

ANS, Boolean or analog, were saved in FLOAT 32-bit format.

The Modbus simulator chosen to enable communication between the different modules of the testbed
was ModRSsim2 [20]. This program behaves as a server that responds to requests from Modbus clients
located at different IP addresses; through port 502 of the VM where it is installed. Thus, it was used as the
ANS’s Modbus memory, which could then be remotely accessed by ScadaBR and OpenPLC.

3.2 ASHERAH NPP SIMULATOR (ANS) AND ITS ADAPTED MODBUS COMMU-
NICATIONS INTERFACE

The Asherah NPP Simulator (ANS) was specially developed for cybersecurity assessments, by the
University of Sao Paulo, Brazil [4, 7]; in the framework of an international cooperation project sponsored
by the IAEA. It has a core design that mathematically simulates the nuclear physics of the Three Mile
Island (TMI) reactor, the 2,772 MWt Pressurized Water Reactor (PWR) Babcock and Wilcox (B&W). In
addition to the core, it also simulates the various instrumentation and control (IC) modules required to
operate the several subsystems commonly found in a real nuclear power plant [4].

Its unique features and the absence of similar research software availability determined the choice of
ANS for our testbed. The high degree of complexity and realism of ANS could only be achieved by the

11

Table 3.2: Common Modbus function codes.

Function Code (Decimal) Function Code (Hexadecimal) Description

01 0 × 01 Read Coil Status
02 0 × 02 Read Input Status
03 0 × 03 Read Holding Registers
04 0 × 04 Read Input Registers
05 0 × 05 Write Single Coil
06 0 × 06 Write Single Register
15 0 × 0F Write Multiple Coils
16 0 × 10 Write Multiple Registers

Table 3.3: Modbus addressing scheme.

Section Designation Read Write Address Range

Coils YES YES 00001–09999
Discrete Inputs YES NO 10001–19999
Input Registers YES NO 30001–39999

Holding Registers YES YES 40001–49999

developing work [35, 36], and the verification and validation activities [4] performed by the developers
with the support of experts involved in the IAEA CRP Enhancing Computer Security Incident Analysis at
Nuclear Facilities. The proprietary software Simulink/MATLAB provided the adequate environment for
the development of the ANS’ 3200 blocks and more than 250 scripts. Simulink/MATLAB is the one of
the two proprietary software used in our setup (the other being the OS Windows 10). In spite of this, the
Simulink/MATLAB software is widely available in university laboratories around the world. ANS itself
can be provided to IAEA member states upon formal request at [6]. In its current version, ANS can be
deployed without the need of Matlab/Simulink, as a runtime standalone version or in a docker/container
[37] application (also without the need of any proprietary software).

In Figure 3.5, we can see a general view of the ANS subsystems, divided into three subsections. The
two above, from left to right, show: (a) the control loops and protection system; and (b) primary and
secondary loops. The bottom subsection shows the external interface, comprised mainly by the Comm
Module and Matlab Historian.

In the version used (Windows—Release 14 dec 20), ANS was specially prepared to communicate via
the OPC UA protocol (Open Platform Communications Unified Architecture). Thus, in order to enable
a new Modbus communications interface, it was necessary to implement the following superficial modi-
fications to the program: (a) map the sensor and controller variables to new areas of the Modbus server
ModRSsim2 (Holding Registers Area only—two registers for each variable since they must be written as
32-bit FLOAT), as can be seen in Figure 3.6; (b) create a new initialization script for the new Modbus
command variables (ans_load) [Appendix I], which must be run in the Matlab Command Window; and
(c) disable the original OPC UA communication modules and create and activate new Modbus modules by
means of scripts based on Modbus read and write functions from MATLAB Instrument Control Toolbox,
as shown in Figure 3.7 and [Appendix II].

12

Figure 3.5: General View of the ANS subsystems.

Figure 3.6: Mapped holding registers area of ModRSsim2.

Note that both applications, the Modbus server and the ANS, were installed on the same machine
and therefore shared the same IP. The operating system used was Windows 10. From this point on, we
could have chosen to install the rest of the testbed components on other physical machines connected by
a hardware switch. Instead, we elected to build the entire testbed on a single machine by means of OS
virtualization technology.

13

Figure 3.7: ANS Modbus communications interface.

3.3 GNS3 TOPOLOGY

The open-source program GNS3 (Graphical Network Simulator-3) [21] was used to create a simple
TCP/IP network topology needed to set up the testbed and carry out the planned insider cyber-attack.
This program allows emulation and simulation of various network equipment, such as routers, switches,
and firewalls; besides OS VMs. It supports several free hypervisors such as VirtualBox and VMware
Workstation Player. The elements used to build the topologies are called appliances. The main elements
used in our implementation, all free, were the following: VyOS Router; 2 Ubuntu 20.04 VMs (ScadaBR
and OpenPLC), and; Kali Linux. Another facility provided by GNS3 is its simple integration with the
well-known communication protocol analyzer software Wireshark [28], which in turn is able to analyze
Modbus traffic. Several such units can be inserted into the topology segments at the same time.

In essence, our testbed was assembled to study and manipulate the Modbus/TCP communication in an
industrial subnet between the PLCs of a nuclear power plant and its supervisory system. As intervening
elements, inserted in the system by the Insider, we have: (a) a computer with the OS Kali Linux distribution
installed, a well-known platform used for pen test (penetration testing) and equipped with several libraries
for cyber-attacks; and (b) a “Rogue” PLC whose function is to substitute an internal control of the plant,
previously neutralized by the malicious agent. All mentioned elements were installed in VMs whose IP
and MAC addresses were fixed, and are in turn interconnected through Ethernet via a simple switch.

This configuration is sufficient to carry out insider attacks between the ANS and the HMI, since it is
assumed that the subnet is segregated from the Internet in critical infrastructures such as NPP (Air Gap).
However, the VyOS router [22] was also added and configured in the topology to allow access to the
internet of the test environment and thus facilitate the installation and configuration of the programs and
also allow for HIL testing (Arduino Wi-Fi) [Appendix III]. The resulting GNS3 topology is shown in
Figure 3.8 and its IP scheme in Table 3.4 below.

14

Figure 3.8: GNS3 nuclear testbed topology.

Table 3.4: Nuclear testbed IP addressing.

Roles Main
Applications

OS IP MAC

SCADA,
Historian

ScadaBR, MSQL
Workbench

Ubuntu 20.04 10.0.0.4/8 0c:fd:ed:11:0b:00

NPP Simulator,
Modbus Server

ANS,
ModRSsim2

Windows 10 10.0.0.2/8 08:00:27:44:d6:ef

Cyber-attack
Plataform

Kali Linux Debian 10.0.0.5/8 08:00:27:5c:65:26

“Rogue” PLC OpenPLC Ubuntu 20.04 10.0.0.3/8 0c:fd:ed:28:84:00
Router VyOS GNS3 Appliance 10.0.0.1/8 (eth1),

dhcp (eth0, eth2)
0c:fd:ed:2f:d8:01

3.4 SCADABR HMI AND HISTORIAN

ScadaBR [24] is an open-source supervisory system that presents several features expected by our
testbed in order to reproduce a situation close to the industry practice in a virtual environment. In particular:
visualization of automation data in real time; construction of graphical screens; and continuous recording of
variable changing values in a database. This last function, also called Historian or Datalogger, is provided
by the relational database management system (RDBMS) linked to the main program. It is fundamental to

15

enable deeper studies based on the analysis of data captured over long periods of time, such as, for example,
the creation of datasets for IDS automation research through the training of ML algorithms. In the version
we used, the supervisory links to an Apache Derby RDBMS by default. However, most ScadaBR users
migrate the application to use the MySQL [31] manager instead, which would provide performance and
stability gains to the Historian in real applications. We repeated the procedure in our testbed and, in order
to facilitate the manipulation of this database, we also installed the MySQL Workbench [27] graphical tool
in the same VM.

Regarding the choice of variables to be monitored by ScadaBR, it is important to recognize that the
version of ANS that was employed continuously provides the values of 153 different input and output (IO)
variables (sensors, actuators, setpoints, and commands). These are grouped into 19 subsystems distributed
among the three main circuits found in PWR reactors (primary, secondary, and tertiary). Thus, any practical
study involving cyber-attacks against the ANS and evaluation of its impacts must commence by selecting
a relevant subset of this universe. First, we considered it desirable to monitor the nuclear reactor (RX) and
its reactivity control variables. Second, the variables belonging to the target subsystem of the cyber attack.
And last, the variables belonging to the subsystems directly linked to the target subsystem.

Since we decided that the attack would primarily involve the condenser cooling pump (CCP), a HMI
was developed consisting in the numerical and graphical screens shown in Figures 3.9 and 3.10. In those,
we have just linked the variables associated with the chosen subsystems: main control; condenser cooling
(CC); condenser (CD); turbine (TB); and reactor (RX). Their characteristics are described in greater detail
in the experimental section of this text.

16

Figure 3.9: ScadaBR HMI—Synoptic Panel 1 (Numerical and Main Control).

Figure 3.10: ScadaBR HMI—Synoptic Panel 2 (Graphical).

17

4 CONDUCTING THE CYBER-ATTACK SCENARIO AND
EVALUATING THE RESULTS

As mentioned before, our cyber-attack scenario consisted in the replacement of an internal ANS con-
trol by a malicious external one that tampered with a critical variable value, while simultaneously a real-
time value-changing MITM attack prevented the anomalous activity from being detected by the HMI.
With the attack involving the condenser cooling pump (CCP); we have chosen the speed of this pump
(CCP_PumpSpeed), as the critical variable, and the internal command CC_PumpSpeedCmd, as the asso-
ciated control to be manipulated. The following considerations explain this choice.

First, the CCP is responsible for controlling the speed of the external cooling water flow to the con-
denser (CD); and therefore regulates its temperature and steam pressure. The CD steam pressure is identical
to the outlet steam pressure of the turbine (TB). A certain pressure difference between the turbine inlet and
outlet must exist for it to be able to turn the electrical generator responsible for the NPP power output.
Thus, the improper operation of the CCP could, in the extreme, stop the operation of the turbine (TB) and
the production of energy, and indirectly impair the functioning of the nuclear reactor; in addition to other
undesirable consequences, referring to Figure 3.9.

Second, the CCP is physically located outside the nuclear island, in the tertiary circuit of the NPP. Such
an attack is more attractive for an insider, since more lenient security measures are generally employed in
this area. This in turn increases the chances of the cyber-attack actually occurring and thus contributes to
the realism of the attack scenario. And last, since the CCP relates directly to only one other subsystem (the
condenser CD), we considered that the analytical simplification provided by this situation made the chosen
target desirable as the object of a first exploration of the testbed’s capabilities.

In more specific terms, the attack consisted of using the Rogue PLC to set the value of CC_PumpSpeedCmd
to 75, while the HMI instead showed its normal value around 100, for main control power output of 100%.
In the absence of manipulation, this variable adjusts the condenser cooling pump (CCP) speed to keep the
condenser (CD) vapor pressure close to a reference value (5200 Pa), as can be seen in Figure 4.1.

Figure 4.1: CD Press CTRL.

18

Thus, it was expected that the artificially imposed slightly lower fixed value would not be easily no-
ticed and would gradually increase that condenser pressure, eventually reproducing the damaging effects
described above. To do this in practice in our testbed, we followed these steps:

1. Disabled the internal ANS control module (CD Press CTRL) that provides the value to be manipu-
lated (CC_PumpSpeedCmd);

2. Programmed the Rogue PLC so that it could provide the new value of CC_PumpSpeedCmd that
would be externally supplied and accepted by the ANS as if it were internally generated. In addition,
it was necessary to provide the control variable that keeps the pump turned on, and that was originally
provided by the disabled internal module (CC_PumpOnOffCmd);

3. Used the attacker platform to perform a MITM attack that was able to intercept and modify the
Modbus/TCP communication between the ANS and ScadaBR.

4.1 ANS PREPARATION

The procedure for disabling internal ANS modules in Simulink/MATLAB involves commenting them
out and at the same time enabling the necessary command connectors in the communications section.
Specifically, Figure 4.2 shows how we disabled the CD Press CTRL module and the internal variables
CC_PumpSpeedCmd and CC_PumpOnOffCmd. Figure 4.3 shows how we activated these same variables
in the communications area, so that they can be controlled externally. The physical equivalent of this
operation would be the replacement of the legitimate PLC or its control programming for another version.
We assume that the malicious agent would have the ability to make this physical modification, in a real
situation.

Figure 4.2: CD Press CTRL module commented out.

19

Figure 4.3: CC control variables communications activated.

4.2 ROGUE PLC

The Rogue PLC has been implemented in the open-source program OpenPLC [23]. The software was
developed according to the IEC 61131-3 standard [38], which defines the 5 PLC programming languages
(Ladder Logic—LD, Structured Text—ST, Instruction List—IL, Function Block Diagram—FBD, and Se-
quential Function Chart—SFC). It is divided into two main parts: the Editor and the Runtime. The Editor
is where programs are created. The Runtime can be embedded in low-cost microcontrollers such as the
ones of the Arduino family, or in a generic target like a Soft-PLC (Windows or Linux). In addition, there
is a web-based platform to define, monitor, and manage the program to be executed and the various PLCs
in use.

A ladder program was designed in the OpenPLC Editor that enabled manual control of the cyber-attack,
via simple circuitry based on the Arduino board ESP8266 NodeMCU v1.0 ESP-12E (button PB1 ON—
attack activated; button PB2 ON—attack interrupted). This Arduino board was connected to the Wi-Fi
network of the test environment [39]. To link the variables defined in the program to the Modbus memory
IO target variables; to manipulate only the desired Holding Registers in it, without messing with the other
addressing areas, and to have access to more analog outputs, we followed the OpenPLC addressing con-
ventions and created 3 slaves (one of Device Type ESP8266 and two of Device Type Generic TCP), as can
be seen in Figure 4.4 and according to the settings shown in Table 4.1.

The ladder program logic is as follows. When the attack is triggered (the normally open button
PB1 is physically pressed on the arduino board), the consecutive Holding Registers corresponding to
CC_PumpSpeedCmd (Hccpspeedcmd at 400,225 and Lccpspeedcmd at 400,226) are written with the val-
ues 17,046 and 0000 (FLOAT 7.5E+01, 7.5x101 or 75) on the ModRSsim2 Server. When the attack is
stopped, the CC_PumpSpeedCmd registers are written with the values 17096 and 0000 (FLOAT 1.0E+02,
1.0x102 or 100). The registers related to CC_PumpOnOffCmd (Hccponoffcmd at 400,285 and Lccponof-
fcmd at 400,286) are kept at 16,256 and 0000 (FLOAT 1,0E+00,1.0x100 or 1) throughout the operation.
The MOVE instruction was used to transfer the content of the operand at input IN to the operand at output
OUT when the Input EN is ON. The local variables used are shown in Table 4.2 and the implemented

20

Figure 4.4: ESP8266 NodeMCU v1.0 OpenPLC address mapping.

Table 4.1: OpenPLC slave configuration parameters.

ESP8266 NodeMCU v1.0
(physical control)

Rogue PLC 1
(CC_PumpSpeedCmd)

Rogue PLC 2
(CC_PumpOnOffCmd)

Device Type: ESP8266 Device Type: Generic Modbus
TCP Device

Device Type: Generic Modbus
TCP Device

Slave ID: 0 Slave ID: 1 Slave ID: 2
IP Address: 192.168.1.165 IP Address: 10.0.0.2 IP Address: 10.0.0.2
IP Port: 502 IP Port: 502 IP Port: 502

Discrete Inputs (%IX100.0)
Start Address: 0 Size: 8

Discrete Inputs (%IX100.0)
Start Address: 0 Size: 8

Discrete Inputs (%IX100.0)
Start Address: 0 Size: 8

Coils (%QX100.0) Start
Address: 0 Size: 8

Coils (%QX100.0) Start
Address: 0 Size: 8

Coils (%QX100.0) Start
Address: 0 Size: 8

Input Registers (%IW100) Start
Address: 0 Size: 1

Input Registers (%IW100) Start
Address: 0 Size: 1

Input Registers (%IW100) Start
Address: 0 Size: 1

Holding Registers—Read
(%IW100) Start Address: 0
Size: 0

Holding Registers-Read
(%IW100) Start Address: 0
Size: 0

Holding Registers—Read
(%IW100) Start Address: 0
Size: 0

Holding Registers—Write
(%Q100) Start Address: 00
Size: 1

Holding Registers—Write
(%Q100) Start Address: 224 1

Size: 2

Holding Registers—Write
(%Q100) Start Address: 284 1

Size: 2
1 Note: these are the offsets pointing to the beginning of the variables in the Holding Registers area of ModRSsim2.

ladder program in OpenPLC Editor is shown in Figure 4.5.

4.3 ATTACK PLATFORM

Kali Linux [25] distribution was chosen to unleash the value-changing MITM attack. This platform
allows for performing cyber-attack scenarios with the purpose of assessing its consequences. It offers a

21

Figure 4.5: Rogue PLC ladder program in OpenPLC Editor.

wide range of tools for information security and ethical hacking-related tasks, such as penetration testing,
computer forensics and reverse engineering. In its inventory there are tools tailored exclusively for cyber-
attacks against SCADA/ICS. For example, the Metasploit framework, which comes pre-installed by default
on Kali, offers modules that can be used to find Modbus servers and clients; and read and write Modbus
registers [40]. For some equipment, it is even possible to upload, analyze, and then download and replace
the PLC ladder logic (modicon_stux_transfer module) [41].

These Metasploit modules in particular, or exploits, as they are called, could have been used in our
testbed to write constant values to the ModRSSim2 server registers and thus achieve the same results as
those obtained by the simple Rogue PLC logic just described. As can be seen by the sequence of commands
shown in Figure 4.6, it is possible to employ the “modbusclient exploit” to write the values 17,046 and 0000
(value 75) for the two bytes after the 224 address offset (variable CC_PumpSpeedCmd) of the ModRSsim2
Server at IP 10.0.0.2 (ANS VM).

22

Table 4.2: Rogue PLC ladder program local variables.

Name Class Type Location Description

PB1 Local BOOL %IX100.0 Push button
(attack ON)

PB2 Local BOOL %IX100.1 Push button
(attack OFF)

LAMP Local BOOL %QX100.0 Warning LED
(attack ON)

Hccpspeedcmd Local UINT %QW101 CC_PumpSpeedCmd
(Higher Byte)

Lccpspeedcmd Local UINT %QW102 CC_PumpSpeedCmd
(Lower Byte)

Hccponoffcmd Local UINT %QW103 CC_PumpOnOffCmd
(Higher Byte)

Lccponoffcmd Local UINT %QW104 CC_PumpOnOffCmd
(Lower Byte)

Instead, we preferred to demonstrate the HIL implementation capabilities of our testbed, and empha-
sized its potential for increased programming complexity, and scalability provided by the use of soft PLCs;
which allows the developing of cyber-attacks that require a greater knowledge of the plant control system
(not addressed in this study). For example, by the external cloning the logic of the internal controller be-
ing replaced, it would be possible to enable more subtle attacks to be carried out, with greater control of
the manipulated variables and eventual return to normal control whenever desired. In principle, a well-
informed Insider would know the implementation details necessary to perform this procedure. In any case,
this point demonstrates the flexibility of the testbed and illustrates an alternative way to perform the same
Modbus injection cyber-attack.

As for the MITM attack itself, the specific tool used was Ettercap (also present by default on Kali
Linux distributions) [26]. It allows us to snoop live TCP/IP connections and to filter content on the fly.
In the validation experiment we performed the in-transit change of Modbus response packets from ANS
to ScadaBR. This was done in two steps. First, Ettercap applied the ARP poisoning technique (sending
unsolicited ARP replies simultaneously to both of its targets) to make ANS (10.0.0.2) believe that the
ScabaBR (10.0.0.4) was located in the Kali VM IP address (10.0.0.5); and to make ScabaBR believe that
ANS was in Kali address, as shown in Figure 4.7. Ettercap could now eavesdrop and pass on these packets
in both directions.

The second step consisted in filtering and changing the ANS responses to Modbus READ requests
made by ScadaBR. Among the various values contained in these response packets, we wanted to change in
transit only the ones corresponding to CC_PumpSpeedCmd (to its normal value of 100, regardless of the
actual value being transmitted by ANS). As Ettercap filtering was not designed with the Modbus protocol
in mind, it was necessary to design a script that took into account: (a) Ettercap’s filter syntax and offset
addressing rules; (b) the specifics of the HMI implementation; and (c) ScadaBR’s execution routines.

Ettercap filter offsets (pointed to by DATA.data + OFFSET = “value”) start at the beginning of the
DATA section of the Ethernet frame, which coincides with the beginning of the Modbus TCP packet section

23

Figure 4.6: Metasploit Modbus injection attack example (CC_PumpSpeedCmd = 75).

for the Modbus TCP protocol. On the other hand, for the set of variables chosen to be monitored by the
HMI, ScadaBR performed 3 sequential requests whose responses had fixed length and thus could be used
as identifiers (Length: 251 [00 fb] Registers 8–131; Length: 243 [00 f3] Registers 132–251; Length: 67
[00 43] Registers 280–311). We also knew that we must change only the contiguous registers located at
224 and 225, to the value 0X42C80000 = 100 DEC. With these considerations taken into account, it was
possible to write the appropriate filter script, shown in Figure 4.8 and capable of changing only the desired
packets and registers [Appendix IV].

It is understood that different configurations in the HMI would require adaptations to the presented
script. Once again, we assume that the Insider has in-depth knowledge of the control architecture. It
should be noted that in a real situation, we would also have several SlaveIDs for different PLCs, which in
ANS correspond to internal control modules, all gathered under a single SlaveID.

24

Figure 4.7: Ettercap ARP poisoning (ANS and ScadaBR).

Figure 4.8: Ettercap MITM changing values filter script.

4.4 COMBINED CYBER-ATTACK

The planned cyber-attack was successful and able to: (a) block the internal control of CC_PumpSpeedCmd;
(b) inject an arbitrary constant value of 75 into CC_PumpSpeedCmd; and (c) show the normal value of
CC_PumpSpeedCmd = 100 on the HMI, during the attack. Figure 4.9 shows the Arduino board ESP8266
NodeMCU v1.0 breadboard circuit and the OpenPLC web interface monitoring page for the implemented
Rogue PLC ladder program. All the programmed variable values are displayed in real time. Additionally,
while the attack is occurring, the Ettercap filter script continuously outputs the message that indicates that

25

the MITM is in progress, as show in Figure 4.10. Next, in Figure 4.11, we can see the local value for
CC_PumpSpeedCmd in the Matlab ANS interface is indeed modified to 75 by the Rogue PLC, and at the
same time, the false value of 100 is presented in the ScadaBR HMI.

Figure 4.9: Attack ON—Rogue PLC.

Figure 4.10: Ettercap MITM (CC_PumpSpeedCmd transmitted as 100).

Figure 4.12 below shows another way to visualize the same cyber-attack; this time from inside the
GNS3 topology with the help of two Wireshark instances. The lower one in the figure, located between the
ANS VM and the Switch in the topology, captures the NPP response packets to the supervisory before the
real-time modification performed by the Kali/Ettercap MITM. The upper one, between the ScadaBR VM
and the Switch, captures the same packets after the modification. Since each response corresponds to the

26

Figure 4.11: ANS and HMI under attack.

same Modbus transaction value, it is possible to check the results by reading the fields corresponding to
records 224 and 225; which show 75 for the lower one and 100 for the higher one.

Figure 4.12: Attack with Wireshark packet analysis example.

27

4.5 IMPACT ASSESSMENT

To evaluate the impact of the proposed cyber-attack on ANS’ subsystems, we based ourselves on the
following aspects:

• Possibility of a domino effect impacting the main reactor. Since any damage to the reactor may
result in the leakage of large quantities of radioactive material, with consequent threat to the physical
integrity of living beings, artificial structures, and the environment.;

• Affected variables values distance from their nominal operating values. Since values that are too far
outside their operating ranges can impair the optimal operation of the affected subsystem and even
damage it permanently.;

• The eventual triggering of the reactor protection system, which performs the emergency shutdown of
the plant when limit values for certain vital variables are breached, to prevent the detected anomaly
from escalating and spreading.

Contrary to our initial expectations, setting the value of CC_PumpSpeed to 75 (through the variable
CC_PumpSpeedCmd) did not significantly affect the nuclear reactor operational variables. In these circum-
stances, the most impacted variables were the condenser vapor pressure (CD_Press) and the turbine outlet
pressure (TB_OutSteamPress). So, we repeated the attack for several different values of CC_PumpSpeed,
varying it in steps of 5 units, between 75 and 15; and assessed the variables’ equilibrium values in compar-
ison with their rated values (which can be obtained from the ANS manual).

While proceeding in this way, it is important to consider the operational limits imposed by the simu-
lator itself. The ANS has a reactor protection system (RPS) that triggers the so-called reactor´s SCRAM
(emergency shutdown) whenever certain thresholds are exceeded. Figure 4.13 shows how its logic is im-
plemented.

Figure 4.13: ANS reactor protection system (RPS).

For the subsystems monitored in the setup, whenever any of the following variables exceeds its respec-
tive threshold, the OR gate depicted propagates the ON (1) signal to the SCRAM Output (CR_ScramCmd):

28

CD_Level > CD Overflow = 1.5 (m); CD_Press > CD OverPress = 6760 (Pa); mod (RX_OutCoolTemp
- RX_InCoolTemp) > RX OverTempDiff = 40 (k); and 0.5 * (RX_OutCoolTemp - RX_InCoolTemp) >
RX OverTemp = 580 (K). The only one of these parameters that varied for the different scenarios was the
CD_Press, whose maximum threshold was reached with CC_PumpSpeed between 55 and 50. We have
disabled the triggering of this protection system in order to proceed with tests for CC_PumpSpeed val-
ues below 50. However, states very far from the operating limits may lose its physical meaning for the
simulation or be impossible to achieve in real equipment.

After completing these rounds of attacks, it was verified that the final results for the monitored variables
at the various levels followed essentially the same pattern as revealed by the initial attack, with regard to the
main variables affected; except that the condenser vapor pressure and the turbine outlet pressure increased
more and more with the decrease of the condenser cooling pump speed.

In the following tables, we have applied color-coding to visually differentiate the degree of deviation
of the measured values from the operating values under normal conditions. Rated values are represented
in green. Values just below the rated (up to less than 10%) are in light blue, and below 10% in dark blue.
Values just above the rated (up to 10%) are in orange, and above 10% in red. The tables also show other
relevant information such as the original labels, ranges, units and descriptions, as defined by the ANS
developers (Figures 4.14–4.17).

Figure 4.14: Simulated results (CC—Condenser Cooling).

Figure 4.15: Simulated results (CD—Condenser).

Figure 4.16: Simulated results (TB–Turbine).

From the experiments performed, it was possible to arrive at the following conclusions about the cyber-
attack against the condenser cooling pump speed, especially for values below 50:

29

Figure 4.17: Simulated results (RX—Reactor).

• The plant’s protection system may be triggered, resulting in the interruption of its power generation
and consequently in financial losses;

• The significant increase in vapor pressure in the condenser and turbine outlet, to values far above
their operating range, could result in physical damage to the equipment, with risks to worker safety.
This could also represent a significant financial loss, since in addition to the funds needed to repair
or replace the equipment, it would extend the time needed to restore the NPP to its normal activities.

30

5 INTRUSION DETECTION AND DEFENSIVE
CAPABILITIES

Besides demonstrating the ability of the testbed to access realistic cyber-attacks against a nuclear power
plant simulator, we would also like to emphasize its potential for conducting studies for the development of
intrusion detection techniques and for the possible automation of this process. Since ICS are deterministic
systems, we believe that, for cyber-attacks similar to the one employed, their detection could be done
mainly by joint monitoring [42]: network parameters; and operational variables.

First, we illustrate how intrusions can be identified by comparing the detected values with the expected
patterns for the same variables during normal plant operation; either through network parameter values or
through NPP operational variable values. We then propose and enact the simultaneous monitoring of these
two classes of parameters, with the goal of achieving a high intrusion detection efficiency.

For training the ML algorithms, 6 datasets composed of the chosen features were extracted; with equal
amounts of data representing the normal and under attack situations. The 3 attack scenarios were: 1) simple
MITM (passive monitoring of the communication between the PLC and the Supervisory); 2) MITM with
simple injection (same attack used in the validation stage), and; 3) MITM with enhanced injection (the
value of another variable was also modified in transit to make the attack harder to be detected by the human
operators). The 2 sets of features were: 1) high sensitivity variables, and; 2) low sensitivity variables. In
possession of these datasets, a graphical analysis of the distribution of values was performed, before the
training by the ML algorithms, by means of: 1) Box Plot Analysis, and; 2) PCA - Principal Component
Analysis.

The ML paradigm employed was supervised binary classification; in it the datasets must contain his-
torical information about what is considered normal and intrusion/attack; for classification of future values
into one of these two categories. The 5 different ML algorithms chosen to be trained by the datasets were:
SVM; logistic regression; Random Forest; KNN; and Naive Bayes. The Accuracy was used as an effi-
ciency criterion. This was followed by a discussion of the relative efficiency of these algorithms and how
the attributes of the dataset and the chosen ML paradigm can influence these results. Finally, we demon-
strate how the obtained performance could be improved by automatically optimizing the parameters of the
SVM algorithm.

In the last subsection, we briefly present the methodology advocated by the IAEA, for the rational-
ization of the application of resources in cybersecurity of nuclear facilities. In this sense, we indicate
how the testbed could be used, in future work, to implement the defensive mechanisms suggested by the
methodology.

31

5.1 NETWORK APPROACH

To illustrate the network monitoring approach, we have chosen the “Time from request” network pa-
rameter in Modbus TCP packets destined for ScadaBR (10.0.0.4). This value, which is actually a cal-
culated variable, measures the response time between the request from the supervisor and the response
from the ANS, and can be captured by Wireshark from the timestamps of the Modbus/TCP package
(’tcp.time_delta’), as shown in Figure 5.1. Next, we extracted about 2000 of these packets, at the point
between the supervisor and the Switch (HMI_ScadaBR Ethernet0 to Switch eth3); and used this data for
graphical comparison between normal operation and under MITM attack, as depicted in Figures 5.2 and
5.3. The approximate average delay (shown in these pictures as colored lines) of about 0.01 seconds is
noticeable when we compare the normal response time with the situation under attack.

Figure 5.1: Time from request—Wireshark snapshot.

Figure 5.2: TFR comparison—normal.

32

Figure 5.3: TFR comparison—MITM.

5.2 OPERATIONAL VARIABLES APPROACH

To demonstrate the operational variables monitoring approach, and guided by the experimental results
above described, we chose to relate the variables CC_PumpSpeed and CD_Press. If a pattern for their
simultaneous values in a nominal operation situation could be found, this in principle would allow the
detection of elaborate cyber-attacks against one of them; such as replay attacks, where the value shown in
the HMI corresponds to the oscillations of that variable values in a previous period.

In normal operation with the Main Reactor (RX) power at 100%, the variable CC_PumpSpeed, held at
the constant value of 100 by our cyber-attacks, actually oscillates with values close to 102. This can be seen
most clearly in the graphs in Figure 5.4, where the first 1000 or so measurements after the start of normal
reactor operation are shown. The graph depicted on the left shows the values for each observation and the
graph on the right shows the density or frequency of values associated with the various measurements, for
the same data set.

Figure 5.4: CC_PumpSpeed nominal oscillations (around 102).

Furthermore, small operation transients, even in normal operation, are expected and were observed
during the simulations. Therefore, we used MySQL Workbench to extract a sample of 600 observations
where one of these transients were present, as shown in Figure 5.5, and thereafter studied the relationship
between the values of CC_PumpSpeed and CD_Press in this range.

33

Figure 5.5: CC_PumpSpeed and CD_Press simultaneous transients.

After normalizing these values between 0 and 1, as shown in Figure 5.6 (a standard preparatory pro-
cedure necessary to employ various ML algorithms), we determined the linear correlation between the
variables to be very low (−0.1925). However, the respective scatter plot clearly displays the formation
of an underlying non-linear pattern, as seen in Figure 5.7. This found locus could presumably be used
to detect anomalies. Although mere visual inspection will be insufficient to detect non-linear relationship
patterns for more than two chosen variables or features, appropriate mathematical and computational tech-
niques can be employed instead. The same procedures could be expanded in order to train ML algorithms,
by including new variables and enlarging the dataset.

Figure 5.6: CC_PumpSpeed and CD_Press—data normalization.

34

Figure 5.7: CC_PumpSpeed and CD_Press Data—scatter plot.

5.3 BLENDED APPROACH AND THE POTENTIAL FOR EMPLOYING MACHINE
LEARNING TECHNIQUES

Intrusion detection, if done by monitoring variables from only one of the two types of classes described
(network or operational), can give rise to many false positives. The reason lies in the different dynamics and
scales involved: for the parameters extracted from TCP/IP network communication; and the operational
variables derived from physical processes. In addition, deviations observed in the behavior considered
normal for one of these classes may originate from several sources. Thus, the correlation between the two
classes and the simultaneous detection of anomalies helps greatly in the correct characterization of a cyber
attack.

To show how to combine and expand the above examples (monitoring of network parameters and
operational variables at the same time) and to automate the process through machine learning, we set up
the following detection scenarios.

Scenario 1 - detection of a reconnaissance attack consisting of a simple MITM (preparatory to subse-
quent attacks).

In principle, this situation would be the most difficult to detect just by monitoring the values of the
operational variables. This is due to the fact that there is no injection of values into the NPP actuators and
no masking of the values transmitted by the sensors to the HMI. However, automatic intrusion detection
could still be done by monitoring network parameters.

Scenario 2 - detection of an PLC injection attack followed by simple masking of the CC_PumpSpeedCmd
variable (as described above).

In this scenario the main cyber attack of this work is repeated. That is, injection of the value 75 in the
speed controller of the condenser cooling pump, by OpenPLC, and simultaneous masking to display its
nominal value of 100 in the HMI display, by Ettercap/Kali. While this attack is useful to demonstrate the
possibilities of using the testbed to carry out realistic cyber attacks, it would be easily detected by attentive
human operators. The CC_PumpSpeedCmd variable, present in our ScabaBR HMI implementation, is

35

actually an internal control variable and as a rule would not be displayed in the central monitoring panel.
On the other hand, the CC_PumpSpeed variable, directly affected by this control and available for visual
inspection, would immediately change to 75 as soon as the injection attack was initiated, thus rendering
the intent of the masking ineffective.

Scenario 3 - detection of an PLC injection attack followed by enhanced masking (in addition to the
CC_PumpSpeedCmd variable, also the CC_PumpSpeed variable).

Here our aim was to make the detection of the cyber-attack by human operators non-trivial. This was
done by modifying the original Ettercap packet filtering script to make it also mask the displayed value of
CC_PumpSpeed, to its equilibrium value of 102.7 DEC (0X42CD6666) for the NPP reactor operating at
100% output [Appendix IV.5].

These scenarios were simulated and six datasets, of about 2000 samples each, were built and used to
train learning models with typical ML algorithms. The central strategy being to consider anomaly detection
as a supervised learning problem based on binary classification. In this way, each sample consisted of a
mix of network and operational variables values labeled in a target class according to the situation in which
they were collected (normal operation or under cyber- attack).

5.3.1 Feature Selection

The training features chosen to compose the datasets, in addition to the network parameter "Time from
request" (tcp.time_delta), were divided into two groups: 1) Highly Sensitive Operational Variables. That is,
those variables that proved to be the most sensitive to the various attacks performed for different values of
CC_PumpSpeedCmd, in the CC - Condenser Cooling and CD - Condenser subsystems; and 2) Marginally
Sensitive Operational Variables. That is, those variables that proved to be the less sensitive to the various
attacks, in the RX - Main Reactor and T - Turbine subsystems. The purpose of dividing the datasets
into these two groups was to assess how the choice of variables influences the ability of the different ML
algorithms in detecting the cyber intrusion. Moreover, to keep the values consistent with their respective
time markers, just variables contained within the same ScadaBR requisition response (mbtcp.len = 251 or
243) were used. From these considerations, resulted the following choice of monitored variables.

Group 1 - Highly Sensitive Operational Variables (mbtcp.len = 251)

CC - Condenser Cooling

• CC_PumpFlow (Modbus Registers 8, 9);

• CC_PumpOutletTemp (Modbus Registers 12, 13);

• CC_PumpSpeed (Modbus Registers 14, 15).

CD - Condenser

• CD_InSteamFlow Modbus (Registers 20, 21);

• CD_Press (Modbus Registers 26, 27);

36

• CD_SteamTemp (Modbus Registers 28, 29).

Group 2 - Marginally Sensitive Operational Variables (mbtcp.len = 243)

RX - Main Reactor

• RX_ReactorPress (Modbus Registers 134, 135).

TB - Turbine

• TB_InSteamFlow (Modbus Registers 180, 181);

• TB_InSteamPress (Modbus Registers 182, 183);

• TB_SpeedCtrlValvePos (Modbus Registers 188, 189).

5.3.2 Feature Extraction and Dataset Building

The values of these operational variables were extracted from a Wireshark instance positioned between
the ScadaBR supervisor VM and the Switch; a convenient location to capture the data already manipulated
by the Insider attack.

The preference for Wireshark over the MySQL database linked to ScadaBR was due to the ease of
capturing network and operational information in a single package, and the flexibility of positioning the
probe anywhere in the topology. However, the ways of exporting Modbus data from captured .pcap files
by Wireshark through its GUI proved inadequate for our purposes. Therefore, we opted instead for the use
of Tshark [43]; a command line tool (CLI) that has most of the functionality of Wireshark. This could be
achieved by means of the following Tshark bash script (mbtcp.len = 251).

$ tshark -r /path1/capture.pcap -Y 'mbtcp.len == 251' -T fields -e

tcp.time_delta -e modbus.regval_uint16 > /path2/filtered_capture.csv

Four .pcap captures were performed: in normal situation; and during the attacks of the three scenar-
ios. After packet filtering and extraction of the data of interest, by Tshark, the resulting CSV files were
processed as follows: 1) transformation into Excel .xlsx spreadsheets, with separation of the values into
distinct columns; 2) elimination of the columns related to Modbus registers associated with non-monitored
variables; 3) conversion of the contiguous Modbus records from 32-bit unsigned integer to 32-bit single
precision IEEE floating point numbers; by means of a spreadsheet adapted from [44]; 4) addition of the
target column "Attack" indicating the situation that one wants to train/predict. With the binary values
"0" to represent the NPP operating normally and "1" to represent the NPP under attack; 5) finally, the
concatenation of the data in normal operation with the data collected during the attacks, for the three sce-
narios, completed the assembling. The six datasets created represent the possible combinations between
the Groups and Scenarios, as follows: Dataset 1 - Group 1, Scenario 1; Dataset 2 - Group 1, Scenario 2;
Dataset 3 - Group 1, Scenario 3; Dataset 4 - Group 2, Scenario 1; Dataset 5 - Group 2, Scenario 2; Dataset
6 - Group 2, Scenario 3.

37

After the completion of the selection of the relevant features and the assembly of the datasets, the
following steps were carried out: 1) preprocessing and exploration of the data; 2) training and evaluation
of a range of different algorithms, and; 3) election of an algorithm for optimization. All these steps were
performed by means of tools provided by Python Libraries, the most important of which were: NumPy
[45], for scientific computing; Pandas [46], for data analysis and manipulation; Matplotlib [47] and Seaborn
[48], for visualization; SciPy [49], for statistical functions; Scikit-Learn [50, 51] , for machine learning and
data prediction, and; Joblib [52], for parallelization of demanding ML processes. The Python code used to
generate the following analyses has been condensed in [Appendix V] of this dissertation.

5.3.3 Preprocessing and Exploration of the Data

Regarding the preprocessing of the data, it is important to emphasize the advantages of having ex-
tracted it from a simulated scenario. Certain typical problems in cleaning real datasets, such as missing
values, inconsistent data types, or ambiguity in determining the target class were completely eliminated
already at the beginning of the data generation process. Another difficulty avoided by our implementa-
tion and commonly experienced by IDS studies involving critical infrastructure is what is known as "class
imbalance". Since the probability of anomalous situations occurring in ICS is low, researchers often have
to deal with datasets with proportionally few samples of traffic representatives of cyber-attack situations.
This imbalance is detrimental to the implementation of ML-based IDS. For instance, by generating biases
towards estimating the normal traffic perfectly, which in turn renders the Accuracy measure ineffective
as the main performance metrics [53, 54]. We did not experience these issues, since our datasets contain
approximately 50% samples of each target class.

Another important aspect to consider concerns the need to normalize or scale the data. The first pro-
cedure consists of converting the original values to new ones in the range between 0 and 1. The second in
converting them so that the new ones have zero mean and unit variance. Since the chosen characteristics
simulate disparate physical quantities; such as time, pressure, and flow, their numerical values span a wide
range of nine orders of magnitude. Thus the mentioned procedures may be recommendable or even neces-
sary for the operation of certain ML algorithms. However, they do not affect the visualization of the data
pairs, because their proportionality is maintained. In these circumstances, we implemented both to find out
their impact on the performance of the different algorithms.

The Methods chosen for initial exploration of the data by visual means were: Box Plot, and; Princi-
pal Component Analysis (PCA). The objective was to ascertain the numerical differences present in the
datasets, between the normal situation and the situation under attack, and thus anticipate the ability of
ML techniques to distinguish them, for all three detection scenarios and the two feature groups used for
training.

5.3.3.1 Box Plot Analysis

Box plots for all features were implemented using the .boxpot Method contained in the Seaborn Python
Library [55]. This graphical representation divides the dataset into 4 sections called quarters, defined by 3
points called quartiles (Q1, Q2, Q3). The middle quartile Q2 is also known as the median and divides the

38

data into identical portions that contain 50% of the data. The range between the first and the third quartile
is called the interquartile range (IQR = |Q3-Q1|) and is used to calculate the limits for outlier detection,
also known as whiskers (Q1- whis x IQR, on the left; and Q3 + whis x IQR, on the right, where the
attribute whiskers (whis) is set to 1.5 by default but can be changed if desired). An important advantage
of this method is that it displays the characteristics of the dataset without assuming on specific statistical
distributions of the samples. As such, it is quite useful in the exploration phase. These plots allowed us
to compare the central measure, spread, symmetry, and the presence of outliers in the datasets, for each
feature, in the normal (Attack = 0, in blue) and under attack (Attack = 1, in red) situations.

Figure 5.8 displays the box plots of the features related to Group 1, of highly sensitive variables, in
the 3 different scenarios (listed as columns). From top to bottom, in the following rows: tcp_time_delta;
CC_PumpFlow; CC_PumpOutletTemp; CC_PumpSpeed; CD_InSteamFlow; CD_Press, and; CD_SteamTemp.
As can be seen, there is a clear detectable separation between the numerical values before and after the PLC
injection attacks (Scenarios 2 and 3); and a less clear transition in the case of the simple reconnaissance at-
tack (Scenario 1). The effects of Scenarios 2 and 3 attacks on the CC_PumpSpeed variable are also clearly
captured. In Scenario 2, in which it is not masked, there is a large gap between the starting value (around
102 DEC) and the final value (75 DEC). In Scenario 3, there is also a noticeable separation between the
previous situation, with small oscillations around 102 DEC and the masked final value set at 102.7 DEC.
Thus, it is possible to hypothesize that the ML algorithms would have greater ease in detecting the attacks
in the cases of Scenarios 2 and 3 (with no greater ease inherent to any of them), than in the case of Sce-
nario 1. It is worth pointing out that human operators will naturally have difficulty in visually detecting the
cessation of small oscillations such as those of CC_PumpSpeed caused by the attack of Scenario 3.

Figure 5.9 displays the box plots of the features related to Group 2, of marginally sensitive variables,
in the 3 different scenarios (listed as columns). From top to bottom, in the following rows: tcp_time_delta;
RX_ReactorPress; TB_InSteamFlow; TB_InSteamPress, and; TB_SpeedCtrlValvePos. For Group 2, the
qualitative pattern found for Group 1 is repeated. Thus, it is also possible to raise the assumption that the
algorithms would have no problem in detecting the attacks of Scenarios 2 and 3 (with the same degree of
difficulty) when compared to the case of Scenario 1. Moreover, if we take the two groups, it would seem
that Group 2 might have slightly more difficulty in detecting the attacks of Scenarios 2 and 3, compared
to Group 1. This is because Group 2 box plots reveal little variation between the normal and under attack
situations for two of its monitored variables (RX_ReactorPress and RX_ReactorPress). On the other hand,
as the network variable tcp_time_delta shows excellent separation in all cases studied, this in principle
would facilitate detection by both groups in all scenarios; making the impact of the choice of different
variables even smaller from the point of view of the predictive success of the algorithms.

5.3.3.2 Principal Component Analysis (PCA)

Visual evaluation via box plots as above may become less convenient or even unfeasible as the number
of training features (a.k.a. dimensions) increase. A way around this problem; that also entails a different
perspective for exploring the datasets, is to employ the Principal Component Analysis (PCA) [56]. The
technique allows the reduction of the dimensionality of the dataset by generating new features, called
Principal Components (PCs). The PCs are sorted in descending order according to their ability to explain

39

Figure 5.8: Box plots for Group 1 of high sensitive operational variables under the 3 scenarios

the various variances of the dataset. In cases where the joint variances of the first two PCs (PC1 and PC2)
are representative of the entire dataset, they will constitute a good approximation of it. Thus they can be
employed to generate 2D scatter plots that we can use to compare sets of points representative of all the
features. Clusters of points described by these two coordinates PC1 and PC2 will have traits in common,

40

Figure 5.9: Box plots for Group 2 of marginally sensitive operational variables under the 3 scenarios

and the graphical separation between them will be a good measure of the explanatory power of original
feature set. When there is a computational cost associated with the amount of features, for example in
a real-time detection system, the dimensional reduction can be performed by PCA and the ML algorithm
trained on a small number of PCs. It should be noted that it is necessary to scale the feature values before the
application of PCA (mean = 0; variance=1). Otherwise, the variances of the large numbers will dominate
the model.

In our study, PCA was performed for all six datasets in order to compare the relative predictive power of
the different combinations of groups and scenarios. The tool used was the .decomposition.PCA, contained
in the Scikit-Learn Python Library [57]. With the Parameter n_components (number of PC components to
keep) set to 2.

Figure 5.10 reveals distinct graphical separations for the data clusters representative of the normal
(blue) and under attack (red) situations, for Groups 1 and 2 (columns from left o right) and for Scenarios 1,

41

2 and 3 (rows from top to bottom). The dataset variances explained by the PCs are shown below each graph
(for PC1 and PC2, from left to right). They were obtained from the .explained_variance_ratio Attribute.

Figure 5.10: Box plots for Group 2 of marginally sensitive operational variables under the 3 scenarios

For Scenario 1 there is no clear separation between the data clusters. Furthermore, the sum of the
variances explained is approximately 86% for PC1 and 76% for PC2; not ideal as a´replacement for the
feature groups. For Scenarios 2 and 3, on the contrary, one can see evident separation between the data
clusters; and more so for the Group 1 in relation to Group 2. For these scenarios the sum of the variances is
greater than 99% for the Group 1, but around 89% for Scenario 2 and Group 1, and 80% for Scenario 3 and
Group 2. These results agree with what was intuitively expected, namely: the stealthier attack of Scenario
1 will be harder to detect by either set of features, since both are little affected in the process. Also, for
the Scenarios 2 and 3, the more sensitive variables of Group 1 seems to have greater predictive power. In
addition, for these last Scenarios, it is also apparent that the ML algorithms should have no difficulty in

42

separating the data even in the case of Group 2. As such, the application of PCA supports the conclusions
already obtained by the previous exploration using Box Plots.

5.3.4 Training and Evaluation of Different ML Algorithms

The following Machine Learning algorithms were chosen for evaluation of their relative performance
on this intrusion detection problem (all by means of classifiers provided by the Python Scikit-Learn Li-
brary): Support Vector Machine (SVM) [58]; Logistic Regression [59]; Random Forest [60]; K-Nearest
Neighbors [61], and; Multinomial Naive Bayes [62]. At this stage, and for all of them, the default parame-
ters provided by the library were employed, and no attempt at optimization was undertaken.

The samples were split in two different ways: 1) training and test data split in the proportion of 50%,
and 2) cross-validation of the entire dataset split into five folds. Furthermore, as mentioned above, different
algorithms may require prior normalization or scaling of the values, or may perform differently depending
on whether this process is applied or not. Thus, all training was performed in raw and scaled form (with
the exception of the Multinomial Naive Bayes algorithm, which required the normalized form, since its
MultinomialNB.fit() Method is unable to take negative values).

Finally, and taking into consideration the fact, also already pondered, that the datasets do not suffer
from imbalance, the Accuracy; or the ratio between the number of correct predictions and the total number
of samples, was considered a sufficient performance measure for the evaluation of the algorithms.

The results of the training of the algorithms, for the six datasets under consideration, can be seen in
the subsequent three Figures in the form of tables; where the algorithms’ rows are ordered, from top to
bottom, by the best mean score value of the cross validated trainings. Figure 5.11 shows the evaluation of
the chosen classifiers for Scenario 1, divided in two tables, from top to bottom, for Group 1 and Group 2.
The same arrangement is repeated for Figure 5.12 (Scenario 2) and Figure 5.13 (Scenario 3).

The abbreviation code bellow was adopted for the designation of the table columns:

• "Rank": (1–4) order of best score/accuracy;

• "Classifier": name of ML algorithm;

• "Scaled": (Y or N) scaled or normalized? N means raw data;

• "split_scr": accuracy for split of 50% for the test set;

• "cross_scr(mean)": mean accuracy for 5-fold cross-validation;

• "cross_scr(std_dev)": standard deviation of mean accuracy for 5-fold cross-validation;

To facilitate visual evaluation of the quality of the classifiers, the following color convention was em-
ployed for the table cells:

• GREEN - cross_scr(mean) > 0.85 AND cross_scr (std_dev) < 0.1;

43

• LIGHT ORANGE - 0.75 < cross_scr(mean) < 0.85 AND cross_scr (std_dev) < 0.1;

• DARK ORANGE - 0.65 < cross_scr(mean) < 0.75 OR cross_scr (std_dev) > 0.1;

• RED - 0.50 < cross_scr(mean) < 0.65 for any value of cross_scr (std_dev).

Figure 5.11: Evaluation of diverse ML Classifiers for Scenario 1 (Reconnaissance MITM Attack)

As can be seen from tables, the performance of the algorithms in Scenario 1 shows mixed results.
Still, for Group 1, it was possible to achieve cross-validation accuracies higher than 88% in the case of
the K-Nearest Neighbors, Multinomial Naive Bayes and Support Vector Machine (SVM) algorithms; and,
for Group 2, accuracies higher than 86% in the case of the K-Nearest Neighbors and Multinomial Naive
Bayes.

A different situation is revealed for Scenarios 2 and 3, where all algorithms, under some category of
data preparation (raw, scaled or normalized), were able to achieve perfect accuracy in the task of distin-
guishing the representative data of the normal and under cyber-attack situations.

Although the goal of this study is only to suggest and exemplify the possibility of using machine learn-
ing to develop IDS from the datasets generated by the proposed testbed, it is important to state some general
caveats concerning the strategy adopted. We estimate that the success demonstrated by the algorithms in
detecting cyber-attacks consisting of PLC injection with masking may be less related to their intrinsic char-
acteristics, and more to those of the datasets. This is due to the fact that the values of the variables, in the
normal and under attack situations, were extracted during the steady state operation of the nuclear power

44

Figure 5.12: Evaluation of diverse ML Classifiers for Scenario 2 (PLC Injection and Simple Masking)

plant simulator, at 100% power output. As a consequence, a detectable and fixed gap is created between
the normal and under attack values that makes their numerical distinction trivial by automatic mechanisms.
This effect was already guessed by the initial exploration of the datasets and would dispense with the use
of ML, which could be replaced by a simpler system based in rules and nominal operating ranges.

To make the part of the datasets representing the normal operation of the NPP more realistic, it would
be possible to consider several operating levels, for variables controlled by the operators, and their re-
spective transients, as in [14]. However, due to the continuous nature of the simulated variables, there
are no theoretical limits to the granularity that could be obtained, which would in turn demand adaptation
for specific peculiarities of the NPP under consideration and could require huge amounts of samples. This
reveals an important limit of supervised learning for IDS development; another being the determinant char-
acter imprinted on the dataset by the cyber-attacks employed and the practical impossibility of simulating
all their potential types and variations; among others constraints. Accordingly, different approaches have
emerged aimed at developing IDS from other machine learning paradigms; such as unsupervised learning
[14, 17]. These alternative possibilities are not part of this study.

5.3.5 Optimization of the Support Vector Machine (SVM) Classifier

To demonstrate how the above results could be optimized, we have applied the process known as hyper-
parameter tuning. In essence, it consists in automatically testing various parameter values allowed by the

45

Figure 5.13: Evaluation of diverse ML Classifiers for Scenario 3 (PLC Injection and Double Masking)

classifier and obtaining a score in each case. At the end, it returns the set of parameter values, within the
tested range, that achieved the highest score.

We restricted ourselves to Scenario 1, the simple MITM-based recognition attack; since it was the only
one to present any classification challenge for the various algorithms trained by the two different groups of
detection features (Group 1 - Highly Sensitive Variables and Group 2 - Marginally Sensitive Variables).

In addition, only one of the top-ranked algorithms of the previous section was chosen for the exper-
iment: the Support Vector Machine (SVM) Classifier. Broadly speaking, it works as follows: the set of
input training vectors, each associated with a binary classification value, are remapped into a higher di-
mensional (and potentially infinite) feature space by the so-called Kernel function. In this new space a
linear hyperplane is found that can separate the data clusters representing the two classes. This is done by
maximizing the separation margin defined by a subset of points called Support Vectors. By virtue of its
properties, we consider this algorithm appropriate for classifying datasets that describe settings such as the
ones we have been dealing with, namely: supervised learning and anomaly detection modeled as a binary
classification problem (learning strategy); features based on continuous variables dependent on each other
and expressing non-linearities in their mutual relationship (dataset properties), and; possibility of obtaining
good results from relatively few samples (operational facilities) [63, 64, 65].

RandomizedSearchCV [66] was the Scikit-Learn method used to tune the hyper-parameters of the
SVM. It is similar to the most widely used GridSearchCV method [67], but, unlike the latter, it does not
implement an exhaustive search on possible parameter values. Instead, it chooses values randomly from

46

a supplied distribution function. This allows the setting of a budget criterion (n_iter) which improves the
overall efficiency. This advantage is welcomed in view of the intensive computational resources required
to perform this operation. In this regard, another tool employed to reduce processing time was the paral-
lelization of processes and threads related to hyper-parameter tuning, via the Joblib Python library [68].

For the specific task of optimizing the SVM, the standard kernel was maintained; ’rbf’ (Radial Basis
Function). It is considered suitable for handling non-linear distributions of the training vectors, as long as
the amount of input samples and features does not exceed a few thousands.

The two parameters to be optimized were "C" and "gamma". "C" acts as a regularization parameter;
smaller values increase the margin of the decision function and increase the generalization power at the
cost of lower accuracy, and vice versa. "gamma" determines how far the influence of a single data point
reaches; too high values induce overfitting, and too low render the model unable to capture the complexity
of the data [69]. The random distribution functions used to test various values of the "C" and "gamma"
parameters were extracted from the statistics set provided by the Python SciPy library (arcsine [70]; expon
[71]). It should be noted that capturing the best ratio between these two parameters manually is very
difficult. Their default values (C=1.0; gamma=’scale’) give good results in most cases, but in general it
is possible to improve the performance of the algorithm by choosing values more suitable to the specific
problem one want to tackle.

To measure the eventual improvement in SVM performance, due to the optimization, we followed
these steps: 1) split the dataset with 20% reserved for the test set; 2) train the initial SVM model with the
default parameters, use the trained model to create predictions from the test set, and generate the "Before"
Confusion Matrix and Classification Report; 3) use the RandomizedSearchCV method to find the best
combination of the "C" and "gamma" parameters; 4) train the optimized SVM model with the parameters
found by RandomizedSearchCV, use the new trained model to create predictions from the test set, and
generate the "After" Confusion Matrix and Classification Report; 5) compare the "Before" and "After"
Confusion Matrices and Optimization Classification Reports.

The Confusion Matrix is defined so that the value of one of its elements is equal to the number of obser-
vations known to be in the group represented by its row index, and predicted to be in the group represented
by its column index [72]. This can be seen more clearly by means of the diagram depicted in Figure 5.14.
From its elements it is possible to extract, besides Accuracy, other important measures for evaluating the
performance of ML models, which are: Precision; Recall; and F1-Score. The classification_report function
from Scikit-Learn was used to generate Classification Reports containing all of these measures, for each of
the Positive and Negative Classes [73]. Additionally, it includes the following measures: "macro average"
(unweighted mean per label), and; "weighted average" (support-weigthed mean per label, to account for
class imbalance) [74].

"Precision", for the Positive Class, is calculated by the ratio of True Positives to the total of Positive
predictions [(True Positives)/(True Positives + False Positives)]. It is an useful measure to maximize when
the cost of False Positives is high. "Recall", for the Positive Class, is calculated by the ratio True Positives
to the total of Actual Positives [(True Positives)/(True Positives + False Negatives)]. It is an useful measure
to maximize when the cost of False Negatives is high. A more balanced measure, which tries to take into
account the simultaneous influence of "Precision" and "Recall", is the harmonic mean of these, known

47

Figure 5.14: Confusion Matrix Diagram

as "F1-Score" [2 x (Precision x Recall) / (Precision + Recall), where Precision and Recall are taken with
reference to the Positive Class]. The "F1-Score" is also indicated for cases where there is an imbalance
in the distribution of classes. This situation is common in industrial cybersecurity studies, but has been
avoided in our work by the generation of "under attack" class data in quantities equivalent to "normal
operation" class data; as already mentioned. Taken together, these evaluation measures help to compose
a more informative picture about the Classifier performance; than otherwise would be obtained by relying
on Accuracy alone.

The following pictures describe the results obtained (Confusion Matrices and Classification Reports)
by the SVM optimization done by RandomizedSearchCV for Group 1 (Figure 5.15) and Group 2 (Figure
5.15). For the Positive Class (lines labeled with "1" in the Classification Reports), it can be seen that the
optimization has yielded significant improvement in "Precision"; and more markedly so for Group 1 (from
0.88 to 0.98) than for Group 2 (from 0.92 to 0.96). At the same time this came at the cost of slightly
decreasing the "Recall" value in the case of Group 1 (from 0.88 to 0.84); and of keeping it in the case
of Group 2 (remained at 0.81). From the standpoint of the more balanced measure, the "F1-Score", there
was slight improvement for Group 1 (from 0.88 to 0.91) and Group 2 (from 0.86 to 0.88). This result
was expected due to the scoring parameter passed to the RandomizedSearchCV method (’f1_macro’). If
desired, other metrics can be privileged instead [75]. From the point of view of IDS development, it is
worth discussing which of these measures would be the most interesting to optimize. For non-critical
industrial subsystems, such as the Condenser Cooling Pump (CCP) subjected to the cyber-attacks in our
study, the costs associated with False Positives are high. So it might be more interesting to maximize the
"Precision". On the other hand, for critical subsystems, such as the Reactor Core (RX), the most important
goal is to prevent False Negatives. In this last case, one would maximize the "Recall".

After the tuning was completed, the following parameters were recommended for the SVM Classi-
fier trained with Group 1 features: {’C’: 0.8910751228552074, ’class_weight’: ’balanced’, ’gamma’:
12.196322658951296, ’kernel’: ’rbf’}. And likewise for the SVM fed with Group 2 features: {’C’:
0.9718313215463703, ’class_weight’: ’balanced’, ’gamma’: 26.185324208280853, ’kernel’: ’rbf’}. It
should be noted that, due to the random sampling method of the candidate parameter values to be tested
by the optimizer, these optimal parameters can change significantly between rounds. Nevertheless, once
a good combination is found, their employment by the classifier will produce consistent results from a
performance standpoint.

48

Figure 5.15: Performance improvement after hyper-parameter tuning for Group 1.

Figure 5.16: Performance improvement after hyper-parameter tuning for Group 2.

49

5.4 DEFENSIVE CAPABILITY STUDIES

Besides the possibility of studying anomaly detection techniques, this testbed also allows for the ap-
plication of the combined strategy recommended by the IAEA, aimed at the implementation of computer
security at nuclear facilities: "graded approach" and "defense in depth" [19]. In this context, computer
"security" has the goal of protecting "targets" (e.g. radioactive materials) from "malicious acts" (e.g. theft,
sabotage), perpetrated by various "threats" (e.g. insiders and hackers), that may lead to unacceptable radio-
logical consequences. In contrast, computer "safety" has the goal of protecting people and the environment
from radiation or radioactive material hazards. This last objective is achieved through appropriate opera-
tions and mechanisms to prevent and mitigate accidents [4].

In a "graded approach", the extent of the applied computer security measures intended to protect a
"facility function" is directly proportional to the worst consequences that could result from its compromise.
In this way, to indicate the degree of security protection required, distinct "computer security levels" are
established, with its significance varying from high to low and associated with increasing numbers starting
at 1, depending on the severity of the projected impacts of those consequences on the facility. The "facility
functions", in turn, are ideally related to only one "computer based system", which is then considered to be
part of a "computer security zone", and can share it with other systems. Finally, each "computer security
zone", together with their constituents "computer based systems", is assigned to a single "computer security
level".

On the other hand, in a "defense in depth" architecture, the "computer security measures", associated
with the various "computer security systems", their security zones, and their security levels requirements,
are arranged in successive layers; so that the measures applied for the levels that require low protection also
contribute to the defense of the levels that require high protection (e.g. the early detection of a cyber-attack).
Each of these layers must be protected from cyber-attacks originating from adjacent layers, and "computer
security measures" are applied both within and between "computer security zones". For "defense in depth"
to be maintained, no data communications direct paths connecting multiple "computer security zones"
should be allowed. On the technical side, this is achieved by "computer security measures" that enforce
logical and physical decoupling mechanisms between zones and security levels.

Another important concept is that of "Defensive Computer Security Architecture" (DCSA), which has
the purpose of preserving the safety, security and emergency preparedness functions of the facility. It
is derived from a "Computer Security Risk Management" (CSRM) approach and implements both the
"graded approach" and "defence in depth". Besides, it provides measures to protect, detect and respond to
a cyber-attack; by combining technical, administrative and physical security measures [19].

These concepts and their interplay can be better understood by means of the diagram in Figure 5.17
below. It shows a conceptual model of security zones for an hypothetical NPP to which were assigned 5
"computer security levels". The level 1 is the one that requires the most protection, and the level 5 is the
one that requires the least protection, while being, at the same time, adjacent; though still protected by an
"air gap", to the outside environment. Several "computer security zones" (Z1-Z12) are each assigned to its
own "computer security level" and contain one or more "computer security systems" (Sa-Sz). The latter,
in turn, are responsible for performing the "facility functions". Also depicted are the "computer security

50

measures" designed to control communication between zones and levels.

Figure 5.17: IAEA Method for computer security of Nuclear Facilities - "graded approach" and "defense in depth".

Put simply, the adoption of the concepts of "graded approach" and "defense in depth" provides for the
rationalization of the application of resources intended for the cybersecurity of nuclear facilities; avoiding
ineffective measures and unnecessary expenses.

As the ANS simulates, besides the main reactor, also IC subsystems; and the GNS3 topology can be
expanded to incorporate other elements besides those studied, from individual infrastructure equipment
to entire internal corporate networks, there are plenty of opportunities to employ the methodology just
described.

One example (not part of this study) of practical implementation of technical defensive measures in
the testbed, in the context of a DCSA, would be the delimitation of the ANS subsystems and their control
systems, as well as the administrative elements present in the network topology, into "computer security
zones"; according to the specific "facility functions" performed by them. These could then be subject to
impact assessments after engineered cyber-attacks were conducted against them, for the correct allocation
of their individual "computer security levels." At last, decoupling mechanisms could be deployed between
sensitive "computer security zones", like those containing the PLCs and the supervisory, e.g by means of
firewalls; to evaluate and improve the protection they can provide to "facility functions".

51

6 CONCLUSIONS

In this work, we developed and validated a testbed for conducting cybersecurity assessment in nuclear
power plants. The main advantages of this setup are its realism, flexibility, and low cost. It allows the
simulation of several cyber-attack scenarios against a simulated NPP communicating with its supervisory
system (SCADA/HMI), through the Modbus TCP protocol. It is worth mentioning that this study was
carried out based on a simulator of a hypothetical power plant (Asherah NPP) and that vulnerabilities that
could lead to a similar attack on existing plants were not exploited. We also showed how it is possible
to use this environment to generate the datasets needed for intrusion detection studies, and stated that it
allows for implementation of defensive computer security architecture.

For the proposed cyber-attack scenario, the performance of several simulations allowed to demonstrate
how to force condenser cooling pump parameters against their nominal operating values is detrimental
to the continuous operation of PWR-type NPPs. In particular, the impact assessment points to the risk
that cyber-attacks against the condenser cooling pump speed control could result in material and financial
damage to the NPP. The situation described also highlights the danger posed by Insiders, endowed with
specific knowledge about the inner workings of the NPP ICS and acting within the Air Gap protected area.
We should also point out; and with the aim of increasing awareness about this risk, that the results obtained
from these studies have made it possible to publish a scientific article in an international journal [76].

By generating datasets suitable for training machine learning algorithms for intrusion detection, it was
possible to obtain important results even in this preliminary exploration. For the type of attacks studied,
the intrusions caused noticeable changes in the patterns displayed by the values of network parameters
and operational variables. In particular, it was possible to detect the attacks by the delays in the response
time to the supervisory requests (a network parameter) and by the new levels assumed by the operational
variables values after the attacks. By combining the monitoring of network and operational variables, it
was possible to obtain, with the algorithms tested, perfect accuracies for the complete attacks (MITM and
change of values in the supervisory) and accuracies higher than 85% for passive attacks (MITM only).
It was also possible to verify the higher relative efficiency of the algorithms trained with the operational
variables more directly related to the attacked subsystem.

We estimate that the success obtained in detecting these attacks is less related to the predictive power
of the algorithms employed than to the characteristics of the datasets and reveals limitations of the adopted
paradigm (Supervised Learning). The values of the variables were extracted from the stabilization of their
values for the reactor’s energy production fixed at 100%. The stability of the parameter values and their
abrupt change to new levels, also stable, after attacks, facilitates their detection. To make the datasets
more realistic it would be required to simulate several situations considered normal and their transients as
well as to expand the list of cyber attacks employed. Unfortunately, due to the continuous nature of the
simulated variables and the indeterminate number of possible attacks, there is no upper limit to the number
of scenarios to be simulated. Thus, we believe that other ML paradigms would need to be employed to
enable more robust and general performance in these situations, which would facilitate their adoption by
the nuclear industry; such as Unsupervised Learning and Neural Networks.

52

We realized that an important limitation of this testbed is the substantial memory load imposed by the
employment of several virtual machines in the GNS3 topology, especially in terms of RAM. In addition,
optimizing the parameters of machine learning classifiers is very demanding in terms of CPU processing
power. Thus, more modest computing environments could experience problems when trying to reproduce
or expand the conditions described. However, it was possible to perform all the above procedures with a
personal computer equipped with an AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz and 32.0 GB of
RAM installed. The RAM memories defined in the topology were: 6 GB for the Windows/ANS VM; and
2 GB for each of the Linux VMs.

Several possibilities for future studies are envisioned. Such as:

• Modification of the proposed topology, as by the inclusion of new independent PLCs or network
equipment like firewalls, including for the testing of defense strategies;

• Choice of different ANS subsystems, for reproducing similar cyber-attack to the one performed in
this work;

• Demonstration of different cyber-attacks like DoS and Replay;

• Production of datasets for ML algorithm training, with the goal of developing automated IDS;

• Development and integration of additional modules, with the aim of developing real-time intrusion
detection applications, among others.

53

Abbreviations

The following abbreviations are used in this dissertation:

ANS Asherah Nuclear Power Plant Simulator
CC Condenser Cooling (ANS subsystem)
CD Condenser (ANS subsystem)
CRP Coordinated Research Project
DCSA defensive computer security architecture
DoS Denial of Service (type of cyber-attack)
FBD Function Block Diagram (PLC programming language)
HIL hardware-in-the-loop
HMI human-machine interface
IAEA International Atomic Energy Agency
IC instrumentation and control
ICS industrial control systems
IDS intrusion detection systems
IF isolation forest (machine learning algorithm)
IL Instruction List (PLC programming language)
IO input and output
IT information technology
LD Ladder Logic (PLC programming language)
MBAP Modbus Application Protocol
MITM men-in-the-middle (type of cyber-attack)
ML Machine Learning
NPP nuclear power plant
OCNN one-class neural network (machine learning algorithm)
OCSVM one-class support vector machine (machine learning algorithm)
OPC UA Open Platform Communications Unified Architecture
OS operating system
OT operational technology
PDU Protocol Data Unit
PLC programmable logic controllers
PWR Pressurized Water Reactor
RDBMS relational database management system
RPS Reactor Protection System
RX Main Nuclear Reactor (ANS subsystem)
SCADA supervisory control and data acquisition system
SCRAM emergency shutdown
SFC Sequential Function Chart (PLC programming language)
ST Structured Text (PLC programming language)
SVM Support Vector Machine
TB Turbine (ANS subsystem)
TLS Transport Layer Security
VM virtual machines

54

BIBLIOGRAPHIC REFERENCES

1 Pospisil, O.; Blazek, P.; Kuchar, K.; Fujdiak, R.; Misurec, J. Application Perspective on Cybersecurity
Testbed for Industrial Control Systems. Sensors 2021, 21, 8119. https://doi.org/10.3390/S21238119.

2 Park, J.W.; Lee, S.J. A quantitative assessment framework for cyber-attack scenarios on
nuclear power plants using relative difficulty and consequence. Ann. Nucl. Energy 2020, 142.
https://doi.org/10.1016/j.anucene.2020.107432.

3 Cho, H.S.; Woo, T.H. Cyber security in nuclear industry - Analytic study from the terror incident in
nuclear power plants (NPPs). Ann. Nucl. Energy 2017, 99. https://doi.org/10.1016/j.anucene.2016.09.024.

4 Busquim e Silva, R.; Piqueira, J.R.C.; Cruz, J.J.; Marques, R.P. Cybersecurity Assessment Framework
for Digital Interface Between Safety and Security at Nuclear Power Plants. Int. J. Crit. Infrastruct. Prot.
2021, 34, 100453. https://doi.org/10.1016/j.ijcip.2021.100453.

5 Nuclear Reactor Simulators for Education and Training|IAEA. Available online: <https:
//www.iaea.org/topics/nuclear-power-reactors/nuclear-reactor-simulators-for-education-and-training>
(accessed on 20 May 2022).

6 CRP-Incident-Response. Available online: <https://nusec.iaea.org/portal/User-Groups/
Computer-Information-Security/Resources/Cyber-Research/CRP-Incident-Response> (accessed
on 24 June 2022).

7 Busquim e Silva, R.; Shirvan, K.; Piqueira, J.R.C.; Marques, R.P. Development of the Asherah Nuclear
Power Plant Simulator for Cyber Security Assessment. In Proceedings of the International Conference on
Nuclear Security, Vienna, Austria, 10–14 February 2020; pp. 1–10.

8 Busquim e Silva, R.; Correa, D.; Antunes, F.R.; Souza, F.C.S.; Marques, R.P.; Piqueira, J.R.C. The
Asherah Nuclear Power Plant Simulator (ANS) as a training tool at the Brazilian Guard Cyber Exercise.
In Proceedings of the International Conference on Nuclear Security, Vienna, Austria, 10–14 February
2020; pp. 1–8.

9 Boldea, C.N. SCADA virtual test environment development. Electroteh. Electron. Autom. 2011, 59, 60.

10 Thornton, J.Z. A Virtualized SCADA Laboratory for Research and Teaching. Master’s Theses,
Mississippi State University, Starkville, MS, USA, 2015; p. 341.

11 MathWorks—Products—Simulink. Available online: <https://www.mathworks.com/products/
simulink.html> (accessed on 27 June 2022).

12 Teixeira, M.A.; Salman, T.; Zolanvari, M.; Jain, R.; Meskin, N.; Samaka, M. SCADA System
Testbed for Cybersecurity Research Using Machine Learning Approach. Future Internet 2018, 10, 76.
https://doi.org/10.3390/fi10080076.

55

https://www.iaea.org/topics/nuclear-power-reactors/nuclear-reactor-simulators-for-education-and-training
https://www.iaea.org/topics/nuclear-power-reactors/nuclear-reactor-simulators-for-education-and-training
https://nusec.iaea.org/portal/User-Groups/Computer-Information-Security/Resources/Cyber-Research/CRP-Incident-Response
https://nusec.iaea.org/portal/User-Groups/Computer-Information-Security/Resources/Cyber-Research/CRP-Incident-Response
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

13 Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. Role-based access control model
in modbus SCADA systems. A centralized model approach. Sensors 2019, 19, 4455,
https://doi.org/10.3390/s19204455.

14 Zhang, F.; Kodituwakku, H.A.D.E.; Hines, J.W.; Coble, J. Multilayer Data-Driven Cyber-Attack
Detection System for Industrial Control Systems Based on Network, System, and Process Data. IEEE
Trans. Ind. Informatics 2019, 15, 4362–4369. https://doi.org/10.1109/TII.2019.2891261.

15 Zhang, F.; Coble, J.B. Robust localized cyber-attack detection for key equipment in nuclear power
plants. Prog. Nucl. Energy 2020, 128, 103446. https://doi.org/10.1016/J.PNUCENE.2020.103446.

16 ANSI/ISA-95.00.01-2010 (IEC 62264-1 Mod) Enterprise-Control System Integra-
tion - Part 1: Models and Terminology. Available online: <https://www.isa.org/products/
ansi-isa-95-00-01-2010-iec-62264-1-mod-enterprise> (accessed on 20 May 2022).

17 Boateng, E.A.; Bruce, J.W. Unsupervised Machine Learning Techniques for Detecting PLC Process
Control Anomalies. J. Cybersecurity Priv. 2022, 2, 220–244. https://doi.org/10.3390/jcp2020012.

18 IAEA. NSS-33-T Computer Security of Instrumentation and Control Systems at Nuclear Facilities;
IAEA: Vienna, Austria, 2018; No. 33-T, ISBN 978-92-0-103117-4.

19 IAEA. NSS-17-T (Rev. 1) - Computer Security Techniques for Nuclear Facilities; IAEA: Vienna,
Austria, 2021; No. 17-T (Rev. 1), pp. 220–244, ISBN 978-92-0123520-6.

20 ModRSsim2 Wiki. Available online: <https://sourceforge.net/p/modrssim2/wiki/Home/> (accessed
on 25 May 2022).

21 GNS3|The Software that Empowers Network Professionals. Available online: <https:
//www.gns3.com/> (accessed on 25 May 2022).

22 VyOS|GNS3. Available online: <https://www.gns3.com/marketplace/appliances/vyos> (accessed on
25 May 2022).

23 OpenPLC—Open-Source PLC Software. Available online: <https://openplcproject.com/> (accessed
on 25 May 2022).

24 ScadaBR. Available online: <https://www.scadabr.com.br/> (accessed on 25 May 2022).

25 Kali Linux|Penetration Testing and Ethical Hacking Linux Distribution. Available online:
<https://www.kali.org/> (accessed on 25 May 2022).

26 Ettercap Home Page. Available online: <https://www.ettercap-project.org/> (accessed on 25 May
2022).

27 MySQL: MySQL Workbench. Available online: <https://www.mysql.com/products/workbench/>
(accessed on 25 May 2022).

28 Wireshark. Go Deep. Available online: <https://www.wireshark.org/> (accessed on 25 May 2022).

56

https://www.isa.org/products/ansi-isa-95-00-01-2010-iec-62264-1-mod-enterprise
https://www.isa.org/products/ansi-isa-95-00-01-2010-iec-62264-1-mod-enterprise
https://sourceforge.net/p/modrssim2/wiki/Home/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/marketplace/appliances/vyos
https://openplcproject.com/
https://www.scadabr.com.br/
https://www.kali.org/
https://www.ettercap-project.org/
https://www.mysql.com/products/workbench/
https://www.wireshark.org/

29 VMware Workstation Player—VMware Customer Connect. Available online: <https://
customerconnect.vmware.com/en/downloads> (accessed on 25 May 2022).

30 Oracle VM VirtualBox. Available online: <https://www.mysql.com/products/community/> (accessed
on 25 May 2022).

31 MySQL Community Edition. Available online: <https://www.virtualbox.org/> (accessed on 1 July
2022).

32 Shodan Search Engine. Available online: <https://www.shodan.io/> (accessed on 26 May 2022).

33 DEF CON 26—Thiago Alves—Hacking PLCs and Causing Havoc on Critical Infrastructures -
YouTube. Available online: <https://www.youtube.com/watch?v=-KHel7SyXsU> (accessed on 26 May
2022).

34 Hacking PLCs and Causing Havoc on Critical Infrastructures. Available online: <https:
//www.slideshare.net/cisoplatform7/hacking-plcs-and-causing-havoc-on-critical-infrastructures>
(accessed on 26 May 2022).

35 Busquim e Silva, R.; Shirvan, K.; Cruz, J.J.; Marques, R.P.; Marques, A.L.F.; Piqueira,
J.R.C. Advanced method for neutronics and system code coupling RELAP, PARCS, and MAT-
LAB for instrumentation and control assessment. Ann. Nucl. Energy 2020, 140, 306–4549.
https://doi.org/10.1016/j.anucene.2019.107098.

36 Busquim e Silva, R.. Implications of Advanced Computational Methods for Reactivity Initiated
Accidents in Nuclear Reactors. P.h.D Thesis, University of Sao Paulo, São Paulo, Brazil, 2015.
https://doi.org/10.11606/T.3.2016.tde-20072016-142605.

37 Home—Docker. Available online: <https://www.docker.com/> (accessed on 27 June 2022).

38 IEC 61131-3:2013, Programmable Controllers—Part 3: Programming Languages Available online:
<https://webstore.iec.ch/publication/4552> (accessed on 31 May 2022).

39 Open PLC with ESP8266 Wifi—YouTube. Available online: <https://www.youtube.com/watch?v=
C-SJfj282o8&t=2s> (accessed on 31 May 2022).

40 Quick Start Guide|Metasploit Documentation. Available online: <https://docs.rapid7.com/metasploit/
> (accessed on 2 June 2022).

41 Cruz, T.; Simões, P. Down the Rabbit Hole: Fostering Active Learning through Guided Exploration
of a SCADA Cyber Range. Appl. Sci. 2021, 11, 9509. https://doi.org/10.3390/app11209509.

42 Busquim e Silva, R.; Piqueira, J.R.C.; Marques, R.P. Use of the Extended Kalman Filter for
Cybersecurity Assessment in a Closed-Loop Digital Twin Testbed. In Proceedings of the 12th Nuclear Plant
Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2021),Providence,
RI, United States of America, 14–17 June 2021; pp. 447–456. https://doi.org/10.13182/t124-34493.

43 Tshark Dev. Available online: <https://tshark.dev/setup/about/> (accessed on 6 September 2022).

57

https://customerconnect.vmware.com/en/downloads
https://customerconnect.vmware.com/en/downloads
https://www.mysql.com/products/community/
https://www.virtualbox.org/
https://www.shodan.io/
https://www.youtube.com/watch?v=-KHel7SyXsU
https://www.slideshare.net/cisoplatform7/hacking-plcs-and-causing-havoc-on-critical-infrastructures
https://www.slideshare.net/cisoplatform7/hacking-plcs-and-causing-havoc-on-critical-infrastructures
https://www.docker.com/
https://webstore.iec.ch/publication/4552
https://www.youtube.com/watch?v=C-SJfj282o8&t=2s
https://www.youtube.com/watch?v=C-SJfj282o8&t=2s
https://docs.rapid7.com/metasploit/
https://docs.rapid7.com/metasploit/
https://tshark.dev/setup/about/

44 IEEE float calculator. Downloadable Excel spreadsheet. Available online: <https://www.
simplymodbus.ca/ieeefloats.xls> (accessed on 6 September 2022).

45 NumPy. Available online: <https://numpy.org/> (accessed on 20 September 2022)

46 Pandas. Available online: <https://pandas.pydata.org/> (accessed on 20 September 2022)

47 Matplotlib. Available online: <https://matplotlib.org/> (accessed on 20 September 2022)

48 Seaborn. Available online: <https://seaborn.pydata.org/> (accessed on 20 September 2022)

49 SciPy. Available online: <https://scipy.org/> (accessed on 20 September 2022)

50 Pedregosa et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research
2011, 12, 2825–2830. Available online: <https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html>

51 Scikit-Learn. Available online: <https://scikit-learn.org/stable/> (accessed on 20 September 2022)

52 Joblib. Available online: <https://joblib.readthedocs.io/en/latest/index.html#> (accessed on 20
September 2022)

53 Lai Y.; Zhang J.; Liu Z.. Industrial Anomaly Detection and Attack Classification Method
Based on Convolutional Neural Network. Security and Communication Networks, 2019.
https://doi.org/10.1155/2019/8124254.

54 Gómez Á.; Maimó L.; Celdrán A. et al.. MADICS: A Methodology for Anomaly Detection in
Industrial Control Systems. Symmetry, 2020, 12, 1583. https://doi.org/10.3390/sym12101583.

55 seaborn.boxplot. Available online: <https://seaborn.pydata.org/generated/seaborn.boxplot.html>
(accessed on 20 September 2022)

56 Jolliffe, Ian T.; Cadima, Jorge. Principal component analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
2016, 374, 2065. https://doi.org/10.1098/rsta.2015.0202.

57 sklearn.decomposition.PCA. Available online: <https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.PCA.html?highlight=pca> (accessed on 21 September 2022)

58 sklearn.svm.SVC. Available online: <https://scikit-learn.org/stable/modules/generated/sklearn.svm.
SVC.html?highlight=svc#sklearn.svm.SVC> (accessed on 27 September 2022)

59 sklearn.linear_model.LogisticRegression. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LogisticRegression.html> (accessed on 27 September 2022)

60 sklearn.ensemble.RandomForestClassifier. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html> (accessed on 27 September 2022)

61 sklearn.neighbors.KNeighborsClassifier. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.KNeighborsClassifier.html> (accessed on 27 September 2022)

58

https://www.simplymodbus.ca/ieeefloats.xls
https://www.simplymodbus.ca/ieeefloats.xls
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://scipy.org/
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://scikit-learn.org/stable/
https://joblib.readthedocs.io/en/latest/index.html#
https://seaborn.pydata.org/generated/seaborn.boxplot.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html?highlight=pca
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html?highlight=pca
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

62 sklearn.naive_bayes.MultinomialNB. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.naive_bayes.MultinomialNB.html> (accessed on 27 September 2022)

63 Boser B.; Guyon I.; Vapnik V. Training algorithm for optimal margin classifiers. Proceed-
ings of the Fifth Annual ACM Workshop on Computational Learning Theory, 1992, 144-152.
https://doi.org/10.1145/130385.130401

64 Cortes C. Support-Vector Networks. Machine Learning, 1995, 20, 273-297.
https://doi.org/10.3390/sym1210158

65 Hsu C.; Chang C.; Lin C. A Practical Guide to Support Vector Classification. Available online:
<https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html> (accessed on 28 September 2022)

66 sklearn.model_selection.RandomizedSearchCV. Available online: <https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.RandomizedSearchCV.html> (accessed on 02 October 2022)

67 sklearn.model_selection.GridSearchCV. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.GridSearchCV.html> (accessed on 02 October 2022)

68 joblib.Parallel. Available online: <https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.
html> (accessed on 02 October 2022)

69 RBF SVM parameters. Available online: <https://scikit-learn.org/stable/auto_examples/svm/plot_
rbf_parameters.html> (accessed on 02 October 2022)

70 scipy.stats.arcsine. Available online: <https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.arcsine.html#scipy.stats.arcsine> (accessed on 02 October 2022)

71 scipy.stats.expon. Available online: <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
expon.html#scipy.stats.expon> (accessed on 02 October 2022)

72 sklearn.metrics.confusion_matrix. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.confusion_matrix.html?highlight=confusion_matrix#sklearn.metrics.
confusion_matrix> (accessed on 02 October 2022)

73 sklearn.metrics.classification_report. Available online: <https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.classification_report.html> (accessed on 02 October 2022)

74 sklearn.metrics.precision_recall_fscore_support. Available online: <https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_
recall_fscore_support> (accessed on 02 October 2022)

75 3.3. Metrics and scoring: quantifying the quality of predictions. Available online: <https:
//scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter> (accessed on 02 October
2022)

76 de Brito, Israel Barbosa; de Sousa, Rafael T. Development of an Open-Source Testbed Based on the
Modbus Protocol for Cybersecurity Analysis of Nuclear Power Plants. Applied Sciences, 2022, 12, 15.
https://doi.org/10.3390/app12157942.

59

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.arcsine.html#scipy.stats.arcsine
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.arcsine.html#scipy.stats.arcsine
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html#scipy.stats.expon
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html#scipy.stats.expon
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html?highlight=confusion_matrix#sklearn.metrics.confusion_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html?highlight=confusion_matrix#sklearn.metrics.confusion_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html?highlight=confusion_matrix#sklearn.metrics.confusion_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter

APPENDICES

60

I - Modbus Initialization Matlab Script

% this code modifies the original Modbus initialization script

% contained in the ANS file modus_hfp_init.txt

% MODBUS_HFP_INIT

% Initial Conditions for a modbus server (if present)

% V0.2

fprintf('## Modbus:')

% Check for modbus server

ModbusServerIPAdress = '127.0.0.1';

ModbusServerOK = 1;

try

m = modbus('tcpip', ModbusServerIPAdress, 502);

catch

fprintf(' Cannot connect to Modbus Server.\n');

ModbusServerOK = 0;

end

if ModbusServerOK

fprintf(' Connected to MOD_RSsim Server.\n');

fprintf('## Loading MODBUS initial conditions: .')

% Write AF Ctrl Initial Conditions

% AF Ctrl Analog Inputs

write(m, 'holdingregs',221,0,1,'single'); % AF_LetdownValveCmd

write(m, 'holdingregs',223,0,1,'single'); % AF_MakeupValveCmd

% AF Ctrl Digital Inputs

write(m, 'holdingregs',283,1,1,'single'); % AF_MakeupPumpCmd

% Write CC Ctrl Initial Conditions

61

% CC Ctrl Analog Inputs

write(m, 'holdingregs',225,100,1,'single'); % CC_PumpSpeedCmd

% CC Ctrl Digital Inputs

write(m, 'holdingregs',285,1,1,'single'); % CC_PumpOnOffCmd

% Write CE Ctrl Initial Conditions

% CE Ctrl Analog Inputs

write(m, 'holdingregs',227,100,1,'single'); % CE_Pump1SpeedCmd

write(m, 'holdingregs',229,100,1,'single'); % CE_Pump2SpeedCmd

write(m, 'holdingregs',231,0,1,'single'); % CE_Pump3SpeedCmd

% CE Ctrl Digital Inputs

write(m, 'holdingregs',287,1,1,'single'); % CE_Pump1OnOffCmd

write(m, 'holdingregs',289,1,1,'single'); % CE_Pump2OnOffCmd

write(m, 'holdingregs',291,0,1,'single'); % CE_Pump3OnOffCmd

% Write CR Ctrl Initial Conditions

% CR Ctrl Analog Inputs

write(m, 'holdingregs',233,833,1,'single'); % CR_PosCmd

% CR Ctrl Digital Inputs

write(m, 'holdingregs',293,0,1,'single'); % CR_SCRAMCmd

% Write CTRL Ctrl Initial Conditions

% CTRL Ctrl Analog Inputs

write(m, 'holdingregs',235,0,1,'single'); % CTRL_CDLevelSetpoint

write(m, 'holdingregs',237,0,1,'single'); % CTRL_CDPressSetpoint

write(m, 'holdingregs',239,0,1,'single'); % CTRL_ColdLegTempSetpoint

write(m, 'holdingregs',241,0,1,'single'); % CTRL_MeanCoolTempSetpoint

write(m, 'holdingregs',243,0,1,'single'); % CTRL_PZLevelSetPoint

write(m, 'holdingregs',245,0,1,'single'); % CTRL_PZPressSetPoint

write(m, 'holdingregs',247,0,1,'single'); % CTRL_RC1FlowSetpoint

write(m, 'holdingregs',249,0,1,'single'); % CTRL_RC2FlowSetpoint

write(m, 'holdingregs',251,100,1,'single'); % CTRL_RXPowerSetpoint

62

write(m, 'holdingregs',253,0,1,'single'); % CTRL_SG1LevelSetpoint

write(m, 'holdingregs',255,0,1,'single'); % CTRL_SG1PressSetpoint

write(m, 'holdingregs',257,0,1,'single'); % CTRL_SG2LevelSetpoint

write(m, 'holdingregs',259,0,1,'single'); % CTRL_SG2PressSetpoint

write(m, 'holdingregs',261,0,1,'single'); % CTRL_TBSpeedSetpoint

% CTRL Ctrl Digital Inputs

% None

% Write FW Ctrl Initial Conditions

% FW Ctrl Analog Inputs

write(m, 'holdingregs',263,100,1,'single'); % FW_Pump1SpeedCmd

write(m, 'holdingregs',265,100,1,'single'); % FW_Pump2SpeedCmd

write(m, 'holdingregs',267,0,1,'single'); % FW_Pump3SpeedCmd

% FW Ctrl Digital Inputs

write(m, 'holdingregs',295,1,1,'single'); % FW_Pump1OnOffCmd

write(m, 'holdingregs',297,1,1,'single'); % FW_Pump2OnOffCmd

write(m, 'holdingregs',299,0,1,'single'); % FW_Pump3OnOffCmd

% Write PZ Ctrl Initial Conditions

% PZ Ctrl Analog Inputs

write(m, 'holdingregs',269,0,1,'single'); % PZ_CL1SprayValveCmd

write(m, 'holdingregs',271,0,1,'single'); % PZ_CL2SprayValveCmd

write(m, 'holdingregs',273,0,1,'single'); % PZ_MainHeaterPowCmd

% PZ Ctrl Digital Inputs

write(m, 'holdingregs',303,0,1,'single'); % FPZ_BackupHeaterPowCmd

% Write INT Ctrl Initial Conditions

% INT Ctrl Analog Inputs

% None

% INT Ctrl Digital Inputs

write(m, 'holdingregs',301,0,1,'single'); % INT_SimulationStopCmd

63

% Write RC1 Ctrl Initial Conditions

% RC1 Ctrl Analog Inputs

write(m, 'holdingregs',275,100,1,'single'); % RC1_PumpSpeedCmd

% RC1 Ctrl Digital Inputs

write(m, 'holdingregs',305,1,1,'single'); % RC1_PumpOnOffCmd

% Write RC2 Ctrl Initial Conditions

% RC2 Ctrl Analog Inputs

write(m, 'holdingregs',277,100,1,'single'); % RC2_PumpSpeedCmd

% RC2 Ctrl Digital Inputs

write(m, 'holdingregs',307,1,1,'single'); % RC2_PumpOnOffCmd

% Write SD Ctrl Initial Conditions

% SD Ctrl Analog Inputs

write(m, 'holdingregs',279,0,1,'single'); % SD_CtrlValveCmd

% SD Ctrl Digital Inputs

write(m, 'holdingregs',309,0,1,'single'); % SD_SafetyValveCmd

% Write TB Ctrl Initial Conditions

% TB Ctrl Analog Inputs

write(m, 'holdingregs',281,100,1,'single'); % TB_SpeedCtrlValveCmd

% TB Ctrl Digital Inputs

write(m, 'holdingregs',311,1,1,'single'); % TB_IsoValveCmd

fprintf(' Ctrl (ALL)')

fprintf(' ... ok.\n')

end

64

II - Modbus Modules Matlab Code

IP_Addr_Number = 49 50 55 46 48 46 48 46 49 (CHAR = 127.0.0.1)

3 MODBUS OUT FLOAT 32 BITS MODULES

Figure 1: Modbus Modules.

Figure 2: Modbus Write AO_1.

%Modbus Write AO_1 [Modbus_Addr = 1]

function ModbusWrite(WriteValue, Modbus_Addr, IP_Addr_Number)

65

coder.extrinsic('modbus');

coder.extrinsic('write');

persistent flag;

persistent m;

if isempty(flag)

flag = false;

m = modbus('tcpip',char(IP_Addr_Number),502);

end

write(m,'holdingregs',Modbus_Addr,double(WriteValue)',1,'single');

Figure 3: Modbus Write AO_2.

%Modbus Write AO_2 [Modbus_Addr = 101]

function ModbusWrite(WriteValue, Modbus_Addr, IP_Addr_Number)

coder.extrinsic('modbus');

coder.extrinsic('write');

persistent flag;

persistent m;

66

if isempty(flag)

flag = false;

m = modbus('tcpip',char(IP_Addr_Number),502);

end

write(m,'holdingregs',Modbus_Addr,double(WriteValue)',1,'single');

Figure 4: Modbus Write DO.

%Modbus Write DO [Modbus_Addr = 191]

function ModbusWrite(WriteValue, Modbus_Addr, IP_Addr_Number)

coder.extrinsic('modbus');

coder.extrinsic('write');

persistent flag;

persistent m;

if isempty(flag)

flag = false;

m = modbus('tcpip',char(IP_Addr_Number),502);

end

67

write(m,'holdingregs',Modbus_Addr,double(WriteValue)',1,'single');

1 MODBUS IN FLOAT 32 BITS MODULE

Figure 5: Modbus Read.

%Modbus Read [Modbus_Addr = 221; Count = 46]

function h = ModbusRead(Modbus_Addr,IP_Addr_Number,Count)

coder.extrinsic('modbus');

coder.extrinsic('read');

persistent flag;

persistent m;

if isempty(flag)

flag = false;

AddrStr = convertCharsToStrings(char(IP_Addr_Number));

m = modbus('tcpip',AddrStr,502);

end

h=zeros(128,1);

buffer = (read(m,'holdingregs',Modbus_Addr,Count,'single'));

for i=1:Count

h(i) = buffer(i);

end

68

III - VyOS Configurations

sh configuration

interfaces {

ethernet eth0 {

address dhcp

description OUTSIDE

hw-id 0c:fd:ed:2f:d8:00

}

ethernet eth1 {

address 10.0.0.1/8

description INSIDE

hw-id 0c:fd:ed:2f:d8:01

}

ethernet eth2 {

address dhcp

hw-id 0c:fd:ed:2f:d8:02

}

ethernet eth3 {

hw-id 0c:fd:ed:2f:d8:03

}

loopback lo {

}

}

nat {

destination {

rule 120 {

destination {

address 192.168.1.117

}

inbound-interface eth2

translation {

address 10.0.0.3

}

}

}

source {

rule 100 {

outbound-interface eth0

source {

69

address 10.0.0.0/8

}

translation {

address masquerade

}

}

rule 110 {

outbound-interface eth2

source {

address 10.0.0.0/8

}

translation {

address masquerade

}

}

}

}

system {

config-management {

commit-revisions 100

}

console {

device ttyS0 {

speed 115200

}

}

host-name vyos

login {

user vyos {

authentication {

encrypted-password ****************

plaintext-password ****************

}

}

}

ntp {

server time1.vyos.net {

}

server time2.vyos.net {

}

server time3.vyos.net {

}

70

}

syslog {

global {

facility all {

level info

}

facility protocols {

level debug

}

}

}

}

71

IV - Ettercap Guide

1. PREPARATION

(a) before turning on Ettercap, in order for forwarding to occur in MITM, the following configu-
ration on Kali Linux is required:

/home/kali# sudo sysctl net.ipv4.ip_forward=1

(b) (optional) open a wireshark under Kali Linux:

i. click on eth0 (wireshark starts capturing in background)

ii. filter used in wireshark to show only the desired replies: "modbus && ip.dst == 10.0.0.4"

(c) open ettercap-graphical in the Kali Linux application search menu

i. set the Netmask to 255.255.255.0 at start

2. INITIATE PASSIVE MITM ATTACK

(a) locate the hosts in ethercap and tell them what the two targets are [ScadaBR (Linux) at 10.0.0.4
and ANS (Win10) at 10.0.0.2]

(b) check the tick symbol in the top right corner of the GUI

(c) click "search" (sends multiple ARP’s to the whole network - not stealth and should not be used
in a pentest)

(d) in the Host List select target 1 and click "Add to Target1"

(e) in the Host List select target 2 and click "Add to Target2"

(f) click the globe in the upper right corner (MITM) and then ARP poisoning (default settings -
only "Sniff remote connections" selected) and click OK

3. INITIATE ACTIVE MITM ATTACK

(a) in the top right menu of the GUI (3 vertical dots), follow the path: > "Filters" > "Load a filter
..." > choose the compiled file of the new filter created

4. PROCEDURE TO CREATE AND COMPILE A NEW ETTERCAP FILTER

(a) open the etter.filter template file in the editor

/home/kali# cd /usr/share/ettercap

/home/kali# ls -la

/home/kali# nano etter.filter

(b) edit the filter template, as needed, and save it (Ctrl-X; Save modified buffer? Y; File Name to
Write: etter.filter; ENTER)

72

(c) compile the new filter (etterfilter is the command to compile the filter; etter.filter is the input
file; -o etter.filter.ccspeed directs the compiled output to another file)

/home/kali# etterfilter etter.filter -o etter.filter.ccspeed

5. EXTENDED ETTERCAP FILTER

##

This filter implements a MITM Insider Substitution

Attack against ScadaBR.

The chosen values are continuosly shown in the

supervisory, no matter what the real values

read in the modbus registers really are.

##

filter [select Modbus Protocol] + [response destination ip address]

if (ip.proto == TCP && tcp.src == 502 && ip.dst == '10.0.0.4') {

test modbus filter

condition [ScadaBR Response ID]

msg("response");

tests for packet length 243

if (DATA.data + 4 == "\x00xf3") {

replace modbus registers 224 and 225 (CC_PumpSpeedCmd) for 100 dec

#(42C8 0000 hex UINT6 or 17096 0000) regardless of their current values

DATA.data + 193 = "\x42\xc8\x00\x00";

msg("content of holding registers for CC_PumpSpeedCmd

transmitted as 100 dec");

}

tests for packet length 251

if (DATA.data + 4 == "\x00\xfb") {

replace modbus registers 14 and 15 (CC_PumpSpeed) for 102.7 dec

#(42CD 6666 hex UINT or 17101 26214) regardless of their current values

73

DATA.data + 21 = "\x42\xcd\x66\x66";

msg("content of holding registers for CC_PumpSpeed transmitted as

102.7 dec");

}

}

74

V - Python Code employed for Machine Learning

1. IMPORTING THE NECESSARY MODULES

In[1]:

import pandas as pd # load and manipulate data

import numpy as np # data manipulation

import seaborn as sns # data visualization

import matplotlib.pyplot as plt # drawing graphs

import matplotlib.colors as colors

split data into training and testing sets

from sklearn.model_selection import train_test_split

cross-validation (cross_val_score)

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold # cross-validation (KFold)

randomized search on hyper parameters

from sklearn.model_selection import GridSearchCV

exhaustive search over specified parameter values for an estimator

from sklearn.model_selection import RandomizedSearchCV

classification with Support Vector Machine (SVM)

from sklearn.svm import SVC

classification with Logistic Regression

from sklearn.linear_model import LogisticRegression

classification with Random Forest

from sklearn.ensemble import RandomForestClassifier

classification with K-Nearest Neighbors

from sklearn.neighbors import KNeighborsClassifier

classification with Multinomial Naive Bayes

from sklearn.naive_bayes import MultinomialNB

from sklearn import metrics

from sklearn.metrics import classification_report

creates and plot a confusion matrix

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

from sklearn.preprocessing import scale # scale and center data

#Transform features by scaling each feature to a given range

from sklearn.preprocessing import MinMaxScaler

to perform Principal Component Analysis on data

from sklearn.decomposition import PCA

75

from scipy import stats # statistical functions

Joblib is able to support both multi-processing and multi-threading

from joblib import parallel_backend

In[2]:

%matplotlib inline

get_ipython().run_line_magic('matplotlib', 'inline')

2. LOADING THE DATASETS

read the excel file into a pandas dataframe

DATASET.xlsx

df = pd.read_excel(r'D:\path\DATASET.xlsx')

3. BOX PLOT ANALYSIS (GROUP 1 ; 3 SCENARIOS/DATASETS)

data Visualization

In[1]:

df.head(3)

In[2]:

df.tail(3)

In[3]:

creates a simple pallet to distinguish Normal from Attack

my_pal = ['Blue', 'Red']

sns.set_palette(my_pal)

In[4]:

show box plots for each training feature of the dataset

sns.boxplot(data=df, x='Attack', y='tcp_time_delta', palette=my_pal)

76

In[5]:

sns.boxplot(data=df, x='Attack', y='CC_PumpFlow', palette=my_pal)

In[6]:

sns.boxplot(data=df, x='Attack', y='CC_PumpOutletTemp', palette=my_pal)

In[7]:

sns.boxplot(data=df, x='Attack', y='CC_PumpSpeed', palette=my_pal)

In[8]:

sns.boxplot(data=df, x='Attack', y='CD_InSteamFlow', palette=my_pal)

In[9]:

sns.boxplot(data=df, x='Attack', y='CD_Press', palette=my_pal)

In[10]:

sns.boxplot(data=df, x='Attack', y='CD_SteamTemp', palette=my_pal)

4. BOX PLOT ANALYSIS (GROUP 2 ; 3 SCENARIOS/DATASETS)

data Visualization

In[1]:

df.head(3)

In[2]:

df.tail(3)

In[3]:

creates a simple pallet to distinguish Normal from Attack

my_pal = ['Blue', 'Red']

sns.set_palette(my_pal)

77

In[4]:

show box plots for each training feature of the dataset

sns.boxplot(data=df, x='Attack', y='tcp_time_delta', palette=my_pal)

In[5]:

sns.boxplot(data=df, x='Attack', y='RX_ReactorPress', palette=my_pal)

In[6]:

sns.boxplot(data=df, x='Attack', y='TB_InSteamFlow', palette=my_pal)

In[7]:

sns.boxplot(data=df, x='Attack', y='TB_InSteamPress', palette=my_pal)

In[8]:

sns.boxplot(data=df, x='Attack', y='TB_SpeedCtrlValvePos', palette=my_pal)

5. EXPLORING THE DATA (GROUPS 1 AND 2 ; 3 SCENARIOS/DATASETS)

Exploring the Data

Mnemonic codes for names of processed dataframes/arrays

_df - original dataframe from the dataset

_d - target/class column droped

_sc - scaled

_dfa - array converted to dataframe again

_tg - target/class column appended

_n - samples under normal operation

_a - samples under attack

_pca - after pca transformation

Verifying the general properties of the Dataset

In[1]:

df.head() # shows first 5 rows

78

In[2]:

df.tail() # shows last 5 rows

Checking for missing values

In[3]:

show null columns, total of rows [alternative: len(df)] and

type of data in each column (alternative: df.dtypes)

df.info()

In[4]:

check for missing values {aternative:

len(df.loc[(df['tcp_time_delta']==0) | (df['RX_ReactorPress']==0) |

(df['TB_InSteamFlow']==0) | (df['TB_InSteamPress']==0) |

(df['TB_SpeedCtrlValvePos']==0)]) }

df.isnull().sum()

In[5]:

Scaling the data (Gaussian with zero mean and unit variance)

df_d = df.drop('Attack', axis = 1).copy()

df_d_sc = scale(df_d)

In[6]:

convert the array back into a dataframe

df_d_sc_dfa = pd.DataFrame(df_d_sc, columns=['tcp_time_delta',

'CC_PumpFlow', 'CC_PumpOutletTemp', 'CC_PumpSpeed', 'CD_InSteamFlow',

'CD_Press', 'CD_SteamTemp'])

df_d_sc_dfa.head()

In[7]:

df_d_sc_dfa.describe() # basic statistical data "normal"

Graphical analysis

In[8]:

79

scatter plots of every possible 2D feature combinations

sns.pairplot(df_d_sc_dfa)

In[9]:

to plot individual variables

df_d_sc_dfa.plot(y='CC_PumpFlow', use_index=True)

In[10]:

to plot individual histograms - alternative:

plt.hist(df0_d_scaled_dfa['RX_ReactorPress'], bins=50)

df_d_sc_dfa['tcp_time_delta'].plot.hist(bins=100) #dataframe histogram

In[11]:

to append again the target column to the scaled dataframe

df_d_sc_dfa_tg = pd.concat([df_d_sc_dfa, df[['Attack']]], axis = 1)

df_d_sc_dfa_tg.tail()

In[12]:

#splits data into normal ("0") and under attack ("1")

df_d_sc_dfa_tg_n = df_d_sc_dfa_tg[df_d_sc_dfa_tg.Attack==0]

df_d_sc_dfa_tg_a = df_d_sc_dfa_tg[df_d_sc_dfa_tg.Attack==1]

In[13]:

compares two chosen pairs of features for "normal" and "under attack"

f1 = 'CC_PumpFlow' # chose feature 1

f2 = 'tcp_time_delta' # chose feature 2

n = plt.scatter(df_d_sc_dfa_tg_n[f1],df_d_sc_dfa_tg_n[f2], color='green',

marker='+')

a = plt.scatter(df_d_sc_dfa_tg_a[f1],df_d_sc_dfa_tg_a[f2], color='red',

marker='.')

#plt.title("title")

plt.xlabel(f1)

plt.ylabel(f2)

plt.legend((n, a),('Normal Operation', 'Under Attack'),numpoints=1,

loc='upper right', ncol=1, fontsize=8)

plt.show()

80

6. PRINCIPAL COMPONENT ANALYSIS - PCA (GROUP 1 ; 3 SCENARIOS/DATASETS)

Mnemonic codes for names of processed dataframes/arrays

_df - original dataframe from the dataset

_d - target/class column droped

_sc - scaled

_dfa - array converted to dataframe again

_tg - target/class column appended

_n - samples under normal operation

_a - samples under attack

_pca - after pca transformation

In[1]:

Scaling the data (Gaussian with zero mean and unit variance)

df_d = df.drop('Attack', axis = 1).copy()

df_d_sc = scale(df_d)

In[2]:

convert the array back into a dataframe

df_d_sc_dfa = pd.DataFrame(df_d_sc, columns=['tcp_time_delta',

'CC_PumpFlow', 'CC_PumpOutletTemp', 'CC_PumpSpeed', 'CD_InSteamFlow',

'CD_Press', 'CD_SteamTemp'])

df_d_sc_dfa.head()

In[3]:

Principal Component Analysis (PCA)

pca = PCA(n_components=2) # reduce dimension to n_components

df_d_sc_dfa_pca = pca.fit_transform(df_d_sc_dfa)

df_d_sc_dfa_pca.shape

In[4]:

print(type(df_d_sc_dfa_pca))

In[5]:

convert the array back into a dataframe

81

df_d_sc_dfa_pca_dfa = pd.DataFrame(df_d_sc_dfa_pca, columns=['PC1', 'PC2'])

df_d_sc_dfa_pca_dfa.head()

In[6]:

atribute showing percentage of variance explained by each of the

selected principal components

pca.explained_variance_ratio_

In[7]:

to append target column again

df_d_sc_dfa_pca_dfa_tg = pd.concat([df_d_sc_dfa_pca_dfa, df[['Attack']]],

axis = 1)

df_d_sc_dfa_pca_dfa_tg.tail()

In[8]:

#splits data into normal ("0") and under attack ("1")

df_d_sc_dfa_pca_dfa_tg_n =

df_d_sc_dfa_pca_dfa_tg[df_d_sc_dfa_pca_dfa_tg.Attack==0]

df_d_sc_dfa_pca_dfa_tg_a =

df_d_sc_dfa_pca_dfa_tg[df_d_sc_dfa_pca_dfa_tg.Attack==1]

In[9]:

df_d_sc_dfa_pca_dfa_tg_n.tail()

In[10]:

df_d_sc_dfa_pca_dfa_tg_a.head()

In[11]:

scatter plot of PC1 and PC2 with normal (blue) and under attack (red)

a = plt.scatter(df_d_sc_dfa_pca_dfa_tg_n['PC1'],

df_d_sc_dfa_pca_dfa_tg_n['PC2'], color='blue', marker='+')

b = plt.scatter(df_d_sc_dfa_pca_dfa_tg_a['PC1'],

df_d_sc_dfa_pca_dfa_tg_a['PC2'], color='red', marker='.')

#plt.title("title")

plt.xlabel("PC1")

82

plt.ylabel("PC2")

plt.legend((a, b),('Normal Operation', 'Under Attack'),numpoints=1,

loc='upper left', ncol=1, fontsize=8)

plt.show()

7. PRINCIPAL COMPONENT ANALYSIS - PCA (GROUP 2 ; 3 SCENARIOS/DATASETS)

Mnemonic codes for names of processed dataframes/arrays

_df - original dataframe from the dataset

_d - target/class column droped

_sc - scaled

_dfa - array converted to dataframe again

_tg - target/class column appended

_n - samples under normal operation

_a - samples under attack

_pca - after pca transformation

In[1]:

Scaling the data (Gaussian with zero mean and unit variance)

df_d = df.drop('Attack', axis = 1).copy()

df_d_sc = scale(df_d)

In[2]:

convert the array back into a dataframe

df_d_sc_dfa = pd.DataFrame(df_d_sc, columns=['tcp_time_delta',

'RX_ReactorPress', 'TB_InSteamFlow', 'TB_InSteamPress',

'TB_SpeedCtrlValvePos'])

df_d_sc_dfa.head()

Repeat In[3] to In[11] from Item 6 above

8. COMPARISON AMONG CLASSIFIERS (GROUPS 1 AND 2 ; 3 SCENARIOS/DATASETS)

Formating the Data

#

Split the Data into two parts:

- Columns of Data that will be used to make classifications (X)

83

- The Column we want to predict (y)

#

We want to predict the value of column Attack ("0" - Normal Operation;

"1" - Under Attack)

#

Note: ".copy()" copy the data by value. It ensures the original

data df is preserved.

In[1]:

Part for making classifications

X = df.drop('Attack', axis = 1).copy()

X.head()

In[2]:

print(type(X))

In[3]:

Part we want to predict

y = df['Attack'].copy()

print(type(y))

#y.tail()

In[4]:

X.shape, y.shape

In[5]:

split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50)

Note: without parameter random_state=0 it shuffles between different runs

Note2: test_size parameter chooses size of the test set (0 to 1)

In[6]:

X_train.shape, y_train.shape # Split Data (Train)

In[7]:

84

X_test.shape, y_test.shape # Split Data (Test)

Scaling and Centering

In[8]:

scale (zero mean, unit variance)

X_scaled = scale(X) # scales X (not Split)

X_train_scaled = scale(X_train) # scales X_train

X_test_scaled = scale(X_test) # scales X_test

Note: it is not necessary to scale or normalize y (binary class)

In[9]:

print(type(X_train_scaled))

Normalizing Split Data (0-1 range)

In[10]:

minmax = MinMaxScaler(feature_range=(0,1))

X_norm = minmax.fit_transform(X) # Normalize X (not Split)

Normalize X_train to range 0-1. This creates an array.

X_train_norm = minmax.fit_transform(X_train)

Normalize X_test to range 0-1. This creates an array.

X_test_norm = minmax.fit_transform(X_test)

Define Functions to simplify evaluation

Model for Function get_score

svm = SVC()

svm.fit(X_train, y_train)

svm.score(X_test, y_test)

In[11]:

Function get_score

measure accuracy based on defined test size split of the dataset

def get_score(model, X_train, X_test, y_train, y_test):

model.fit(X_train, y_train)

return print("Accuracy(Split): %.4f" % (model.score(X_test, y_test)))

85

Model for Function cross_val_score

clf_svm_cr = SVC(random_state=0) # makes an untrained shell of a

Support Vector Classifier

scores = cross_val_score(clf_svm_cr, X_scaled, y, cv =5)

print ("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))

In[12]:

Function cross_val_score

measure accuracy based on cross validation on cv_n partitions

def get_cross_val_score(model, X, y, cv_n):

scores = cross_val_score(model, X, y, cv=cv_n)

return print(scores), print("Accuracy(Cross):

%0.4f (+/- %0.4f)" %(scores.mean(), scores.std()))

Comparison among different Classifiers

SVM (not Scaled)

In[13]:

get_score(SVC(), X_train, X_test, y_train, y_test)

In[14]:

get_cross_val_score(SVC(), X, y, 5)

SVM (Scaled)

In[15]:

get_score(SVC(), X_train_scaled, X_test_scaled, y_train, y_test)

In[16]:

get_cross_val_score(SVC(), X_scaled, y, 5)

Logistic Regression (not Scaled)

In[17]:

86

get_score(LogisticRegression(), X_train, X_test, y_train, y_test)

In[18]:

get_cross_val_score(LogisticRegression(), X, y, 5)

Logistic Regression (Scaled)

In[19]:

get_score(LogisticRegression(), X_train_scaled, X_test_scaled,

y_train, y_test)

In[20]:

get_cross_val_score(LogisticRegression(), X_scaled, y, 5)

Random Forest (not Scaled)

In[21]:

get_score(RandomForestClassifier(n_estimators=40), X_train, X_test, y_train,

y_test)

In[22]:

get_cross_val_score(RandomForestClassifier(n_estimators=40), X, y, 5)

Random Forest (Scaled)

In[23]:

get_score(RandomForestClassifier(n_estimators=40), X_train_scaled,

X_test_scaled, y_train, y_test)

In[24]:

get_cross_val_score(RandomForestClassifier(n_estimators=40), X_scaled, y, 5)

K-Nearest Neighbors (Not Scaled)

In[25]:

87

get_score(KNeighborsClassifier(n_neighbors=5), X_train, X_test, y_train,

y_test)

In[26]:

get_cross_val_score(KNeighborsClassifier(n_neighbors=5), X, y, 5)

K-Nearest Neighbors (Scaled)

In[27]:

get_score(KNeighborsClassifier(n_neighbors=5), X_train_scaled,

X_test_scaled, y_train, y_test)

In[28]:

get_cross_val_score(KNeighborsClassifier(n_neighbors=5), X_scaled, y, 5)

Multinomial Naive Bayes (Not Scaled)

In[29]:

get_score(MultinomialNB(), X_train, X_test, y_train, y_test)

In[30]:

get_cross_val_score(MultinomialNB(), X, y, 5)

Multinomial Naive Bayes (Scaled)

OBS: MultinomialNB().fit cannot receive negative values from

scale(sklearn.preprocessing.MinMaxScaler used instead)**

In[31]:

get_score(MultinomialNB(), X_train_norm, X_test_norm, y_train, y_test)

In[32]:

get_cross_val_score(KNeighborsClassifier(n_neighbors=5), X_norm, y, 5)

88

9. SVM PARAMETER OPTIMIZATION (GROUPS 1 AND 2 ; 1 SCENARIO/DATASET - MITM)

4.1 Split the Data into two parts:

#

- Columns of Data that will be used to make classifications (X)

- The Column we want to predict (y)

#

We want to predict the value of column Attack ("0" - Normal Operation;

"1" - Under Attack)

#

Note: ".copy()" copy the data by value. It ensures the original

data df is preserved.

In[1]:

Part for making classifications

X = df.drop('Attack', axis = 1).copy()

X.head()

In[2]:

print(type(X))

In[3]:

Part we want to predict

y = df['Attack'].copy()

print(type(y))

In[4]:

X.shape, y.shape

In[5]:

split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=0)

Note: without random_state=0 results shuffles between rounds

Note2: test_size parameter set to 20%

89

In[6]:

X_train.shape, y_train.shape

In[7]:

X_test.shape, y_test.shape

Scaling and Centering

In[8]:

scale (zero mean, unit variance)

X_scaled = scale(X) # scales X (not Split)

X_train_scaled = scale(X_train) # scales X_train

X_test_scaled = scale(X_test) # scales X_test

Note: it is not necessary to scale y (binary class)

In[9]:

print(type(X_train_scaled))

In[10]:

Define Functions to simplify evaluation

Model for Function get_score

svm = SVC()

svm.fit(X_train, y_train)

svm.score(X_test, y_test)

Function get_score

measure accuracy based on defined test size split of the dataset

def get_score(model, X_train, X_test, y_train, y_test):

model.fit(X_train, y_train)

return print("Accuracy(Split): %.4f" % (model.score(X_test, y_test)))

In[11]:

Model for Function cross_val_score

clf_svm_cr = SVC(random_state=0) # makes an untrained shell of a

Support Vector Classifier

90

scores = cross_val_score(clf_svm_cr, X_scaled, y, cv =5)

print ("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std()))

Function cross_val_score

measure accuracy based on cross validation on cv_n partitions

def get_cross_val_score(model, X, y, cv_n):

scores = cross_val_score(model, X, y, cv=cv_n)

#get_cross_val_score.variable = scores

return print(scores), print("Accuracy(Cross):

%0.4f (+/- %0.4f)" %(scores.mean(), scores.std()))

In[12]:

SVM training and evaluation (scaled, before optimization)

SVC() default parameters

get_score(SVC(), X_train_scaled, X_test_scaled, y_train, y_test)

In[13]:

SVC() default parameters

get_cross_val_score(SVC(), X_scaled, y, 5)

In[14]:

creates SVC shell with default values

clf_svm = SVC(random_state=0)

fit the shell on the training data

clf_svm_ft = clf_svm.fit(X_train_scaled, y_train)

test prediction on test data

y_pred = clf_svm.predict(X_test_scaled)

Plots Confusion Matrix (before optimization)

cm = confusion_matrix(y_test, y_pred, labels=clf_svm_ft.classes_)

disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=clf_svm_ft.classes_)

disp.plot()

In[15]:

y_pred.shape

91

In[16]:

y_train.shape

In[17]:

Classification Report (before optimization)

y_true, y_pred = y_test, clf_svm.predict(X_test_scaled)

print(classification_report(y_true, y_pred))

In[18]:

Hyper-parameter Tuning

Randomized Search

a fixed number of parameter settings is sampled from the specified

distributions .arcsine and .expon

parrand = {'C': stats.arcsine(scale=1), 'gamma': stats.expon(scale=10),

'kernel': ['rbf'], 'class_weight': ['balanced', None]}

In[19]:

RandomizedSearchCV with parallelization

displays processing time

%%time

parallelize with multiple CPU cores via the joblib library

with parallel_backend('threading', n_jobs=10):

clfrand = RandomizedSearchCV(SVC(), parrand, n_iter=10,

scoring='f1_macro', cv=5) # creates RandomizedSearchCV shell

clfrand.fit(X_train_scaled, y_train) # fit RandomizedSearchCV shell

In[20]:

display best parameters for classifier

clfrand.best_params_

In[21]:

displays best chosen score

clfrand.best_score_

92

In[22]:

visualize optimization

results = pd.DataFrame(clfrand.cv_results_)[['params', 'mean_test_score',

'rank_test_score']]

In[23]:

results.sort_values('rank_test_score')

In[24]:

Evaluate SVM (after optimization)

function get_score with best found values for SVC parameters

get_score(SVC(C=clfrand.best_params_['C'],

class_weight=clfrand.best_params_['class_weight'],

gamma=clfrand.best_params_['gamma'],

kernel=clfrand.best_params_['kernel']), X_train_scaled, X_test_scaled,

y_train, y_test)

In[25]:

function get_cross_val_score with best found values for SVC parameters

get_cross_val_score(SVC(C=clfrand.best_params_['C'],

class_weight=clfrand.best_params_['class_weight'],

gamma=clfrand.best_params_['gamma'],

kernel=clfrand.best_params_['kernel']), X_scaled, y, 5)

In[26]:

trained RandomizedSearchCV classifier prediction on test data

y_pred = clfrand.predict(X_test_scaled)

Plots Confusion Matrix (after optimization)

cm = confusion_matrix(y_test, y_pred, labels=clfrand.classes_)

disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=clfrand.classes_)

disp.plot()

In[27]:

93

Classification Report (after optimization)

y_true, y_pred = y_test, clfrand.predict(X_test_scaled)

print (classification_report(y_true, y_pred))

94

	Sumário
	Lista de figuras
	Lista de tabelas
	Introduction
	Related Works
	Proposed Testbed for Cybersecurity Analysis of Nuclear Power Plants
	Modbus/TCP Protocol and the Modbus Simulator
	Asherah NPP Simulator (ANS) and Its Adapted Modbus Communications Interface
	GNS3 Topology
	ScadaBR HMI and Historian

	Conducting the Cyber-Attack Scenario and Evaluating the Results
	ANS Preparation
	Rogue PLC
	Attack Platform
	Combined Cyber-Attack
	Impact Assessment

	Intrusion Detection and Defensive Capabilities
	Network approach
	Operational variables approach
	Blended approach and the potential for employing machine learning techniques
	Feature Selection
	Feature Extraction and Dataset Building
	Preprocessing and Exploration of the Data
	Training and Evaluation of Different ML Algorithms
	Optimization of the Support Vector Machine (SVM) Classifier

	defensive capability studies

	Conclusions
	Abbreviations
	Bibliographic References
	Appendices
	I - Modbus Initialization Matlab Script
	II - Modbus Modules Matlab Code
	III - VyOS Configurations
	IV - Ettercap Guide
	V - Python Code employed for Machine Learning

