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Abstract—DNS tunneling uses DNS protocol features
to establish command and control channels thus being
possibly exploited as a malicious tool for data exfil-
tration. DNS tunneling security threats affect cross-
platform systems within local and cloud computing
resources. This article proposes an effective DNS tun-
nel detection methodology integrating cloud-based re-
sources. The proposed detection methods compose an
unsupervised machine-learning model execution for
anomaly identification. The validation uses a collected
DNS traffic dataset and shows the practical approach
for C2, data exfiltration, and heartbeat tunnel test situ-
ations, as high levels of anomaly detection are obtained
even for those lightweight data during the transfer
process. This study has an operational approach and
could be adapted to compose security control systems
for organizations.

Keywords—DNS Tunneling, Anomaly detection, Cy-
bersecurity, Cloud computing.

I. Introduction
In recent years, there has been an increase in the

number of malware-based attacks that work infecting
machines to establish communication channels with
remotes servers in order to transfer sensitive and
confidential information from organizations. Data exfil-
tration causes financial losses and affects the reliability
of institutions, representing a relevant challenge for
cybersecurity. One of the most used method for data
leakage is DNS tunneling, using the Domain Name Sys-
tem protocol (DNS) to carry encapsulated information
by establishing command and control (C2) channels for
remote controls and data manipulation [1].

The DNS tunneling as a cyber attack represents
a current concern, mainly due to the efficiency of
incidents in the invasion of machines and the inherent
difficulty in detection. DNS is a system for translating
domains into IP addresses, widely used on Internet,
having hierarchical and recursive attributes in commu-
nications between authoritative and recursive servers
[2]. Due to the essential purpose of the protocol, the

DNS UDP/53 port is released from security blocks and,
improperly monitored by network security tools.

Many studies have been developed to detect DNS
tunneling in the last decade, including data analysis
and machine learning (ML) to train model algorithms
and create inferences. [3] addressed a survey of vari-
ous combinations of detection techniques tunneling be-
tween 2006 and 2020, classifying parameters coming
from DNS packets and flows, as well as differentiating
the analysis methods between rules, signatures, and
based on ML. Other studies ([4] and [1]) focus on the
efficient combination of feature selection, DNS tunnel-
ing behavior identifiers, and algorithms that classify
incidents with the highest accuracy.

ML techniques have been contributing to cyberse-
curity systems evolution, training models to define
patterns, using a sort of classification algorithms, and
identifying anomalies. However, organizations have
faced practical and operational challenges by the di-
versity of sources in hybrid networks, managing large
volumes of datasets, and applying ML models isolated
from the rest of the architecture [5]. Even so, training a
model in a different environment to the one deployed
would cause a negative performance on real-network
productions, despite many research studies [6].

Based on the above considerations, as an opera-
tional approach, the detection of DNS tunneled traffic
needs to be cross-platform, combining local network
resources (on-premise) to ensure dynamically, indepen-
dently, and scalable security services. In this sense, the
objective of this study is a DNS tunneling detection
model with a functional proposal. Therefore, we pro-
pose an efficient modular architecture, with high levels
of accuracy, composed of DNS collections processes
from cloud services, flexible dataset storage, features
selection based on correlates studies, and unsuper-
vised ML algorithm to identify anomalies.978-1-6654-7456-6/22/$31.00 ©2022 IEEE
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II. Background

A. Terminology

Table I defines the concepts of the AWS cloud com-
puting platform used to host services and instances for
the test topology of this study. The terminologies listed
aim to assist in understanding resources, services,
programs, and architectural elements to assemble a
framework for testing DNS tunneling tools.

Table I: AWS Terminology [7]

Amazon Web
Service (AWS)

Cloud computing platform. Flexible resource
capacity scaling, agile and on demand.

Elastic Compute
Cloud (EC2)

EC2 instances are scalable, on-demand computing
resources with a high availability proposition.

Virtual Private
Cloud (VPC)

Virtual private network service, logically isolated,
that includes IP addressing scopes, creating subnets,
and configuring route tables and network gateways.

Route 53 Domain Name System (DNS) service, with
three main functions: domain registration,
DNS routing and health checking.

Route 53
Resolver

Recursive DNS service that sends requests to
authoritative domain servers. The Route 53 resolver
is the first to respond to queries for a given VPC.

Simple Stor-
age Service
(Bucket S3)

Cloud storage object service. Storage
resources management with availability,
access controls, backup, and scalability.

B. DNS tunneling attack

DNS tunneling represents a technique that encapsu-
lates data from other protocols, such as SSH or FTP,
in DNS requests. Data is encoded and infiltrated into
DNS packets for transmission in an established channel
between a client (affected machine) and a remote
server (attacker). This security threat can exfiltrate
information, obtain unauthorized client data, infiltrate
malicious code and, transmit remote commands for
channel verification and hacked machine inspection.

The DNS tunneling mechanism has a client/server
architecture (Figure 1). The attacker holds the mali-
cious domain (tunnel.abc), receiving requests by DNS
packets, so in a recursive and hierarchical way, the
requests from the attacked machine can reach the
server (ex.tunnel.abc) [8]. The remote server machine
process received data using servers scripts modules to
successfully decoded by DNS tunnels.

Figure 1: DNS tunneling attack

As a practical description, the main DNS tunneling
tools encode information usually in Base128/64/32 or

Hexadecimal formats and concatenated data to sub-
domain queries, must meeting the format size lim-
its imposed by DNS protocol rules [9]. Thereby, a
subdomain carrying encoded information for a typical
DNS tunneling traffic would have the following format:
ksfiulufpktoxzydegngdsczwsqutee.ex.tunnel.abc.

Those tools can still use resource records (RRs) fields
to insert reported data. The use of some RRs types,
such as ’TXT’ and ’NULL’, increases the transmission
bandwidth but does not represent common queries that
mainly use ’A’, ’AAAA’, and ’CNAME’ types, effortlessly
generating safety alarms. To deviate security controls,
DNS tunneling tools may split data into more queries,
pause requests, and use a combination of remote
servers or prefixes domains with well-known websites.

III. Methodology
This study proposes a modular architecture for mali-

cious DNS tunneling detection, Figure 2. The collection
process include cloud-based data from AWS services
as well as flexible integrating with third-party cloud
platforms, or on-premise environments (dotted-line).

The plaintext nature of DNS traffic makes the de-
tection of tunneling-related activities possible by traf-
fic flow analysis and packet inspection [10], forming
two analysis layers for differences response times and
future cryptography approach. Processing packets has
real-time responses, but reduce the efficiency in detect-
ing anomalies that depend on subsequent packets sam-
ples. DNS flow features provide metadata, inferring
the behavioral and statistical patterns and can even
be used to detect encrypted traffic, although adding
overhead due to final flow delay.

Features were splited into dimensions contrasting
data with specific influence fields, creating the concept
of detectors. In this research, the main dimensions
used as influence fields were TLD (Top Level Domain),
eTLD+1 (effective Top Level Domain plus one) and IP
address resources. Those detectors perspectives aims
to drill down into effective tunneling behavior. Subse-
quently, the Population ML model was chosen as an
unsupervised anomaly detection algorithm for issues
identification in a IT system monitoring by anomalous-
ness behaviors and DNS tunneling events scoring [11].

For final process, we provided several benign re-
quests queries and DNS tunneling testings attacks,
with a combination of tools (Iodine [12], Dnscat2 [13],
and Flighsim [14]) and offensive methods likewise
command and control (C2), transfer files and heart-
beat verification for channel status, to analyze the
effectiveness detection levels methodology. All tests re-
sults refeeding the model in a continuous unsupervised
learning process, becoming more accurately as more
data analyzed performed in a time series window.
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Figure 2: Overall Methodology [2]

A. Architecture

The solution proposed was deployed on AWS, in
the IaaS (Infrastructure as a Service) modality, and
includes DNS queries and network flows collection by
ELK agents (beats) to indexing fields for a dataset
construction. Beats delivery indexes mapping and flex-
ibility configuration to improve data categorization.
The resulting indexes display in Kibana after sorting,
identifying null values, cleaning data and creating new
indexes from the combination of raw data. For adjust-
ing real-time analysis, beats were configured to estab-
lish a frequent and sequential data pool on endpoint
resources to data-feeding the ELK server.

Bind9 represents an endpoint for DNS queries. The
Packetbeat module [15] collects DNS packets and flow
records for an entire DNS event. Virtual Private Cloud
(VPC) and Route 53 Resolver both native AWS services
either deployed as endpoints. A VPC flow log service
collects network logs, in a 5 minutes period, and send
them to an S3 bucket for storage. Likewise, a query
logging service from Route 53 Resolver sends queries
to another S3 bucket. The Filebeat module [16] was
responsible for checking newly registered logs on S3
and transfer to the ELK server.

B. Topology

For test purposes, we set up a private AWS network
with internal IP addressing scope segmented into two
subnets: one for client machines (EC2 Ubuntu 20.0
and Windows 10 Desktop instances) and another for
Bind9 and ELK servers. A testing Kalilinux attacker
machine was configured in a different availability zone
or external network, receiving DNS tunneling tools
modules and listening to requests on UDP/53 port.

EC2 instances have a native domain resolution ser-
vice on AWS, Route 53 Resolver, but each machine
used Bind9 server primarily for name resolution and
thus concentrate DNS requests. The choice of an extra
endpoint for DNS queries aims to approach different
types of logs for indexing, in a complementary way,
demonstrating a flexible collection process.

Route53 received the lsbb.link domain register and
the subdomain t1ns.lsbb.link pointing to the remote
KaliLinux server. Therefore, this process performs to

achieve the attacking server from anywhere on the
Internet by recursive access to malicious domains.

C. DNS Features

The main features affected by DNS tunneling pro-
cesses represent the basic behaviors to construct vari-
ables and dimensions for a systematic analysis. The
combination of statistical metrics and indexes forms
a feature selection process for this proposed anomaly
system detection, summarized in Subsection III-D.

Number of eTLD+1 requests: to transmit a series of
data tunneling in DNS queries, there is an abnormal
increase in the amount of the requests for the same
eTLD+1 (Effective top-level Domain plus one), which
is the TLD plus one layer in the subdomain.

DNS packets Size in bytes: UDP DNS packets in-
crease when carrying data into subdomains and RR
fields. Thus, network byte transfer rates in a DNS event
will perform anomalous values.

Resource Records Types: RRs types as A (IPV4),
AAAA (IPV6) and PTR (reverse lookup pointers) are the
most common representing 99,4% of standard requests
[17]. Tunneling tools tend to switch or modify the types
of RRs in DNS packets (CNAME, TXT, MX, etc.) to
increase data bandwidth.

Amount of data transmitted : during a DNS tunneling
event, there is an increase in event duration and total
data received and sent successfully to the same pair of
resource machines.

Time-to-live TTL : tunneled DNS traffic must have the
lowest possible TTL so that requests to the malicious
domain are not cached on the local resolver server,
forcing high cache miss rates [1].

D. Detection Methods

The Population ML model detects unusual activities
according to the previous behavior of the population
under analysis [18]. The anomaly detection model uses
time series and analyzes data in increments of time.
Our method approach uses unsupervised learning with-
out any previous assistance for model training. How-
ever, the accuracy depends on continuously updating
based upon new information [11].

The anomaly detection algorithm splits fields over
dimensions and uses probability distribution, such as
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Table II: DNS Flow over IP Address and over eTLD+1
DNS flow over destination IP DNS flow over eTLD+1

Feature Detector Feature Detector
F1 high_count(destination.address) F9 max(event.duration)
F2 high_mean(network.bytes) F10 max (bytes_in)
F3 high_mean(network.packets) F11 max (bytes_out)
F4 high_mean(source.bytes)
F5 distinct_count(destination.port)
F6 distinct_count(related.ip)
F7 distinct_count(source.address)
F8 distinct_count(source.port)

Table III: DNS Packets over eTLD+1 and over TLD
DNS Packets over eTLD+1 DNS Packets over TLD

Feature Detector Feature Detector
F12 high_count F21 high_count
F13 distinct_count (dns.question.name) F22 distinct_count (dns.question.name)
F14 distinct_count (dns.question.subdomain) F23 distinct_count (dns.question.subdomain)
F15 distinct_count (dns.id) F24 distinct_count (dns.question.type)
F16 high_mean (dns.answers_count) F25 distinct_count (dns.id)
F17 low_mean (dns.answers.ttl) F26 high_mean (dns.answers_count)
F18 distinct_count(dns.answers.name) F27 high_mean (dns.answers.data)
F19 distinct_count(dns.answers.type) F28 low_mean (dns.answers.ttl)
F20 high_mean (dns.opt.udp_size) F29 distinct_count(dns.answers.name)

F30 distinct_count(dns.answers.type)
F31 high_mean (dns.opt.udp_size)

Poisson, Gaussian, log-normal, or mixtures of models,
to define a behavioral baseline that suits each variable.
The analysis is based on the language of hypothesis
testing, which describes most of the observations as
the null hypothesis. The p-value of a test statistic is
used for rejecting the null hypothesis and for anomaly
detection, identifying a point as an outlier [11].

The scoring of unusual events will be empirically
answered with p-value number between 0 (no possi-
bility) and 1 (absolute certainty) [19]. The lower p-
value probability is, farthest from the normal data
distribution, and alerts are generated by a normalized
score in the range of 0 to 100 (critical above 75).

The features identified in Subsection III-C were com-
bined with counters of high, maximum, mean, and
lower values to isolate anomalous situations and create
detection methods or jobs. Table II defines the DNS
Flow jobs over IP address and over eTLD+1 and Ta-
ble III lists the DNS Packet jobs within detectors splited
over eTLD+1 and over TLD.

IV. Evaluation
A. Dataset

The dataset will consist of normal DNS requests and
those generated by DNS tunneling tools in a window of
two weeks. For benign data, DNS queries were made to
legitimate websites, as well as random web browsing
such as email, video streaming, geographic location,
news, etc. In addition, sequential query scripts were
run for the 10,000 most consulted domains [20] and
1,000,000 top access domain on Internet [21].

DNS tunneling tools were tested: Iodine [12] for
C2 tests and Dnscat2 [13] for file transfer, both us-
ing the same malicious domain and server attacker

lsbb.link. Iodine is commonly used for web browsing
bypassing captive portals for unauthenticated access
on the UDP/53 port. Dnscat2 encapsulates SSH or FTP
traffic through DNS queries more efficiently and is
more suitable for transferring files.

Flightsim is a lightweight utility used to generate
malicious network traffic and help security teams to
evaluate perimeter controls [14]. Flightsim simulated
DNS tunneling to the alphasoc.xyz malicious domain as
a heartbeat test and validated our proposed detection
model with an extra and unknown tunnel structure.

B. Experimental Results

Flow detection methods: For Iodine, DNS events
were considered anomalous and received high scores
of 92 and 94 at the two events tested on the dataset due
to majority increases in the number of data transferred
from the same source and to destination IP, high count
of UDP open ports, as well as DNS flows on the network
by counting identifier indexes. Such behavior indicates
a streaming, continuous transfer on port UDP/53.

For Dnscat2, the same Iodine influencing features
prevailed. However, the data transfers on tests in-
crease anomaly by the amount of bytes in transit, both
input and output, so those events were even more
decisive for identifying the malicious threat (score 96).
The flow perspective does not perform for Flightsim
utility despite two short shots running tested (about
50 queries for each shot). Minors query counts in DNS
flows are silence and represent a normal behavior.

Figure 3a shows the maximum values for received
bytes during Dnscat2 tunneling as a sample of an
anomaly on the timeline. Another feature, Figure 3b
was the anomalies events duration in a DNS tunneling
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flow. In both cases, the shadows in gray represent nor-
mal points data and the p-values probability are very
low, about 5.56e-36 for bytes received and 4.07e-9 for
events duration, demonstrating an abnormal deviation.

Packet detection methods: Even Iodine tests encap-
sulated and transmitted only C2 commands (light data),
the number of requests per malicious eTLD+1 is rel-
atively high, resulting in an efficient detection (scores
99 and 96 for the two Iodine events).

Dnscat2 performed the highest detection rate (score
99) during the transfer of a lightweight test file pass-
words.txt (100KB), showing that the package features
selected in this study were the most effective when
used for tools based on managing own subdomains.

The Flightsim, with the purpose of generating a
reduced number of queries for a different domain,
processing heartbeat requests to check channel status,
received a critical score, showing that even with only
1 shot (score 92) and 2 shots (score 93), the model
proposed identified efficiently the anomaly, only taking
into account packet features in a real-time system.

In Figure 4a, higher number of data inside request
answers represents an ordinary technique by DNS
Tunneling tools. For each data chunk into queries to
transfer information, more subdomains by the same
TLD are generated. Figure 4b is an adequate example
of a lower feature where the anomaly characterization
is by the count of lower values for TTL on DNS packets
to identify the need for expired time domain and cache
miss force behavior of tunneling method.

C. Considerations

The overall detection methods lead to composing
a higher detection rate with all features identified.
Figure 5 compares the accuracy scores for anomaly
detection by DNS Tunneling tools used in this study.

False positives domains such as amazonaws.com,
cloudflare.com, akam.net, are classified as storage
content, cloud-hosted services and applications, CDNs
(Content Delivery Network), and DNS proxy services.
Even though methods scored legitimate events, the
malicious domains are still at the top of severity.

Table II features do not deal with any packet fields
and can be used to analyze encrypted DNS traffic.
Flow features were unsuccessful in detecting tests with
reduced and limited numbers of queries, resulting in
no outliers identification. However, for packet jobs,
the specific data evaluation offers efficient anomaly
detection without taking numerous subsequent event
windows. The effectiveness detection was important
for attacks with lower bandwidths or sparse occur-
rences in a plain-text DNS context.

A list of reliable domains could still have been ap-
plied in this analysis, improving anomaly identification.

However, this strategy is a static monitoring manipu-
lation that needs to be constantly updated by security
analysts. For those reasons, we decided to evaluate the
original samples. It is also important to note that some
ransomware-type attacks register domains specifically
for the attacks (not matching existing blacklists).

The malicious domain t1ns.lsbb.link had the highest
abnormal scores in all test events. The tunneled traffic
was classified as critical, between 96 and 99, resulting
in effectiveness scores mainly for tools using a regis-
tered domain with no extra protocol for cryptography.
The detection for alphasoc.xyz domain, proof of the
unsupervised method successfully detected a new DNS
tunneling event. the lower scores 92 and 93 were due
to reduced counts of queries generated.

Figure 5: Anomaly Timeline

V. Conclusions and Future Work

This study proposed a DNS tunneled traffic detection
model that was effective for C2, data exfiltration, and
heartbeat tunnel test situations. There were high levels
of anomaly detection even for those lightweight data
during the transfer process. The malicious events had
scored critical levels (ranging from 92 to 99) proving
that the anomaly detection model is suitable for this
class of threats in terms of accuracy and execution
time. The architecture for integrating resources in
AWS, collecting, and sending data to the ELK solution
has proven to be modular, flexible, and of practical
value. The research can be adapted to compose cyber
defense solutions for enterprise security teams.

For future works, numerous DNS tunneling tools
or malwares can be tested, in addition to training
different ML models using the deployed dataset, within
new perspectives and inferences to compare. With the
proposed architecture and proper flow features layer
adapt, it is possible to develop encrypted DNS traffic
surveys for DoT (DNS over TLS) and DoH (DNS over
HTTPS) protocols. The identification of malicious DNS
packets encrypted represents another step of analysis
evolution in the detection of tunneled traffic.
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(a) DNS flow anomalies received bytes (b) DNS flow anomalies event duration (ns)

Figure 3: Flow features anomalies for Dnscat2

(a) DNS packet outliers answers name (b) DNS packet outliers answers TTL (s)

Figure 4: Packet features anomalies for Dnscat2
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