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Abstract: As smart devices have become commonly used to access internet banking applications,
these devices constitute appealing targets for fraudsters. Impersonation attacks are an essential
concern for internet banking providers. Therefore, user authentication countermeasures based on
biometrics, whether physiological or behavioral, have been developed, including those based on
touch dynamics biometrics. These measures take into account the unique behavior of a person
when interacting with touchscreen devices, thus hindering identitification fraud because it is hard
to impersonate natural user behaviors. Behavioral biometric measures also balance security and
usability because they are important for human interfaces, thus requiring a measurement process
that may be transparent to the user. This paper proposes an improvement to Biotouch, a supervised
Machine Learning-based framework for continuous user authentication. The contributions of the
proposal comprise the utilization of multiple scopes to create more resilient reasoning models and
their respective datasets for the improved Biotouch framework. Another contribution highlighted
is the testing of these models to evaluate the imposter False Acceptance Error (FAR). This proposal
also improves the flow of data and computation within the improved framework. An evaluation of
the multiple scope model proposed provides results between 90.68% and 97.05% for the harmonic
mean between recall and precision (F1 Score). The percentages of unduly authenticated imposters
and errors of legitimate user rejection (Equal Error Rate (EER)) are between 9.85% and 1.88% for
static verification, login, user dynamics, and post-login. These results indicate the feasibility of the
continuous multiple-scope authentication framework proposed as an effective layer of security for
banking applications, eventually operating jointly with conventional measures such as password-
based authentication.

Keywords: continuous authentication; touch dynamics biometrics; mobile security; mobile authentication

1. Introduction

Currently, at least 5 billion people use mobile telephones [1], including 3.2 billion
people who use smartphones [2], and among them, 2 billion use their smartphones to
access banking applications [3]. With the widespread adoption of these devices, there is a
related growing number of malware specifically targeting mobile devices. As reported in a
Kaspersky lab report released in 2019, the number of attacks on mobile devices doubled in
2018, with more than 1165 million [4]. This migration to mobile applications motivated
the evolution of authentication methods over time, aiming to ensure fraud prevention,
especially in the case of critical applications such as financial ones.

Commonly, the first interaction of a user with a mobile device and applications is
the authentication process. There are three traditional methods to authenticate a user:
possession of something, knowledge of information, and biometrics, i.e., something that is
part of the person’s body or behavior [5]. Biometric authentication is an interesting means
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of hindering fraud because of the effort required to forge something that is part of a person
compared to the effort related to producing something that the person knows or owns.

Biometric authentication can be classified according to two operational forms [6]:
physiological authentication, which is linked to the person’s physical characteristics, such
as irises or fingerprints, and behavioral authentication, which is linked to attitudes that
are inherent to the individuals, e.g., the way they walk or how they interact with a touch-
screen device.

Password-based authentication is the most commonly used method to protect data
from intruders [7], only requiring user authentication in ordinary situations through a
password or another credential. Usually, this occurs for the first interaction with the
application during login. One of the possibilities to increase the security of authentication
processes is to authenticate the user during the entire interaction with an application and
not only during login. Therefore, continuous authentication approaches can provide an
additional line of defense, especially if designed as a non-intrusive and passive security
countermeasure [8], as it can occur implicitly and transparently, providing an interesting
balance between security and usability.

Thus, implicit authentication schemes use behavioral biometrics to authenticate the
identity of the user continuously and transparently [9]. For example, behavioral biometrics
can be captured through user interaction with a smartphone’s touchscreen, generating
features that uniquely identify the user. Recent studies revealed that smartphone sensors
have a rich potential to be used in active/continuous authentication [10].

Considering this scenario, this paper proposes an improvement to the performance
of the Biotouch framework, extending a previous related work [11]. This referenced work
proposed a supervised machine-learning-based multimodal framework for continuous and
implicit authentication. It was based on biometric behavior patterns obtained from mobile
banking applications. These patterns are observed during continuous interaction of the
user with the mobile application. The model uses data from the touchscreen interaction,
the location captured via GPS, and information collected from various sensors. Such
information allows us to detect possible fraudsters, thus generating alerts in the case of
possible malicious behavior. The results obtained in this previous version of the Biotouch
framework showed an accuracy between 78% to 91%, take into consideration only one
scope and the rate of imposters was not considered.

The new, enhanced model proposed in this paper uses more than one scope and tests
its resilience against imposters. Hence, using the new, enhanced model supported by
multiple scopes for continuous authentication based on biometric authentication factors,
the results show a new, effective, and high-performance model, with the accuracy varying
between 82.53% and 96%. Regarding the percentage of errors, the possible number of
impostors accepted, and the number of legitimate users rejected using Equal Error Rate
(EER) metrics, the results show a variation between 0 and 11.5% when considering the
best results obtained. Additionally, using multiple scopes, the performance of the Biotouch
framework shows the harmonic mean between recall and precision (F1 Score (F1)), with
results between 90.68% and 97.05%. The imposter-acceptance error rate and legitimate-user
rejection rate, using the EER results, are between 9.85% and 1.88% for static verification
considering login, post-login, and user dynamics. These results show the feasibility of
using the proposed system as another layer of security for mobile banking applications,
operating in conjunction with other traditional security methods, such as passwords, since
the methods can coexist and enhance the security of mobile systems against fraud.

1.1. Main Contributions of This Work

The main contributions of this paper are as follows:

1. Multiple-scope approach is uesd so that the authentication models are validated for
different feature sets, with the best performing scopes added to the framework.

2. Six different scopes were developed to improve the performance compared to the
results previously presented in [11], which used only one scope.
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3. With the selected scopes, the efficiency metric of the models presents a minimum F1
score of 90%.

4. Although the proposal validation uses templates of all users who participated in
the data collection scenarios, only those models presenting a FAR below 10% were
integrated into the new framework.

Considering this set of contributions, our results show that the new models created
for the enhanced Biotouch framework provide higher resiliency when compared with the
previous results achieved in [11].

1.2. Organization of This Work

This paper is organized as follows. Section 2 summarizes the related works and
some considerations about their results. In Section 3, the improvements of the continuous
authentication framework are discussed. Section 4 presents and discusses the validation
results of the experiments with the new proposed framework. Lastly, Section 5 provides
the conclusion and proposes future lines of work.

2. State-of-the-Art

In this section, a literature review describing the main concepts that support the devel-
opment of the framework is presented. Additionally, the discussion of related work leads
to a definition of the features used and a benchmark for the comparison of performance
indicators for the proposed framework. It is also considered that a touch dynamics authenti-
cation framework must be composed of three phases: user enrollment, user authentication,
and data retraining [12].

2.1. Security and Mobile Banking Applications

Online banking systems require efficient security models capable of identifying users
and authorizing transactions, thus mitigating fraud [13]. As smart devices have become
commonly used to access internet banking applications, these devices constitute appealing
targets for fraudsters. Impersonation attacks are an essential concern for internet banking
providers. In this context, the main challenge for electronic banking is ensuring the correct
usage and verification of applications for banking security.

Usually the model for common attacks against online banking systems is to exploit
vulnerabilities inherent in the people (engineering social and phishing) and then to gain
control of the device (malware) and to steal the credentials of a legitimate user (fake Web
pages and malware) [13]. Therefore, user authentication countermeasures based on biomet-
rics have been developed, including those based on touch dynamics biometrics. Biometric
characteristics are specific to the user and difficult to copy, share, and distribute [14].

2.2. Continuous Authentication for Mobile Banking Applications Based on Touch
Dynamics Biometrics

Touch dynamics biometrics refers to the process of measuring and assessing human
touch actions on the touchscreen of mobile devices [12]. To characterize the biometric
behavior when using a touchscreen device, an individual’s biometric pattern is modeled
based on information collected from the various sensors that make up modern smartphones,
such as the accelerometer, ambient light sensor, typing compass, gyroscope, GPS, proximity
sensor, touchscreen, and Wi-Fi [15].

In the context of mobile applications, behavioral biometrics emerged as a less intrusive
biometrics model that can be captured implicitly. Additionally, it provides a greater
balance between security and usability, especially because the touch behavior (information
captured) is not part of the user’s private information.

Active and continuous authentication can be defined as the continuous verification of
a person’s identity based on aspects of their behavior when interacting with a computing
device [16]. The main characteristic of an authentication method is continuity, as authenti-
cation is constant during the entire time that the user interacts with the device by means of
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re-authentication tasks that occur periodically and transparently. The entire authentication
process can be performed in the background without interrupting the user’s activities [17].

Behavioral biometrics, based on touch dynamics for authentication applications, have
been investigated in recent years. An experiment regarding data collection for authentica-
tion is presented in [7], aimed at continuous static verification, with a sample of 42 users.
The devices used in the cited experiment were a Nexus 7 tablet and a Mobil LG Optimus
L7 II, and the users needed to enter the same password (considered strong) 30 times in each
session. In this work, the supervised machine learning algorithm that presented the best
performance was Random Forest (RF), which resulted in 82.53% and 93.04% accuracies,
respectively, for the sets of 41 and 71 selected characteristics.

In [8], an experiment for capturing gestures was proposed for users, where each
guest interacted with an application by reading three documents about different subjects
and by interacting with two images to find the differences. The purpose was to collect
data from the interaction of users with a touchscreen, including horizontal and vertical
sliding, through continuous dynamic verifications. Forty-one volunteers participated in
this research, using five different smartphones: Droid Incr., Nexus One, Nexus S, Galaxy S,
and all on Android 2.3.x. Using the supervised machine learning algorithm Support Vector
Machine (SVM), the best performance results for EER were 0% for intra-sessions, 2–3% for
inter-sessions, and 4% when the authentication occurred a week after enrolment.

More recent work specifically focused on banking applications in order to increase
the spectrum of fraud identification. For instance, the authors of [18] developed a banking
analogous application with continuous static verification by considering password typing
and by evaluating it on a set with 95 participating volunteers and data captured from the
touch interaction and sensors available on smartphones, obtaining a 96% accuracy with
the RF algorithm. In [19], using a fuzzy-based classifier, a static and dynamic continu-
ous authentication model was proposed with the data captured from touchscreen and
accelerometer interactions in an application developed using the characteristics of a real
mobile banking application and from use by 22 volunteers, giving an EER of 11.5%.

2.3. Location and Continuous Authentication

The inclusion of information from a user in continuous authentication processes
can contribute as an additional factor in verifying a user’s usage pattern for a mobile
application. Location is one contextual information that is, for instance, used in works such
as [16,20] as one of the factors that make up so-called multimodal authentication schemes
for mobile applications.

In [16], the user’s location data were used in conjunction with the user’s movement
information and device usage. Two profiles were established for each user: one for week-
days and the other for weekends. The pattern was set based on each user’s history, and
the K-means algorithm was used to group the location data. In [20], the user’s location
pattern data were used in a proposal for a multimodal biometrics system that combined
GPS information, stylometry, the use of the application, and the web search pattern.

As location constitutes information that generally remains consistent in a user’s
pattern of use of mobile applications, this contextual information contributes as additional
data to validating a user’s pattern in conjunction with other factors.

2.4. Data Fusion

In this paper, fusion is an approach used to combine data and information from
multiple sources to improve the accuracy or performance of a biometric authentication
method. The information of various sources can be combined in four different ways: image-
level fusion, scoring-level fusion [12], decision-level fusion, and feature-level fusion [21].

In multimodal authentication frameworks, one of the issues that need to be resolved
is how to merge the classification results obtained for each of the used modalities. To
solve this issue, the work in [16] used the Fusion Decision Center technique, which collects
decisions from a local detector and uses them to define whether the result is −1 or 1. The
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scoring approach can also be used for merging results, as noted in [22], where a decision
center combines all of the scores of the modalities, generating an overall decision score.

3. Proposed Model

As mentioned before, this work improves the Biotouch framework [11], seeking better
performance and robustness by using a new union of scopes and by adding a new step in
the authentication process, this latter being defined as the imposters’ FAR (I_FAR) threshold.
The new, proposed framework model aims to capture the features of a user’s interaction
with a mobile application via touchscreen. The model considers two main verifications:
one static and the other dynamic. Static verification (SV) is achieved when a user types
their password at login, while dynamic verification (DV) runs when the user interacts with
the application after login.

The main objectives in the new version of the Biotouch authentication framework are
to identify which of the proposed scopes, among six in the new version, perform better and
to detect whether these scopes can be combined to generate better results than the previous
ones found in [11]. The new scope results are checked based on the F1 score metric to
validate which scopes are complementary to each other. Other goals include investigating
if the inclusion of the new FAR test step for imposters makes the model more robust and
verifying if the supervised machine learning algorithms that present the best results in [11]
can be kept. These validations are important to understand the improvements brought
to the quality of the authentication models in the new version of the Biotouch framework.
Additionally, in order to investigate how the use of touch dynamics biometrics can reduce
fraud in banking applications, we conducted an experiment with an application developed
with characteristics similar to that of a real banking application. This application requires
few touches with a short period of interaction with the user, but it serves the purposes of
evaluation because, when such types of applications are attacked, it usually involves the
loss of finances.

3.1. The New Framework Description

The proposed model involves checking the patterns of typing and sliding, and the
location. This model is defined to cover both the login time, named Moment 1, and the
interaction with the application, named Moment 2. The framework is illustrated in Figure 1.
The two moments of user authentication are characterized differently:

• Moment 1: typing password, is classified as SV;
• Moment 2: interaction with the application to carry out a transaction is classified as DV.

The rule for merging the classifier results is based on score, using the accuracy (AC)
of the location and the F1 score for the password-typing pattern. These characteristics are
considered SV. For the application’s pattern interaction, it is considered DV.

Figure 1. Proposed framework.
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Extending [11], one more step is included, i.e., the I_FAR check, and different from
this previous work, the evaluation metric is replaced by the F1 score, which is applied for
both SV and DV to cover all of the new framework scopes. Thus, referencing Figure 1, the
detailed steps of the new authentication framework are the following:

• Step 1: Capture the pattern of location and password typing;
• Step 2: Calculate AC for the location pattern captured in Step 1 using the best model

(which obtained AC ≥ 90% in the tests that are described hereafter), and calculate
the F1 Score for the password-typing pattern captured in step 1 using the best model
(which obtained F1 ≥ 90% and I_FAR ≤ 10% in the tests);

• Step 3: Fuse the AC for the location pattern with the F1 Score for the password-typing
pattern using the simple arithmetic mean.

• Step 4: If the result of Step 3 is a score below 90%, an alert is generated, indicating a
possible imposter;

• Step 5: Capture the location and interaction pattern with the application post-login
activities;

• Step 6: Calculate the accuracy (AC) for the location pattern captured in Step 5 using
the model that obtained AC ≥ 90%, and calculate F1 for the pattern of post-login
interaction with the application in Step 5 using the best model that obtained F1 ≥ 90%
and I_FAR ≤ 10%;

• Step 7: Fuse the AC, for the location pattern, with the F1 Score, for the pattern
interaction with the application post-login activity, using the simple arithmetic mean;

• Step 8: If the result of Step 7 is a score below 90%, an alert is generated, indicating a
possible imposter.

The following subsections describe the methods used to create the models mentioned
in these steps.

3.2. Data Collection

For data collection, an Android application named Biotouch was developed and pub-
lished on the Play Store. The application consists of a registration screen, a login screen
(L), a menu service screen (MS), and two more screens for each of the three available
services: (a) account screen (Cc), one menu account screen (Cc1) and one from the account
transaction screen (Cc2); (b) transfer screen (T), one transfer menu screen (T1) and one
transfer transaction screen (T2); and (c) payment screen (P), one for payment menu screen
(P1) and one for the payment transaction screen (P2).

The number of people that participated as volunteers and attended the experiment
were 51. The collection period was two weeks. The number of generated templates ranged
from 9 to 630 between the users, depending on how many times the user interacted with
the app screen. It represents a total of 3443 templates,used in the experiments, composed of
various data vectors, corresponding to each touch of the user on the screen. The templates
were saved on the Firebase platform. The registration flow is detailed in Figure 2, and the
service flow is detailed in Figure 3.

To start using the Biotouch application, the user needs to register a password with
6 to 8 numeric digits. The user identifier is transparently defined by the installation task,
and no action from the user is necessary to inform an identifier at the time of registration
since the Firebase platform provides an Instance ID that is used as a unique identifier
for each instance of the application [23]. Thus, this Instance ID is used as the user’s
unique identifier.

During data collection, users were asked to interact at least five times a day with the
application during the experiment period, no matter which of the flows were executed.
The user should interact with five different screens to complete each selected flow.
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Figure 2. Biotouch app screens for the registration flow.

Figure 3. Biotouch app screens for the application interactions.

Each usage template is then represented by the events generated by the users’ touch
made during an interaction with each screen. Therefore, the number of vector data used
for each authentication can vary.

The smartphone models used in the experiment were SM-G973F, SM-G9600, LG-M250,
Moto G (4), SM- A305GT, SM-G9650, SM-G970F, SM-G975F, ASUS X00QD, F670S, GM1900,
GT-I9500, LGM-M700, MI 8, Mi 9T, Mi A2, Mi A3, Moto E(4), Moto X4, Moto Z2 Play,
MotoG3, One Vision, POCOPHONE F1, Redmi 7, Redmi Note 4, Redmi Pro, SM-A530F, SM-
G530H, SM-G570M, SM-G930F, SM- G935F, SM-G955F, SM-G955U, SM-N950F, SM-N9600,
SM-N970F, SM-N975F, X00HD, X00LD, XT1635-02, and XT1710-02.

The Android versions on the smartphones were 5.0.1, 5.0.2, 6.0, 6.0.1, 7.0, 7.1.1, 8.0.0,
8.1.0, 9, and 10.
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About the weakness or attack surface of the captured templates of the users, the data
were sent to the Firebase platform using HTTPS with the latest version of TLS. During
the collection period, the data were available in memory and could only be captured if an
attacker had access to the device’s memory.

3.3. Selection of Features

The extraction of touch dynamics biometrics features (catches) could be performed
in different ways: spatial, movement [12], temporal, dynamic, and geometric [17]. In the
proposed framework, feature generation was performed with the data collected by various
sensors: accelerometer, gyroscope, magnetometer, orientation, linear acceleration, and
gravity. Additionally, information regarding the pattern of interaction with the touchscreen
comprised different ways of extracting touch biometrics, as detailed in Table 1.

Overall, a total of 29 features were obtained in Moment 1 and 31 features were obtained
in Moment 2. Two features, the coordinates X and Y, and the latitude and longitude that
are used to define the location pattern were added to the latter. These features extend
the features used in [24], considering all features generated by sensors declared in related
works, and adds features generated by more two sensors: rotation and acceleration.

Table 1. Features collected for Moments 1 and 2.

Feature Sensor

Down Down Time Touchscreen

Down Up Time Touchscreen

Up Down Time Touchscreen

Up Up Time Touchscreen

Average Down Up Time Touchscreen

Pressure Touchscreen

Average Pressure Touchscreen

Figer Size Touchscreen

Average Finger Size Touchscreen

Acceleration force along the X axis (including gravity) [25] Accelerometer

Acceleration force along the Y axis (including gravity) [25]. Accelerometer

Acceleration force along the Z axis (including gravity) [25]. Accelerometer

Rate of rotation around the X axis [25]. Gyroscope

Rate of rotation around the Y axis [25]. Gyroscope

Rate of rotation around the Z axis [25]. Gyroscope

Geomagnetic field of the environment for the physical X axis in µT [26]. Magnetometer

Geomagnetic field of the environment for the physical Y axis in µT [26] Magnetometer

Geomagnetic field of the environment for the physical Z axis in µT [26] Magnetometer

Rotation vector component along the X axis (X * sin(θ/2)) [25]. Rotation Sensors
(software or hardware)

Rotation vector component along the Y axis (Y * sin(θ/2)) [25]. Rotation Sensor
(software or hardware)

Rotation vector component along the Z axis (Z * sin(θ/2)) [25]. Rotation Sensor
(software or hardware)

Scalar component of the rotation vector ((cos(θ/2)) [25]. Rotation Sensor
(software or hardware)
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Table 1. Cont.

Feature Sensor

Estimated heading Accuracy [27]. Rotation Sensor
(software or hardware)

Acceleration force along the X axis (excluding gravity) [25]. Acceleration Sensors
(software or hardware)

Acceleration force along the Y axis (excluding gravity) [25]. Acceleration Sensors
(software or hardware)

Acceleration force along the Z axis (excluding gravity) [25]. Acceleration Sensors
(software or hardware)

Force of gravity along the X axis [25]. Gravity Sensors
(software or hardware)

Force of gravity along the Y axis [25]. Gravity Sensors
(software or hardware)

Force of gravity along the Z axis [25]. Gravity Sensors
(software or hardware)

The representation of the X, Y, and Z-axes on a smartphone is detailed in Figure 4 to
facilitate the understanding of the collection of features about axes as detailed in Table 1.

Figure 4. Representation of a smartphone axes.

For the creation of a feature ranking for Moments 1 and 2, the Random Forest (RF)
algorithm was used with an impurity criterion based on entropy and a multiclass model.
All user templates considered the hyperparameters defined in the Table 2 that were defined
empirically based on the best results obtained during training and considering the test time.

Table 2. Hyperparameters of the RF algorithm for definition of the feature ranking.

Name Value

n_estimators 40
n_jobs 2

random_state 0
bootstrap False
criterion entropy

max_depth 5
max_features 9

min_samples_leaf 3

3.4. Model Creation and Parameter Test

According to [28], it is not an easy task to find a machine learning classifier suitable
for user authentication. This is the reason we evaluate several algorithms in this paper.
The Random Forest (RF) algorithm [29–31] was chosen based on the good performance
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presented in [24]. Two more algorithms based on ensemble methods, Gradient Boost
(GB) [32,33] and Extreme Gradient Boosting (XGB) [34], were also selected. These are
considered more modern algorithms with high performance, despite requiring greater
computational power for training. Oppositely, two algorithms based on probabilities, i.e.,
the Naive Bayes Bernoulli (NBB) and Naive Bayes Gaussian (NBG) [31,35,36], were also
added because they are simpler, thus implying low processing costs while being rapid for
prediction and training. One more algorithm, Support Vector Machine (SVM) [31,36,37],
was considered because it achieved good results in related works.

Therefore, this work covered the analysis of a set of six different algorithms to identify
which is the best for each user, based on the F1 Score (F1), accuracy (AC), and the complexity
of the algorithm: (a) RF; (b) SVM; (c) XGB; (d) GB; and (e) NBB; and (f) NBG, for continuous
authentication, both static and dynamic. As an additional checkpoint, the SVM One-
Class algorithm was included for the location pattern. The tools used for building the
authentication models were the scikit-learn library and the XGBoost python.

To adjust the hyperparameters of the algorithms based on ensemble methods and
SVM, the Grid Search technique was used, using a predefined parameter list for the RF,
SVM, GB, and XGB algorithms, as shown in Table 3.

Table 3. Hiperparameters used for algorithms based on ensembles and SVM.

Algorithm Name Value

SVM

kernel rbf, linear, poly

gamma scale, auto, 1× 10−2, 1× 10−3, 1× 10−4

C 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.1

class_weight {0:1,1:2}, balanced

degree 3, 5

RF

random_state 0

n_jobs 2

n_estimators 20, 25, 30

max_depth 3, 5, None

max_features 1, 3, 5, auto

min_samples_leaf 0.3, 0.4, 0.5

min_samples_split 0.3, 0.4, 0.5, 6

bootstrap True, False

criterion gini, entropy

class_weight {0:1,1:2}, balanced

GB

n_estimators 10, 20, 30, 75, 100

learning_rate 0.001, 0.01, 0.1

max_depth 5, 6, 7

min_samples_split 0.3, 0.4, 0.45, 0.5

min_samples_leaf 0.20, 0.25, 0.3, 0.4

max_features 3, 7, 10, 20, None, balanced

XGB

n_estimators 20, 30, 40, 100

colsample_bytree 0.6, 0.7, 0.8

max_depth 15, 20, 25

reg_alpha 1.1, 1.2, 1.3

reg_lambda 1.1, 1.2, 1.3

subsample 0.7, 0.8, 0.9
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3.5. Evaluation Metrics

In this version of the framework, the main evaluation metrics are F1 Score (F1) and
FAR. F1 [38–40] is the harmonic mean between Recall and Precision [38], and its definition
and meaning can be found in [40,41]. This metric was chosen instead of precision, as
this new version of the framework has multiclass scopes, so if precision is used, the true
negatives have a high weight, which could generate good accuracy but does not necessarily
indicate good model performance.

Regarding FAR [42–45], it is used to measure the performance of the model regarding
impostors that are accepted as legitimate users.

3.6. Fusion of Scores

For the proposed model, the fusion rule for the classifier results is the score average
of accuracy for the location pattern, and F1 for Moments 1 and 2, as shown in Figure 5.
Opposite to [11], which proposed to deduct the standard deviation from the mean value,
this requirement has been removed in this new version of the framework because the new
model also performs a test to distinguish an impostor from all other users of the system.
Therefore, the penalty generated in the final score by deducting the standard deviation
is unnecessary since all score values are only accepted if they have a value of more than
90% for both the location and the Moments 1 and 2. Moments 1 and 2 use the F1 of the
best classifier, which can be individualized for the user or shared with others, but always
consider F1 for the whole class.

Figure 5. Diagram for the fusion of results.

4. Results and Discussion

This section presents the experimental scenarios developed for the validation of the
new authentication framework and discusses the results of the validation process.

4.1. Experimental Scenarios

Three scenarios (S1, S2, and S3) were defined to specify the minimum number of
interactions with the application required to create a supervised machine learning model
that can obtain a 90% F1 Score (F1) and a maximum FAR of 10%. Each user model is
confronted with the templates from other users, as shown in Table 4, based on the number
of templates that the user generated during the experimental period. A ratio of one login
template to three interactions with the application is used in the test scenarios since, to
complete a flow, the user must interact with three screens after login: (1) Services Menu
screen, (2) Transaction Menu screen, and (3) Transaction screen.

As detailed in Table 4, for the user to participate in SV within scenario 1 (S1), they
would need at least 10 login interactions with the application. Out of these generated
templates, at least 5 would be used for the training phase, and all other user-generated
templates would be used for testing. In scenario 2 (S2), the user should have at least
15 templates, 10 of which would be used for training while all others would be used for
testing. To participate in scenario 3 (S3), there would have to be at least 20 interactions
with the login screen, 15 of which would be used for training and all others for testing. For
the user to participate for DV in scenario 1 (S1), the user would need at least 10 post login
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interactions with the application generating 30 templates, out of which at least 15 would be
used for the training phase and all the other user-generated templates would be used for
testing. In scenario 2 (S2), the user should have used at least 45 templates, where 30 would
be used for training and all others for testing. To participate in scenario 3 (S3), there would
have to be at least 60 templates, 45 of which of these would be used for training and all
others for testing.

Table 4. Details of the experimental scenarios.

Type Number of
Templates

Number of
Templates for Train

Number of
Templates for Test Scenario

SV

From 10 5 From 5 1

From 15 10 From 5 2

From 20 15 From 5 3

Type Number of
Templates

Number of
Templates for Train

Number of
Templates for Test Scenario

SV

From 10 5 From 5 1

From 15 10 From 5 2

From 20 15 From 5 3

DV

From 30 15 From 15 1

From 45 30 From 15 2

From 60 45 From 15 3

4.2. Users Templates

For the detailed scenarios of the 51 users who installed the application, only 25 partici-
pated in the experiment as legitimate users, since only these have generated the minimum
number of templates for S1: 10 interactions with the login and at least 10 complete in-
teractions in the transaction flow, representing 30 post login templates. The data of the
other 26 users who did not provide the minimum number of templates needed for scenario
1 were used to generate imposter data for training and tests and were also used to calculate
the imposters’ FAR. The details of the 25 legitimate users are presented in Table 5, as are
the number of templates that each user generated during the experiment.

Table 5. Number of templates of the 25 legitimate users participating in the experiment.

User Number of Templates per Screen

Identification L MS Cc1 Cc2 T1 T2 P1 P2 Total

drds94uTXlk 12 8 6 6 1 1 1 1 36
cwdNwCqtFAs 11 10 3 3 4 4 3 3 41
eHC7qNMAdCI 10 11 3 3 5 5 2 2 41
dUbEbDq40fM 12 12 5 5 3 3 4 4 48
fUB30EtiU0Q 12 12 4 4 5 5 3 3 48

cWN_XjnNRDw 14 14 5 5 3 3 6 6 56
ffdzWINClJ4 14 16 6 4 6 6 4 4 60
dFOtPe4f8Xc 18 22 8 7 7 7 7 7 65
cBc3b9Cv4X0 17 17 5 5 5 5 7 7 68
ev9fChXnR3I 17 18 11 11 2 2 5 5 69
fRA_pBm0ks4 18 18 6 6 6 6 6 6 72
dyRTk2BUAeo 21 19 6 6 6 6 5 5 74
cFxPtyX-07w 18 20 8 7 7 7 4 4 75

dVGmimRO7bE 20 19 5 5 9 9 5 5 77
fGTU-LDm8uM 20 20 7 7 6 6 7 7 80
fmVXDwdw20Q 25 21 7 7 7 7 7 7 88
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Table 5. Cont.

User Number of Templates per Screen

Identification L MS Cc1 Cc2 T1 T2 P1 P2 Total

eqmPzjjzrHk 23 25 5 4 11 10 9 9 96
enJGMKaiFiI 27 26 7 7 13 13 6 6 107
fIewI06H8u8 31 30 10 10 10 10 10 10 121
eerZKZFi2kY 40 40 12 12 15 15 13 13 160
dlj7Igoq3HQ 53 54 18 17 17 17 19 19 214

fDAVsmA3HUY 69 70 22 22 24 24 24 24 279
f0ttzpoZyeA 75 75 13 13 52 52 10 10 300

eoWIhgawcZ0 84 85 35 35 26 26 23 23 337
fhw9jzhvkGs 90 90 38 38 49 49 3 3 360

L: login; MS: application menu service screen; Cc: application account screen; Cc1: application account menu screen; Cc2: application
account transaction screen; P: application payment screen; P1: application payment menu screen; P2: application payment transaction
screen; T: application transfer screen; T1: application transfer menu screen; T2: application transfer transaction screen.

Based on the maximum number of templates generated by the 25 legitimate users, the
number of users who would participate in each scenario and each moment were defined
according to Table 6.

Table 6. Number of participants per scenario SV and DV.

Participants SV e DV

S1 S2 S3

SV 25 of 25 18 of 25 13 of 25
DV 23 of 23 18 of 23 11 of 23

4.3. Model Implementation

To build the authentication model according to the framework rules, the following
steps were carried out:

1. All six supervised machine learning algorithms are trained and tested with balanced
data. The same number of vectors, lines contained in the templates, is used for
legitimate and illegitimate users based on the number of vectors contained in the
legitimate user templates;

2. The algorithms that obtained F1 from 90% are identified;
3. Those models that obtain 100% accuracy are then discarded because this behavior

may indicate overfitting or that the data is not yet sufficient to define the user pattern;
4. If among the models with F1 at 90% there is NBB or NBG, they are preferred as

they are simpler and faster algorithms for prediction. Otherwise, the model with the
highest F1 value is selected;

5. The best authentication model selected in the previous step is then confronted with
data from at least 50 other users. The model is only considered good if it obtains a
maximum I_FAR of 10%, which in this case may represent that, among the 50 other
imposter users, 5 have a behavior pattern that is identified as similar to that of the
evaluated user, based on features used in the experiment.

4.4. FeaturesRanking

To understand the representativeness of each feature for the creation of the models and
how they could influence the creation of the scopes, a ranking of the feature was created
using the RF algorithm with multiple classes, which is detailed in Table 7 (top 10 features
for SV) and in Table 8 (top 10 features for DV).
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Table 7. Top 10 ranking features for Moment 1.

Feature Importance Value Moment 1

Característica Importance Value Moment 1

Figer Size 0.240485
Average Finger Size 0.236985

Pressure 0.065277
Average Pressure 0.060130

Geomagnetic field on Y 0.058717
Geomagnetic field on X 0.053064
Geomagnetic field on Z 0.044218
Average Down Up Time 0.042234

Scalar component of the rotation vector 0.036942
Acceleration force along the Y axis (including gravity) 0.031548

Table 8. Top 10 ranking features for Moment 2.

Feature Importance Value Moment 2

Average Finger Size 0.268114
Finger Size 0.138374

Scalar component of the rotation vector 0.090839
Pressure 0.090122

Average Pressure 0.087559
Geomagnetic field on Y 0.056308
Geomagnetic field on X 0.051553

Rotation vector component along of X 0.034605
Acceleration force along the Y axis (including gravity) 0.030806

Geomagnetic field on Z 0.025307

From these rankings, it can be observed that the features with the greatest importance
for both SV and VD are finger size and average finger size. These two features have
a weight close to or greater than 40% for the definition of the models when using the
multiclass scope. This behavior served as a basis for the creation of experiment scopes,
seeking to understand how the models behave without these features. The different test
and training scopes were created based on the ranking of the features, so the scopes with
the best performance could be evaluated for the proposed framework by capturing features
that are relevant to less training and testing time.

4.5. Scopes

For each scenario, S1 to S3, the framework was trained and tested in six different
scopes in order to find the scopes with the best performance, respecting the number of
templates for training and testing of each scenario, as detailed in Section 4.1. Each scope
was created based on features, and if the model is multiclass or binary, the scopes are
characterized as follows:

a Scope A (SA): using all features captured in Moments 1 and 2 and generating one
model per user;

b Scope B (SB): excluding features related to sensor data and generating one model
per user;

c Scope C (SC): excluding the finger size and average finger size features because these
features are identified with a high weight in features ranking and generating one
model per user;

d Scope D (SD): using all features captured in Moments 1 and 2 and generating only
one model for all users;

e Scope E (SE): excluding features related to the sensor data and generating only one
model for all users;
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f Scope F (SF): excluding the finger size and average finger size features and generating
only one model for all users.

SA is the same scope used in [11] while the others were created for this new framework.
The idea was to find the best performance of the authentication framework for the collected
data and the creation of the models in the scenarios of the experiment.

Given the results captured in the static and dynamic verification scopes from SA to SF,
as can be seen in the Sections 4.6.1 and 4.6.2 for SV and in Sections 4.7.1 and 4.7.2 for DV, it
was defined that the framework will incorporate scopes SD, SA, and SB, in this order.

SD takes precedence over other scopes because, in SD, the model has already been
tested with data from all of the other users that generated the model in addition to this
approach providing a reduction in the number of possible overfittings that may happen in
individual models that were only trained with two classes, the legitimate users (1) and the
imposters (0), since in a shared model the internal classes can have an accuracy of up to
100% without necessarily overfitting the model. Additionally, it was noticed that SA could
be complementary to SD.

Scopes SA and SB are only used if it is not possible to find an F1 of at least 90% for the
user in SD. If an F1 of at least 90% is not found for the class in SD, then training in SA is
carried out. If it is still not possible to find the defined F1, training in SB is carried out. The
ineffectiveness in finding the expected F1 in any of the scenarios may be an indication that
the user usage pattern cannot be captured with the proposed system and scenarios. The
description of the algorithm is described in Algorithm 1.

4.6. Experimental Results for SV

In this subsection, the results are analyzed for SV between the proposed scopes and
scenarios. In the following tables, the ALG field indicates the best algorithm, the ALG(S)
field indicates the algorithm and scope together, the QTD field indicates the total number
of templates for the user and, the I_FAR field indicates the FAR of the model about the
authentication of the templates of all the other 50 users imposters. The light-gray lines
indicate that the model also met the requirement of Step 5, to have a FAR less than 10%,
that is, it was possible to find a model that met all of the requirements of the framework in
one or more of the scenarios.

4.6.1. Results for SV between Scenarios

With the proposed approach, for SV, uniting the SA, SB, and SD scopes in the frame-
work, it was possible to find an algorithm with the F1 intended for 92% of users in one
or more scenarios, which was not found by only two users. Scope D was responsible
for solving the search for 52% of users in S1, 66% in S2, and 62.23% in S3; Scope A was
responsible for 32% of users in S1, 16.66% in S2, and 15.38% in S3; and the Scope B was
responsible for 4% of users in S1, 0% in S2, and 0% in S3, thus indicating that Scope D is
comprehensive in finding the best algorithm for the data collected and analyzed in this
experiment for static verification.

The results for Step 5 of the proposed framework, the impostor FAR test, are detailed
in Table 9. This is the last screening that the model must pass to be considered suitable for
user authentication.

Based on the steps defined for the framework, it was possible to find a model with
an F1 of at least 90% and with an I_FAR of up to 10% for 80% of users in SV, of which
five out of five users offered enough samples to participate in S1, indicating that the use
of the proposed SV framework, if used in conjunction with conventional methods such
as passwords, can offer an additional line of security with good performance. In the case
of this experiment, in a test environment with different devices and different scopes, it
provided a quality model for 20 of the 25 users, which is the majority of the users who
participated in the experiment.
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Algorithm 1: The flow of the framework algorithm with scopes.

1 Data: User templates
Result: The best model for the user authentication from 90% F1 and with a

maximum I_FAR of 10%, considering the scopes SD, SA, and SB, in this
order.

2 initialization;
3 U ← Usertemplates;
4 Scopes← [SD, SA, SB];
5 Algorithms← [NBB, NBG, SVM, RF, GB, XGB];
6 ImpostorData← impostorstemplates;
7 for scope in Scopes do
8 for algorithm in Algorithms do
9 train and test models;

10 select models that obtained F1 from 90%;
11 discard models that obtain 100% accuracy;
12 if model with F1 at 90% was generated by NBB or NBG then
13 BestModelCandidate← modelGeneratedByNbbOrNbg;
14 I_FAR← resultOfBestModelCandidateI_FARForImpostorData;
15 if I_FAR <= 10% then
16 BestModel ← BestModelCandidate;
17 else
18 BestModelCandidate← modelWithTheHighestF1Value;
19 if Best Model Candidate contain a model with F1 at 90% then
20 I_FAR← resultOfBestModelCandidateI_FARForImpostorData;
21 if I_FAR <= 10% then
22 BestModel ← BestModelCandidate;

23

4.6.2. Average Results for SV

In this subsection, the results of the proposed framework are analyzed in terms of the
expected results concerning the results observed in the work listed in the literature review.
The average results presented in Tables 10–12 were calculated using the simple average
between the values found for each user. All comparisons are made so that the proposed
framework can have a minimum benchmark for performance comparison, even though
the features and metrics used in each literature-reviewed work are not the same as those
used in the proposed framework. The general results of the framework and the scopes that
compose it, SA, SB, and SD, are marked in bold.

Regarding the average results for SV, according to Table 10, it was possible to obtain a
result of up to 98.25% accuracy with the model proposed in the framework in scenario 3,
even if this is not the metric considered in the proposed model. For comparison purposes,
a greater accuracy than the one described in the literature review was obtained, where
the highest reported accuracy values were 96% for static verification in a mobile banking
application [18] and 93.04% for static verification in [7]. Based on Table 11, which shows
the average EER, the values varied between 4.57 and 1.88%, and F1, which is detailed
in Table 12 was resulted between 95.32 and 97.05%, with the average results above the
threshold defined in 90%, indicating that the proposed model managed to obtain a good
performance for most users who participated in the SV experiment.
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Table 9. Final results for SV framework scenarios.

User SV Framework Final Result

Identification ALG (S)
S1 F1 S1 I_FAR S1 ALG (S)

S2 F1 S2 I_FAR S2 ALG (S)
S3 F1 S3 I_FAR

S3
drds94uTXlk RF (SD) 94.23 0 — — — — — —

cwdNwCqtFAs NBG (SA) 99.32 0 — — — — — —
eHC7qNMAdCI RF (SD) 100 0.6 — — — — — —
dUbEbDq40fM NBB (SA) 94.33 6.08 — — — — — —
fUB30EtiU0Q GB (SA) 98.51 44.41 — — — — — —

cWN_XjnNRDw RF (SD) 100 13.93 — — — — — —
ffdzWINClJ4 RF (SD) 95.84 0 — — — — — —
dFOtPe4f8Xc NBG (SB) 93.24 11.15 — — — — — —
cBc3b9Cv4X0 NBG (SA) 98.75 4.1 NBG (SA) 97.54 0 — — —
ev9fChXnR3I — — — RF (SD) 95 1.08 — — —
fRA_pBm0ks4 RF (SD) 100 1.51 RF (SD) 100 3.72 — — —
dyRTk2BUAeo RF (SD) 98.84 0.14 RF (SD) 94.88 0.37 RF (SD) 100 0.03
cFxPtyX-07w RF (SD) 99.27 0.09 RF (SD) 100 0.4 — — —

dVGmimRO7bE RF GB XGB
(SA) 90.64 77.75 RF (SD) 99.78 0.06 RF (SD) 100 0.03

fGTU-LDm8uM RF (SD) 91.34 0.09 RF (SD) 93.89 0.05 RF (SD) 99.71 0.03
fmVXDwdw20Q NBB (SA) 95.47 6.66 RF (SD) 100 0.01 RF (SD) 99.08 0.02

eqmPzjjzrHk RF (SD) 100 1.62 RF (SD) 100 1.69 RF (SD) 100 1.42
enJGMKaiFiI RF (SD) 97.85 0.2 RF (SD) 95.29 0.29 RF (SD) 99.77 0.64
fIewI06H8u8 RF (SD) 99.11 2.35 RF (SD) 99.49 0.29 RF (SD) 100 1.32
eerZKZFi2kY — — — — — — — — —

dlj7Igoq3HQ @c@NBB
(SA) 99.91 9.06 NBB (SA) 99.54 10.35 RF (SD) 95.72 0.58

fDAVsmA3HUY @c@NBG
(SA) 96.87 0 NBG (SA) 96.64 8.69 NBG (SA) 96.26 8.85

f0ttzpoZyeA RF (SD) 97.03 0.78 RF (SD) 98.2 1.9 RF (SD) 97.92 2.05
eoWIhgawcZ0 RF (SD) 99.16 2.29 RF (SD) 100 0.62 RF (SD) 100 2.14
fhw9jzhvkGs — — — — — — — — —

ALG(S) S1: Algorithm (Scope) Scenario 1, F1 S1: F1 Score Scenario 1, I_FAR S1: Impostors FAR Scenario 1, ALG(S) S2: Algorithm (Scope)
Scenario 2, F1 S2: F1 Score Scenario 2, I_FAR S2: Impostors FAR Scenario 2, ALG(S) S3: Algorithm(Scope) Scenario 3, F1 S3: F1 Score
Scenario 3, I_FAR S3: Impostors FAR Scenario 3. Note: The light-gray lines indicate that the model also met the requirement of Step 5,
to have a FAR less than 10%, that is, it was possible to find a model that met all of the requirements of the framework in one or more of
the scenarios.

Table 10. Average accuracy per scenario SV.

Average Accuracy Per Scenario SV

Scenario SA SB SC SD SE SF Framework

Cenário SA SB SC SD SE SF Framework

S1 89.44 87.12 86.64 98.85 96.82 97.61 95.81
S2 91.02 88.35 84.7 98.13 95.87 97.05 97.38
S3 90.77 87.29 87.55 98.33 96.06 97.96 98.25

Table 11. Average EER per scenario SV.

Average EER per scenario SV

Scenario SA SB SC SD SE SF Framework

Average EER per scenario SV

Cenário EA EB EC ED EE EF Framework

S1 10.14 11.45 13.51 7.3 19.18 11.95 4.57
S2 8.97 11.62 15.23 5.87 18.47 11.47 2.87
S3 9.21 12.63 12.49 4.59 13.23 6.46 1.88
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Table 12. Average F1 per scenario SV.

Average F1 per scenario SV

Scenario SA SB SC SD SE SF Framework

S1 90.4 88.24 87.91 83.79 59.59 70.58 95.32
S2 91.68 87.32 86.9 85.34 60.53 73.91 96.34
S3 91.44 83.7 87.55 87.9 71.62 84.58 97.05

4.7. Experimental Results for DV

In this subsection, the results are analyzed for DV between the proposed scopes
and scenarios. In the following tables, the ALG field indicates the best algorithm, the
ALG(S) field indicates the algorithm and scope together, the QTD field indicates the total
number of templates for the user, and the I_FAR field indicates the FAR of the model for
authentication of the templates of the other 50 users or imposters. The light-gray lines
indicate that the model also met the requirement of step 5: to obtain a FAR less than 10%.
It was possible to find a model that met all of the requirements of the framework in one or
more of the scenarios.

4.7.1. Results for DV

The proposed approach with DV as well as the SA, SB, and SD scopes for the frame-
work made it possible to find, an algorithm with F1 intended for 86.95% users in one or
more scenarios, leaving only four users, of which three did not offer enough samples to
participate in scenario 3 without a model with an F1 intended for dynamic verification.
Scope D was responsible for solving for 17% of users in S1, 27% in S2, and 81.81% in S3;
Scope A was responsible for solving for 13.04% of users in S1, 38.88% in S2, and 9.09% in
S3; and Scope B was responsible for solving for 30.43% of users in S1, 16.66% in S2, and
0% in S3. Unlike static verification, where the resolution of the intended F1 search was
concentrated in SD, in the case of dynamic verification, there was a greater distribution
among the scopes, indicating that the task of finding a model with the intended F1 for DV
is more complex, which involves a set of screens, some that have only one touch on the
screen for interaction, and not just one screen, as in SV.

The result for Step 5 of the proposed framework, the imposter FAR test, is detailed in
Table 13. This is the last screening that the model must pass to be considered suitable for
user authentication.

Based on the steps defined in the framework, it was possible to find a model with an F1
of at least 90% and with an I_FAR of up to 10% for 69.56% of users in DV (16 users); for 7 of
them, it was not possible to obtain a model that met the requirements: users must provide
enough samples to participate in up to S2. Of the users who provided enough samples
to participate in S3, only one did not have a good model created, indicating that, for DV,
more training data are needed to build a model with good performance. Therefore, it was
suggested that the use of post-login interaction data for user authentication is promising.

4.7.2. Average Results for DV

In this subsection, the results of the proposed framework are analyzed in terms of the
expected results concerning the results observed in the work listed in the literature review.
The average results presented in Tables 14–16 were calculated using the simple average
between the values found for each user. All comparisons were made so that the proposed
framework can have a minimum benchmark for performance comparison, even though
the features and metrics used in each literature-reviewed work are not the same as those
used in the proposed framework. The general results of the framework and the scopes that
compose it, SA, SB, and SD, are marked in bold.
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Table 13. Final results for the DV framework scenario.

User DV Framework Final Result

Identification ALG (S)
S1 F1 S1 I_FAR S1 ALG (S)

S2 F1 S2 I_FAR S2 ALG (S)
S3 F1 S3 I_FAR

S3
cwdNwCqtFAs NBG (SB) 96.6 0 — — — — — —
dUbEbDq40fM RF (SD) 94.25 0.01 — — — — — —
fUB30EtiU0Q XGB (SA) 99.5 53.64 — — — — — —

cWN_XjnNRDw — — — — — — — — —
ffdzWINClJ4 — — — — — — — — —
dFOtPe4f8Xc NBG (SB) 99.1 0 RF (SB) 98.23 11.01 — — —
cBc3b9Cv4X0 XGB (SB) 99.92 11.16 NBG (SB) 99.84 15.16 — — —
ev9fChXnR3I — — — — — — — — —
fRA_pBm0ks4 RF (SD) 98.77 10.13 RF (SD) 100 5.11 — — —
dyRTk2BUAeo — — — SVM (SA) 99.85 14.87 — — —
cFxPtyX-07w RF (SD) 96.54 0.2 RF (SD) 100 0.14 — — —

dVGmimRO7bE NBG (SB) 91.87 0 RF (SD) 100 0.5 — — —
fGTU-LDm8uM — — — — — — NBG (SD) 99.37 0
fmVXDwdw20Q NBG (SB) 95.37 8.71 SVM (SA) 98.97 25.38 SVM (SA) 99.48 23.41

eqmPzjjzrHk NBB (SA) 99.92 32.13 RF (SD) 100 0.75 NBG (SD) 99.46 100
enJGMKaiFiI — — — XGB (SA) 90.4 52.6 NBG (SD) 90.2 0
fIewI06H8u8 — — — — — — NBG (SD) 92.07 0
eerZKZFi2kY — — — — — — — — —
dlj7Igoq3HQ NBG (SB) 98.29 8.27 GB (SA) 92.28 65.9 NBG (SD) 96.72 0

fDAVsmA3HUY NBG (SB) 99.94 0 NBG (SA) 97.19 0 NBG (SD) 91.68 0
f0ttzpoZyeA NBG (SA) 91.51 59.03 NBG (SA) 90.23 0 NBG (SD) 100 0

eoWIhgawcZ0 RF (SD) 98.72 0.17 RF (SD) 98.42 1.22 NBG (SD) 99.97 0
fhw9jzhvkGs — — — RF (SA) 90.79 72.04 NBG (SD) 98.36 0

ALG(S) S1: Algorithm(Scope) Scenario 1, F1 S1: F1 Score Scenario 1, I_FAR S1: Impostors FAR Scenario 1, ALG(S) S2: Algorithm(Scope)
Scenario 2, F1 S2: F1 Score Scenario 2, I_FAR S2: Impostors FAR Scenario 2, ALG(S) S3: Algorithm(Scope) Scenario 3, F1 S3: F1 Score
Scenario 3, I_FAR S3: Impostors FAR Scenario 3. Note: The light-gray lines indicate that the model also met the requirement of Step 5,
to have a FAR less than 10%, that is, it was possible to find a model that met all of the requirements of the framework in one or more of
the scenarios.

As detailed in Table 14, for DV, the accuracy varied between 90.1 and 98%. In Table 15,
it was possible to observe an EER of up to 3.07% in scenario 3, lower than that reported
in the literature for dynamic authentication in [8], with 4% between weeks, and as shown
in Table 16, the F1 score varied between 90.68 and 95.72, an average value higher than
the threshold defined at 90%, indicating that the proposed model performed well for
most users.

Table 14. Average accuracy per scenario DV.

Average Accuracy Per Scenario DV

Scenario SA SB SC SD SE SF Framework

S1 80.29 85.72 80.27 96.89 96.5 96.32 90.1
S2 84.38 85.22 81.84 95.49 95.22 97.01 93.34
S3 84.86 90.88 80.76 99.21 95.77 97.22 98

Table 15. Average EER per scenario DV.

Average EER Per Scenario DV

Scenario SA SB SC SD SE SF Framework

S1 21.15 14.31 19.71 21.63 25.9 26.55 9.85
S2 15.82 14.73 18.12 11.51 25.24 19.14 6.61
S3 15.15 9.09 19.24 2.69 21.1 11.84 3.07

Table 16. Average F1 per scenario DV.

Average F1 Per Scenario DV

Scenario SA SB SC SD SE SF Framework

S1 81.71 87.09 81.95 55.18 47.92 50.17 90.68
S2 87.32 88.43 85.43 75.78 48.21 60.14 93.73
S3 88.07 90.35 85.13 93.61 60.19 73.89 95.72
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4.8. Algorithm Frequency

During the experiments and as explained before, six different algorithms were used to
create the models between the scenarios that would meet all of the requirements defined
for the framework. The algorithms that met all of the proposed framework’s requirements
varied, as shown in Table 17. In the case of SV, the best algorithms were RF, with higher
frequencies, followed by NBG and NBB. For DV, the algorithm with the highest frequency
was NBG, followed by RF.

Table 17. Framework algorithm frequencies.

SV DV

S1 S2 S3 S1 S2 S3

NBB 3 1 — — — —
NBG 3 2 1 6 2 8
SVM — — — — — —

RF 12 12 10 3 5 —
GB — — — — — —

XGB — — — — — —

The results in Table 17 show that the best algorithms varied based on ensemble and
on Naive Bayes, with the best results obtained for RF in SV and for NBG in DV. It was
also possible to verify that the SVM algorithm, despite being referenced in the literature as
having good results in [7], did not obtain good results in our experiments or in the creation
of models that met all of the requirements of the framework with GB and XGB. It is possible
to note that the issue addressed in the experiment, with the features used, can be solved
using simpler algorithms, such as NBB, NBG, and RF.

4.9. Outlier Detection

A model to be used in behavioral biometrics has to be good at classifying a legitimate
user, maintaining a balanced FAR and False Rejection Rate (FRR) at low rates. This indicates
that the model is effective in both identifying legitimate users and imposters.

As detailed in Section 4.7.2, the EER varied between 1.88 and 4.57% for SV and
between 3.07 and 9.85% for DV, keeping it balanced and with low values, especially when
considering only S3, with 1.88% for SV and 3.07% for DV, between the two-week duration
of the test.

Besides this balance and the good values found, the model tries to make it more
resilient to imposters. In this regard, only the model that obtained an F1 larger than 90% and
a FAR lower than 10% were considered and used. The obtained values were then confronted
with the templates of all of the other 50 users who participated in the experiment.

Models that passed all of the steps defined by the framework and had I_FARs greater
than 1% did not identify an impostor as a 100% legitimate user in any of the cases evaluated.
An I_FAR value greater than 1% was the sum of authentications, within the threshold of
acceptance, of some data vectors for different imposters authenticated as legitimate users.

The proposed framework can be highly efficient in identifying impostors (at least 90%
F1) based on the proposed features and scopes when using a mobile banking application.

Even with all of the precautions defined in the model creation requirements for the
framework, an imposter can still have access to the system without being detected, as there
are margins of error, and as shown in [46], the data from continuous authentication based
on behavioral biometrics can suffer imitation attacks.

In [46], data from the various sensors available on smartphones were not taken into
account, unlike the experiment proposed in this work. For attacks against touch behavioral
biometrics, considering sensor data, the authors in [47] suggested that the consideration of
sensor data can be a strong biometric authentication mechanism against recently proposed
practical attacks.
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4.10. Fused Results

The last step in generating the final score in the proposed framework is to combine
the values generated for accuracy of the location with the F1 Score values generated for
Moments 1 and 2 by calculating the arithmetic mean of these values. To represent the
result of the fusion of scores according to the proposed model, the first result was selected
between the scenarios for SV and DV. It considered the users who had a model created for
Moments 1 and 2 according to the requirements of the framework. The value of the location
accuracy taken into account is always the scenario with the highest number according to
the SV and DV results.

This is just an example, as the results of SV and DV were obtained with the authenti-
cation of several templates from the same user. However, in a real scenario, the fusion of
scores comes from the results related to only one template at the run time in SV, DV, and
location. The results for the fusion of scores is shown in Table 18.

Table 18. Fusion of the SV, DV, and location results.

User Fusion of Scores Per User

Identification SV Scenario SV F1 DV Scenario DV F1 Location AC Fusion Result

cwdNwCqtFAs 1 99.32 1 96.6 90.62 95.51
dUbEbDq40fM 1 94.33 1 94.25 92.3 93.62
fRA_pBm0ks4r 1 100 2 100 92.82 97.6
cFxPtyX-07w 1 100 2 100 92.82 97.6

dVGmimRO7bE 2 99.78 1 96.54 95.83 97.21
fGTU-LDm8uM 1 91.34 3 99.37 92.76 94.49
fmVXDwdw20Q 1 95.47 1 95.37 92.61 94.48

eqmPzjjzrHk 1 100 2 100 93.19 97.73
enJGMKaiFiI 1 97.85 3 90.2 89.47 92.5
fIewI06H8u8 1 99.11 3 92.07 92.5 94.56
dlj7Igoq3HQ 1 99.91 1 98.29 92.18 96.79

fDAVsmA3HUY 1 96.87 1 99.94 92.62 96.47
f0ttzpoZyeA 1 97.03 2 90.23 92.63 93.29

eoWIhgawcZ0 1 99.16 1 98.72 92.95 96.94

According to the results demonstrated in this subsection, the proposed framework
was able to find satisfactory models for SV and DV for 14 of the 25 users who participated
in the experiment. For SV, the majority were satisfactory in scenario 1; for DV, there was a
greater distribution among the scenarios, indicating that, in general, more data are needed
in DV than in SV to create a quality model.

4.11. Comparison with Previous Work

In this subsection, we compare the results observed in the literature review with our
continuous authentication framework in Table 19.

Based on the observations made in the literature review, which are summarized in
Table 19, the continuous authentication framework proposed in this work, developed for
continuous authentication based on touch dynamics biometrics, and focused on mobile
banking applications presents better results than that in [19], which proposed models
that also use continuous authentication based on both static and dynamic verification for
authentication of the user, during the entire interaction with an application.

Figure 6 illustrates the performance results achieved by the continuous authentication
framework proposed in comparison with the best results from the reviewed literature, as
detailed in Table 19, for accuracy and F1.
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Table 19. Comparative summary of the characteristics of the proposed framework and related work.

Work [7] [8] [18] [19] This Proposed
Framework

Statical Verification x — x x x

Dynamic
Verification — x — x x

Sensors Touchscreen Touchscreen

Touchscreen,
Accelerometer,

Orientation, Gravity,
Magnetometer,

Gyroscope

Touchscreen,
Accelerometer

Touchscreen,
Accelerometer,

Orientation, Gravity,
Magnetometer,

Gyroscope, Rotation,
Acceleration

Undetermined
Devices — — x — x

Number of Users 42 41 95 22 25

Number of
Algorithms 7 2 3 1 7

Best Result 93.04% accuracy 0% to 4% EER
inter-week 96% accuracy 11.5% EER

97.05% F1 Score,
1.88% EER, 98.25%

accuracy

Algorithm with
best Result RF SVM RF Fuzzy RF, NBG

Figure 6. Performance comparison of the proposed framework with the best results from the
reviewed literature for AC and F1.

As detailed in the Figure 6, our accuracy results were better than those reported
in [7,8,18]. The proposed framework took into account the F1 score to avoid the strong
influence that accuracy can have on true negatives. On the other hand, it also considered
the accuracy metric as well, which was also better than the other related works.

Figure 7 illustrates the performance results achieved by the continuous authentication
framework proposed in comparison with the best results from the reviewed literature, as
detailed in Table 19, for EER.

If compared with [19], our model achieved an EER of 1.88%, which is much better
than the 11.5% found in [19]. Our proposed approach showed superior results concerning
the work presented in the literature review focusing on mobile banking applications and
addresses both static and dynamic verification.

Therefore, in addition to the capture layers when typing a password and interactions
with the application, the proposed model also captures of information from different
sensors that are present in mobile devices, such as the rotation and acceleration sensors,
and from the user location pattern, such as that used in [16,20], respectively.
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Figure 7. Performance comparison of the proposed framework with the best results from the
reviewed literature for EER.

Besides the search for an algorithm that has an F1 of at least 90%, the framework
proposes an additional step so that the model is accepted within the defined requirements:
it must be confronted using data generated by all other users who participated in the
experiment and cannot have an I_FAR greater than 10%. This step was incorporated with
the objective of finding balanced models regarding FAR and FRR when using balanced
training and test data and when tested with imposter data to make the models more
resilient and robust.

Regarding the identification of impostors, the approach of using this extra verification
step makes it more difficult for a fraudster to be able to impersonate a legitimate user when
using the application since, in addition to obtaining their password, the impostor must
have a pattern of interaction with the application quite similar to that of the legitimate user
in the face of a model that has already been tested against the data of at least 50 imposters.

5. Conclusions and Future Work

The experimental results obtained during this research reinforce our thesis on the
complexity of finding a machine learning algorithm that is suitable for several different
users since the pattern of interaction with an application is unique to each individual.
The use of six different algorithms by the proposed framework appears to be a promising
approach to overcoming this difficulty.

To validate the framework as an additional method used against identity-related
fraud, three different scenarios were created. The scenarios were based on the number of
templates generated for testing and training in order to understand how the models would
perform in each case evaluated. Six different scopes were also created based on removing
some features to understand how they influence the performance of the model and with
different types of model (multiclass or binary).

For construction of the models according to the experiments carried out with the six
different machine learning algorithms, the F1 score was used. Due to the scopes being
multiclass and binary, there was a need for a general metric in which the true negative was
not weighted as high.

A relevant characteristic involved in the steps of creating the model was verification of
the FAR for imposters, making the models good and more resilient since they were tested
once more with the data of all other users who participated in the experiment.

Regarding the scopes studied in this work, the ones that presented the best results
were SA, SB, and SD. These scopes were incorporated into the new framework, leading to
good results. In SV, it was possible to find a satisfactory model for 20 of the 25 users who
participated in the experiment. In DV, a suitable model for 16 users out of 23 was found. It
was also observed that SA could be complementary to SD.
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For the investigation into the creation of more robust models with the inclusion of
FAR verification of imposters, it was possible to observe that this is an important step as
the models need to be balanced between the identification of imposters and legitimate
users, with low rates of FRR and FAR.

To be considered good, all models, when trained with balanced data, had to pass the
test with only up to 10% FAR for imposters when confronted with data from all other users
of the experiment. Therefore, the inclusion of the I_FAR step enriched the framework and
made the models more robust.

The algorithms that showed the best performance had results that varied between
the scopes. Regarding SV, a better result was observed for RF, an algorithm based on the
ensemble method, followed by the algorithms based on Naive Bayes, NBG, and NBB. In
the case of DV, NBG is the best performing algorithm, with a higher frequency, followed
by NBG.

For the average F1 and EER, the results varied between 90.68% and 97.05% and
between 9.85% and 1.88%, respectively, among the scenarios from the proposed scopes.
Therefore, it validates the promising perspective of the use of touch dynamics biometrics as
a new layer of security if used in conjunction with traditional methods such as passwords.
Such layers can evolve in combination as security layers to mitigate authentication fraud in
mobile banking applications.

5.1. Future Work

Future work related to this research includes field studies to capture data in a real
online banking application with a larger number of users and a longer duration to validate
the proposed framework in a setup closer to the final application.

Additionally, an important question to consider is the relationship between cell phone
models and the quality of the data coming from the capture sensors, yielding an interesting
analysis on how device quality reflects the quality of the model of the device user generated.

Regarding the performance of the proposed framework, promising perspectives in
this investigation include considering methods based on adaptive selection by weighting
features of interest and using advanced feature engineering techniques. Furthermore,
the application of filters on the data captured from the sensors possibly improves the
performance of the models created.

Since continuous authentication is an evolving field, further studies on appropriate
and better-performing machine learning algorithms, and better understanding of the
impacts of their parameters and the related approaches for data collection and preservation,
model training, deployment, and maintenance are also needed.

A related study will consider analyzing and comparing the performance and cost of
continuous authentication methods based on physiological and behavioral biometrics.

Finally, as the proposed framework needs to show resilience against attacks, future
studies must conduct further exploration of adversarial models to implement the necessary
countermeasures.
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The following abbreviations are used in this manuscript:

AC Accuracy
ALG Algorithm
ALG(S) Algorithm(Scope)
Cc Application Account Screen
Cc1 Application Account Menu Screen
Cc2 Application Account Transaction Screen
DV Dynamic Verification
EER Equal Error Rate
F1 F1 Score
FAR False Acceptance Rate
FN False Negative
FP False Positive
FRR False Rejection Rate
GB Gradient Boosting
GPS Global Positioning System
I_FAR Impostors FAR
L Login screen
MS Menu Service screen
NBB Naive Bayes Bernoulli
NBG Naive Bayes Gaussian
P Application Payment Screen
P1 Application Payment Menu Screen
P2 Application Payment Transaction Screen
PRC Precision
REC Recall
RF Random Forest
S1 Scenario 1
S2 Scenario 2
S3 Scenario 3
SA Scope A
SB Scope B
SC Scope C
SD Scope D
SE Scope E
SF Scope F
SV Statical Verification
SVM Support Vector Machine
T Application Transfer Screen
T1 Application Transfer Menu Screen
T2 Application Transfer Transaction Screen
TN True Negative
TP True Positive
XGB Extreme Gradient Boosting
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