
4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

DoS Attack Prevention on IPS SDN Networks
Awatef Ali Yousef R.Fares ∗, Francisco L. de Caldas Filho∗ , William F.Giozza∗, Edna Dias Canedo† ,

Fábio Lúcio Lopes de Mendonça∗ and Georges Daniel Amvame Nze∗ ,
∗ Electrical Engineering Department, University of Brasília, Brasília, Brazil

†Department of Computer Science, University of Brasília (UnB), Brasília-DF, Brazil
Email:{awatef.fares, francisco.lopes, fabio.mendes}@redes.unb.br, {giozza, ednacanedo, georges }@unb.br

Abstract—The proposed solution addresses a security imple-
mentation for denial of service (DoS) attacks on software-defined
networks (SDN) for which a combination of two technologies
deployed on traditional networks that have been adapted to the
SDN architecture is used. Implementing an intrusion prevention
system (IPS) in an OpenFlow environment has emerged to
enhance network security by analyzing data that travels through
its structure and, together with this tool, the honeynet feature,
executed through the command of an SDN controller. which or-
ders packets identified as different from predefined transmission
patterns to be forwarded to address a possible DoS attack.

Keywords—SDN, OpenFlow, IPS, SDN controller, Security,
Honeynet.

I. INTRODUCTION

Software-Defined Networks (SDN) has been widely used in
recent years as they offer many benefits over traditional net-
works including ease of deployment, flexibility, programmabil-
ity, and scalability. As data usage and traffic continues to grow
in real networks, the risk to information security increases,
affecting multiple organizations making them vulnerable to
potential DoS attacks through their computational resources.
With the help of SDN technology, the security of this data can
be provided through a centralized control point. In the SDN
network, adapting new services and managing their structure,
performed through a controller that manages routing rules for
any connected network device to your infrastructure [1].

The most widely used protocol in SDNs is OpenFlow,
through their use, tables are configured to assist in the manage-
ment of all packet forwarding decisions that act in conjunction
with central controller software that reaches all network assets
[2], which makes managing your structure easier.

Regarding the security functions of SDN, it can be said that
their centralized administration can provide a certain defense
mechanism to prevent any DoS attacks [3]. As a DoS attack
can make a server or network infrastructure unavailable, the
OpenFlow controller does not specialize in analyzing abnormal
traffic situations, such as those provided in current IDS and
IPS, for this purpose IPS snort is used. Snort is a free software
to identify intrusion in a data network developed initially by
Martin Roesch, it performs real-time network TCP/IP traffic
analysis, identifies packets that are not in the determined
pattern and may suggest network security attacks [4].

SnortFlow is an OpenFlow-based IPS and security-focused
protocol used in [5] for SDNs within virtualized infrastruc-
tures, where it is possible to detect intrusions and implement

measures to prevent and correct these attacks. The results show
that SnortFlow is ideal for security testing in SDN Networks.
SnortFlow uses more complex syntax rules than other IDS
appliances such as Snort and Suricata. These last two have a
large community that contributed to the software development
and the inclusion of new rules for the identification and
mitigation of attacks. IDS and IPS are able to identify and
analyze data that travels through the network by observing
packets that have predefined standards. These devices can act
to provide possible network intrusion detection solutions. SDN
controller’s programming capability to intervene by blocking
or diverting malicious traffic should be used in conjunction
with a honeynet (that implements IDS and IPS security mech-
anisms) to handled malicious traffic [6].

According to [7] and [8], a honeynet is a network of
honeypots designed to intentionally allow attackers to investi-
gate, scan and exploit services considered vulnerable and, the
attackers are unaware that they are in a mock environment.

The work developed in this document integrates an IPS /
IDS system to analyze anomalous traffic on the local network,
directing it to a controlled environment, where it should
be analyzed. This article demonstrates that it is possible to
monitor, treat and mitigate a denial of service attack on
SDNs, combining security features. The proposed architecture
consists of IPS and a honeynet managed by an SDN controller.

II. BACKGROUND

A. Security in local area networks

Security in local networks usually is concentrated only on
the Firewall or IDS. It is usually invested in perimeter pro-
tection systems to prevent external attacks, but it is forgotten
that an attacker can unintentionally launch attacks from within
the internal network by connecting an infected host to the
network, or intentionally by promoting DoS attacks against
servers or attempting to obtain information from which he or
she is not allowed. Thus, safety features must be implemented
in all layers. Local Area Networks (LAN) with more than 100
terminals are usually divided into three layers, namely access,
distribution, and core [9].

The access network provides connectivity to end-users
by connecting computers, notebooks, IP phones and Access
Points (AP) among other network devices. User terminals are
wired into high-port density switches and can be segmented
into different virtual networks using Virtual Local Area Net-
work (VLANs) [10].978-1-7281-2920-4/19/$31.00 © 2019 IEEE

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

APs are also part of the access network and allow the con-
nectivity of mobile devices that implement the IEEE 802.11
protocol for Wireless Local Networks architecture (WLAN)
[11]. Therefore, the primary role of the access network is to
interconnect end-users with the LAN by utilizing high-port
density switches and AP to interconnect mobile devices. Some
functionality should be employed in the access network to
increase availability and integrity.

Port Security [12] limits the amount of MAC addresses per
port, preventing new switches from being added to user ports.
This would, for example, prevent MAC Flooding attacks such
that only trusted ports can respond to DHCP Request/Reply
messages, and unauthorized DHCP servers from being in-
stalled on the network and would thus be able to self-report
to the network gateway. Doing so would prevent Men In
The Middle (MITM) attacks. These features, which previously
relied on manufacturer support to include them in the switch
data plane, can be programmed into the controller and im-
plemented on any equipment, regardless of any manufacturer.
Other layers two protocols of the OSI model such as Spanning
Tree, which avoids network loop and ensures redundancy can
also be included via the SDN controller.

One of the key actions to ensure security in any corporate
LANs is to restrict access to any communication and data re-
sources to their authenticated users. This can be done by using
the IEEE 802.1x protocol, which limits the data protocols that
can be transmitted by the host on the network until the user
authenticates [13]. Authentication takes place with the Pro-
tected Extensible Authentication Protocol (PEAP) passwords
and Lightweight Directory Access Protocol (LDAP) servers or
using the Extensible Authentication Protocol-Transport Layer
Security (EAP-TLS) digital certificate exchange, which au-
thenticates both the machine and the user. This avoids the
inclusion of non-corporate endpoints using their resources
without proper authorization and makes it difficult for ma-
licious attackers to access the internal network.

The distribution layer, presented in this paper, interconnects
the different access subnets with the Core network. The use
of end devices at the distribution layer can be useful to
increase their availability, with Fist Hop Redundancy Protocol
(FHRP) such as VRRP, which allows the creation of a cluster
with different gateways spread out in this layer. The default
gateway address configured on notebooks, personal computers,
IP phones, or any other device installed at the access layer will
be the Cluster address. On the other hand, the highest priority
gateway will always respond as the default primary gateway.
In case of failure of the main gateway, another previously
configured gateway device will assume its role transparently.
Concerning access security, security policies can be applied to
limit user access to different subnets by using access lists on
devices configured at the distribution layer. As an example, we
may limit access for users of a company’s research subnet to
a company that wants to access data from the financial subnet.
Thus, we would have several access lists to restrict any kind of
routing between the two subnets. Layer 3 switches and routers
can apply packet filters as complex as firewalls, allowing for

even greater security of LAN access. Packets at this layer can
also be parsed by any Network Driver Interface Specification
(NDIS) installed in bridge mode, which can act in conjunction
with Firewalls by applying filters to prevent anomalous traffic
from being routed to any subnet.

For security purposes, packets targeted to enter the Core
network will be routed to an IDS (Our Firewall device also
implements a free open source network intrusion detection and
intrusion prevention system (SNORT), as shown in Figure 1)
and, those wishing to enter the internal subnets will be filtered
for further security analysis.

Packets leaving the internal network should also be in-
spected by an IDS to identify anomalous situations, such as
the use of disallowed applications, unauthorized users using
the network, terminals generating an abnormal volume of
traffic, or opening simultaneous connections without a closed
connection state confirmation (as seen in Transmission Control
Protocol (TCP) Flooding). By identifying such situations,
an IDS may send an alert to the network administrator as
well as to interrupt such data traffic. However, it would be
safer to prevent the attacker’s data flow by isolating him
from the network, hindering him from having access to other
network resources. Unfortunately, intrusion prevention systems
are unable to reconfigure conventional switches, to disable the
attacker’s port or deauthenticate any legitimate user from the
network. With the appearance of SDN networks, switch re-
configuration takes place centrally and integration between the
controller and other network assets can be done using modern
integration tools, such as the Representational State Transfer
application programming interface (REST API), RESTConf
and other protocols.

III. RELATED WORKS

Other works that propose to implement the use of security in
SDN for virtualized environments are mentioned in this section
where it is possible to get an overview of the possible solutions
available in the market and their probable implementations
made to date.

C. Jeong, et al. [14], proposes a scalable IDS intrusion
detection system architecture for large SDN networks using a
Kernel-based Virtual Machine (KVM). The KVM architecture
is a virtualization system where one physical host machine
is used to host and control several other virtual machines.
The architecture proposed by the authors makes use of OVS
switches, using the OpenFlow protocol and connected to
each other through OVS tunnels in a virtual environment.
For purposes of sample analysis of suspicious traffic, the
authors used various IDS to perform a Deep Packet Inspection
(DPI) technique on their network. The solution developed and
presented in this work also used OVS switches for simulation
purposes, but unlike [14], all malicious traffic is routed to a
honeypots network.

Monshizadeh et al. [15], proposes a method to detect
security attacks and malicious traffic early enough and to
protect the network. They use centralized monitoring and
intrusion detection system (IDS) to enhance any SDN, NFV,

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

and OpenFlow security. However, unlike our proposal, they
do not divert the malicious traffic to a honeypots via an SDN
controller.

In [16], Nam and Kim propose the implementation of a se-
curity mechanism without the use of additional hardware using
SDNs. This mechanism consists of firewalls, network scanning
systems, abnormal traffic detection, intrusion detection, and
intrusion prevention techniques using OpenFlow technology.
According to the study mentioned, all devices on an SDN
network can act as a firewall by merely identifying packets that
initiate a TCP session. OpenFlow has as one of its features a
packet forwarding and discarding mechanism, which enables
the deployment of any security devices in an SDN architecture
environment. We propose in this paper, a method to identify
security breaches using an IDS and SDN controller to block
only anomalous traffic.

Andritsos [12] exposes some of the security issues that
can affect a data network, including DoS attack, flow aggre-
gation, access control, and insider disclosure. The proposed
operational security requirements consider the prevention of
unauthorized external access and reliability. We propose in this
paper, a solution that also performs the prevention of attacks,
however, using an IDS/IPS integrated with an SDN Controller
(RYU’s SDN open source Controller) and Firewall, to identify
anomalous traffic.

The honeynet proposed in Kim and Shin [17] is imple-
mented in a software-based/network-based system where the
honeynet topology is designed to mislead and obtain more
information about the attacker, such as its source IP address,
and which data of interest is a target by the attackers. Unlike
the proposal of Kim and Shin [17], our prototype uses a well-
known honeypot system integrated into the SDN environment,
directing anomalous traffic and generating alerts when a secu-
rity breach occurs, and advising the network administrator to
take any action.

In Kyung et al. [7], a HoneyProxy is proposed to monitor
internal traffic with the help of the SDN controller. Hon-
eyProxy uses a new connection management mechanism be-
tween different honeypots in the network to support honeypot
transitions. To this end, a HoneyProxy-enabled SDN controller
centrally programs the reverse proxy module that operates in
three specific modes. The model proposed in this paper allows
the use of more than one IPS, which will update the SDN
Parent’s flow table using REST calls.

IV. IPS ARCHITECTURE FOR SDN NETWOKS USING IPS

The proposed architecture implements an integrated security
solution, with IDS identifying anomalous traffic originating on
the local network and informing the controller which hosts are
originating this traffic.

This architecture described in Fig. 1 demonstrates the ar-
rangement of the elements used in the proposed network.

The IDS is positioned at the exit of the LAN network,
monitoring traffic directed to the WAN and DMZ, so DoS
attacks originating from the local network and directed to

external servers are easily detected and directed to the hon-
eynet network. The IDS notifies the local SDN controller by
informing the source IP of the host that is generating unusual
traffic. The host protocol promoting the DoS attack is also
used for this matter.

Based on the information provided by the IDS, the SDN
controller makes the following decisions:

• moves the host to a quarantined Virtual Local Network
(VLAN), restricting its access to internal network devices
and thus preventing botnets from contaminating other
hosts, such as Mirai [18] malware that stood out in 2016,
and was responsible for performing one of the most
significant DDoS attacks to date, reaching traffic of up
to 1.2 Tbps;

• directs anomalous traffic identified by IDS to a honeypot.
This way, the system will log all attacker activity and
send it to the administrator, providing clues of what the
attacker intends to achieve.

Using the data obtained from the IDS logs and honeypot, the
network administrator can confirm if the traffic is anomalous
and, if so, makes the necessary corrections on the host. The
components used in this paper are explained throughout this
Section.

A. SDN Controller

One of the main benefits of SDNs is that it allows the
separation of the data and control plane. Improvements can be
continuously included in the control plane and can be passed
on to any proprietary and non-proprietary equipment running
the OpenFlow protocol.2

New features are added without the need to purchase new
equipment or firmware upgrade. SDN switches can coexist
with conventional switches; features such as spanning tree,
link aggregation, and port mirroring can be easily added to
the controller.

The controller chosen for this solution is Ryu [20] for its
ease of setting up new functionality, extensive documentation,
and the ability to deploy the solution in environments using
Mininet (Which provides a virtual testbed and development
environment for SDNs). Ryu also allows Snort integration
using RESTFull calls.

Ryu software’s controller can be written using Python 3. A
script has been developed to perform network security settings
from abnormal events received by Snort via REST calls.

Upon detecting an anomalous situation, Snort generates an
event, informing the source IP that generated the attack. With
this information, a script makes a REST call to the controller
that redirects the malicious source IP address to the honeynet.
The administrator receives an alert informing that an event is
detected on the network and needs an investigation. The source
IP is interrupted by transmitting packets on the network for
an interval determined by the administrator.

B. Honeynet

Two honeypots servers were created in the test environment,
directing malicious traffic to the applications installed on these

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

Fig. 1. Proposed topology.

Fig. 2. Separation of data and control plan. [19]

two machines. Thus, we can identify more information about
the attack, such as source and destination IP address, number
of packets sent, thus having the perception of attack behavior
in addition to equipment that may be infected with viruses,
being part of a botnet [21], for the work was developed a
honeynet with virtual machines, using the distribution Kali
Linux.

C. Mininet and Open Virtual Switch

The Mininet and OVS software were used to build a testbed
network environment, consisting of a linear topology with one
switch and three client hosts. DoS attacks were generated
from hosts using hping7 [22] and nmap tools. This work used
several attacks directed to host IPs within the lab’s internal
network, within an isolated testing environment designed for
this purpose.

Unlike the ping tool that only transmits Internet Control
Message Protocol (ICMP) packets, hping3 transmits TCP,
UDP, ICMP, RAW IP protocols and traceroute, identifying
the path by which the packets went. Hping3 can be used to
generate a large data stream for web servers, DNS or any
application that operates on the TCP/IP stack, and is often used
for penetration testing and vulnerability identification [23].

D. Communication between Open Virtual Switch and Con-
troller

As defined by [24], the OpenvSwitch allows the creation
of a virtual switch. This OVS implements protocols such as
Spanning Tree, Link Aggregation Control Protocol (LACP),
RSPAN, and can interact with real switches, building a hybrid
network architecture. The switch configuration can be done
via a command-line interface or from the OpenFlow protocol,
which is the focus of this work. Before performing a packet
forwarding, the switch asks the controller how it should be
forwarded, setting up in its local memory a packet forwarding

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

table (flows). The next packets that match the rules described
in the table are immediately forwarded by the switch, without
the need for a new query to the controller, thus increasing
forwarding performance. The switch can make a new query
to the controller, checking if there is a new rule and if the
current rules are still valid.

The OpenFlow-enabled switch counts the number of packets
that matched a given rule, as shown in Fig. 3.

Fig. 3. OpenFlow Communication [25]

In this test, we set the interval for querying new rules every
sixty seconds. This time was chosen to reduce the number of
switch queries to the controller, but new rules could be added
in a short time.

We have developed an API that, when identifying that
anomalous traffic has passed through the IDS, adds a rule
to the Ryu controller via the REST API, requesting traffic
blocking.

V. RESULTS

The architecture is validated, as described in Fig. 4. The
network was built on Mininet, creating a virtual switch and
a PC client. Virtual switch forwarding settings are configured
on the Ryu controller. The virtual switch connects a virtual
machine with Iptables and Snort receiving all packets directed
to the Internet and DMZ and checking if they comply with any
previously registered rule. Fig. 4 illustrates the beginning of
an attack where Snort has not yet identified anomalous traffic
generated by the LAN client. The hping3 tool installed on the
PC initiates a denial of service attack intended for a DMZ
IP. Until Snort detects the attack and requests the rule to be
included in the controller, the destination server continues to
receive all traffic generated by the attacker.

Fig. 4. Test scenario 1

We developed a python script that, based on events identi-
fied by Snort rules, makes a REST call to the Ryu controller,
which adds the new rule to its flow table. The open Virtual
Switch has been configured from mininet to query the con-
troller every 60 seconds. The controller will receive from Snort
a specific flow register, informing the source IP, destination,
and destination port that the block should occur. This way,
other non-anomalous data streams can pass as usual.

The default blocking rules are to direct traffic to honeypots,
so that traffic will be logged by the server. The figure depicting
the network after convergence is described in Fig. 5. When an
anomalous event is detected, an email notification is sent to
the administrator to take appropriate action. The rule remains
in the controller for up to two hours and can be manually
removed by the operator.

Fig. 5. Security Convergence SDN

To validate the concept, 100 tests, automated from python3
scripts. We performed the measure snort, identifies any unusual
traffic; request the inclusion of a new flow in the table,
and forces the switch to forward traffic to the honeynet. In

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

this case, To validate the concept, 100 tests, automated from
python3 scripts, were performed to measure the time Snort
identifies anomalous traffic, make the request to include a new
flow in the table, and force the switch to forward traffic to the
honeynet. In this case, the convergence time described in the
Fig. is measured the convergence time described in the Fig. 4
and 5.

the convergence time, where the network protection occurs,
obeys a linear function where:

C(x, y) = x+ y (1)

where x is the time it takes Snort to identify anomalous
traffic and write the rule to the controller via API and y the
time it takes the SDN network to converge.

Using hping3 with flood parameters enabled, directing traf-
fic to port 80 of the server installed in the DMZ environment
and running the tests 100 times identified the following x
values presented in the Table I.

The time taken by the parent company to register new rules
(y) was also measured in the tests and the results are presented
in Table I.

TABLE I
RESULT OF LINEAR FUNCTION C(X,Y) = X + Y

Snort-Time (X) SDN Network-Time (Y)
Mean 3,47 30,44

Std. Desviation 1,71 17,60
3 Quantile 5 47

From the values presented in the table, we can state that the
time for identification of an attack by Snort (x) suffers little
variation in relation to the average. Not so with the time it
takes for the switch to redirect traffic to the honeynet. This fact
can be explained by the pooling interval between the switch
and the controller set at 60 seconds. For example, if a new rule
is registered one second after the switch has been queried, it
will be necessary to wait 58 seconds for the new rule to be
processed. The sample values are illustrated in the graph 6.

Fig. 6. Test results

VI. CONCLUSION AND FUTURE WORKS

As presented in the results section, the proposed solution
proved to be useful in identifying attacks and taking actions

to mitigate DoS attacks from internal network devices. Con-
vergence time is directly influenced by the pooling interval
between the switch and the controller. Reducing this interval,
however, increases the volume of traffic between the controller
and the switch, delaying routing decisions. One of the future
works is to develop a solution where the SDN switch is
immediately warned of the inclusion of new rules, making
network convergence faster. It will also include rules for
targeting attacks from external networks, such as the Internet
and DMZ.

REFERENCES

[1] R. Amin, M. Reisslein, and N. Shah, “Hybrid sdn networks: A survey of
existing approaches,” IEEE Communications Surveys Tutorials, vol. 20,
no. 4, pp. 3259–3306, Fourthquarter 2018.

[2] M. P. Fernandez, “Comparing openflow controller paradigms scalability:
Reactive and proactive,” in 2013 IEEE 27th International Conference
on Advanced Information Networking and Applications (AINA), March
2013, pp. 1009–1016.

[3] F. Y. Nagahama et al., “Ipsflow: um framework para sistema de
prevenção de intrusão baseado em redes definidas por software,” 2013.

[4] B. Caswell and J. Beale, Snort 2.1 intrusion detection. Elsevier, 2004.
[5] T. Xing, D. Huang, L. Xu, C. Chung, and P. Khatkar, “Snortflow: A

openflow-based intrusion prevention system in cloud environment,” in
2013 Second GENI Research and Educational Experiment Workshop,
March 2013, pp. 89–92.

[6] D. M. F. Mattos and O. Duarte, “Qflow: Um sistema com garantia de iso-
lamento e oferta de qualidade de serviço para redes virtualizadas,” XXX
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuıdos-
SBRC, 2012.

[7] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas, Z. Zhao,
A. Doupé, and G. Ahn, “Honeyproxy: Design and implementation
of next-generation honeynet via sdn,” in 2017 IEEE Conference on
Communications and Network Security (CNS), Oct 2017, pp. 1–9.

[8] W. Fan, D. Fernández, and V. A. Villagrá, “Technology independent
honeynet description language,” in 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODEL-
SWARD), Feb 2015, pp. 303–311.

[9] J. F. Kurose and K. W. Ross, “Redes de computadores e a internet,”
Uma nova, 2006.

[10] M. Yip, “Method and system of aggregate multiple vlans in a metropoli-
tan area network,” Jun. 28 2005, uS Patent 6,912,592.

[11] M. Gast, 802.11 wireless networks: the definitive guide. " O’Reilly
Media, Inc.", 2005.

[12] F. Andritsos, “Port security amp; access control: A systemic approach,”
in IISA 2013, July 2013, pp. 1–8.

[13] B. F. Cox, B. McMurdo, and V. R. Yarlagadda, “802.1 x authentication
technique for shared media,” Nov. 24 2009, uS Patent 7,624,431.

[14] C. Jeong, T. Ha, J. Narantuya, H. Lim, and J. Kim, “Scalable network
intrusion detection on virtual sdn environment,” in 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet), Oct 2014,
pp. 264–265.

[15] M. Monshizadeh, V. Khatri, and R. Kantola, “Detection as a service: An
sdn application,” in 2017 19th International Conference on Advanced
Communication Technology (ICACT), Feb 2017, pp. 285–290.

[16] K. Nam and K. Kim, “A study on sdn security enhancement using open
source ids/ips suricata,” in 2018 International Conference on Information
and Communication Technology Convergence (ICTC), Oct 2018, pp.
1124–1126.

[17] J. Kim and S. Shin, “Software-defined honeynet: Towards mitigating
link flooding attacks,” in 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W),
June 2017, pp. 99–100.

[18] M. A. Prado et al., “Análise experimental da botnet iot mirai.” 2018.
[19] M. Hamed, M. Fouda, B. ElHalawany, and A. S. Tageldien, “A novel

approach for resource utilization and management in sdn,” 12 2017.
[20] Ryu controller. [Online]. Available: https://osrg.github.io/ryu-book/en/

Ryubook.pdf

4th Workshop on Communication Networks and Power Systems (WCNPS 2019)

[21] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1093–1110.

[22] Hping7 nmap.
[23] B. Ops, “Denial-of-service attack–dos using hping3 with spoofed ip in

kali linux,” BlackMORE Ops. BlackMORE Ops, vol. 17, 2016.
[24] Open virtual switch reference. [Online]. Available: https://www.

openvswitch.org
[25] A. Gulenko, M. Wallschläger, and O. Kao, “A practical implementation

of in-band network telemetry in open vswitch,” 10 2018, pp. 1–4.

