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Abstract—Tactics, Techniques and Procedures (TTP)
are valuable information to cyber-security analysts.
However, they are mostly disseminated through un-
structured text. This work presents a proposal for
tackling this problem by using BERT models, a state-of-
the-art approach in Natural Language Processing. We
investigate the effect of some chosen hyperparameters
on the fine-tuning of the models. MITRE’s example sen-
tences are used to train (fine-tuning step) eleven BERT
models. The purpose is to find the best model and the
finest combination of hyperparameters for the task of
classifying TTPs according to the ATT&CK framework.
As a result, we observed that the best models presented
an accuracy of 82.64% and 78.75% on two datasets
tested, demonstrating the potential of the application of
BERT models in the complex task of TTP classification.
At last, we gather some insights from the misclassified
data that help better understand the dataset and how
the models manage and classify the proposed data.

Keywords—BERT, TTP, Natural Language Processing,
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I. Introduction

Tactics, Techniques and Procedures (TTPs) are es-
sential information to understand a cyber attack.
Though many cyber intelligence feeds focus on In-
dicators of Compromise (IOCs) and most traditional
security solutions are IOC based, this kind of data
lacks the attack context TTPs provide. Moreover, many
cyber attack campaigns have the ability to mutate
IOCs, using customized tools and never previously dis-
closed infrastructure, effectively escaping IOC based
protection [1]–[4]. Thus, understanding the attackers
behavior via TTPs becomes essential to defendants.

MITRE has created the ATT&CK framework, a knowl-
edge base of attackers’ behaviors describing known
TTPs [5]. Current version of ATT&CK for Enterprise in-
cludes 14 Tactics, 191 Techniques, 386 Sub-techniques
[6]. However, since TTP information is mostly pre-
sented as unstructured text within Cyber Threat Intel-
ligence (CTI) reports, finding and classifying behaviors
into those hundreds of possible labels remains a chal-
lenge.

To tackle this problem, researchers have resorted
to several techniques of Natural Language Processing
(NLP) [7]. There are multiple sources of CTI reports
and this information overload renders impractical for
the defendant to manually peruse every report to ex-
tract TTPs [1] [4] [8]–[10]. Automation is paramount
[11] [12] and many recent studies have combined ma-
chine learning techniques with NLP [13] [14].

Conneau et al [15] work on universal representation
of sentences demonstrated that, much like the success
it had in computer vision, transfer learning was also
suitable to NLP tasks. Vaswani et al [16] proposed the
Transformer architecture, a model based solely on self-
attention mechanism to represent inputs and outputs.

Leveraging the transfer learning technique and the
Transformer model, Devlin et al [17] proposed BERT
(Bidirectional Encoder Representations from Trans-
formers). This representation models use two steps,
pre-training and fine-tuning, to achieve state-of-the-
art results on a variety of NLP tasks, including text
classification. Prottasha et al [18] tested different rep-
resentation schemes (Word2Vec, GloVe, FastText and
BERT) and demonstrated that an adequately fine-tuned
BERT outperforms other approaches in many NLP
tasks, particularly sentiment analysis.

In spite of the evolution of the NLP field with the
application of machine learning models, cybersecurity
has not fully benefitted from these advances [19]. This
research goal is to find the best BERT model and
the finest hyperparameters for the task of mapping
TTPs to MITRE ATT&CK framework. To the best of our
knowledge, our work is the first to employ BERT to this
cyber text classification problem. The key contributions
of this research are: a) we apply state-of-the-art BERT
Transformer architecture to address the challenge of
classifying sentences into 253 of the most common
attack techniques and sub techniques tabulated in the
MITRE matrix; b) we conduct an experimental sweep
on different combinations of selected hyperparameters
for fine-tuning and evaluate their correlation with per-
formance; c) we identify the best settings and the best978-1-6654-7456-6/22/$31.00 ©2022 IEEE

https://orcid.org/0000
https://orcid.org/0000
https://orcid.org/0000


7th Workshop on Communication Networks and Power Systems (WCNPS 2022)

BERT models for unstructured text TTP classification
task.

The rest of the paper is structured as follows. Sec-
tion II provides a background on some related work
and the techniques used. In Section III, we discuss
the methodology and implementation of our solution.
Following that, we present and discuss the results of
our approach in Section IV. Finally, in section V, we
submit our conclusions and consider future work that
could derive from this.

II. Related Works

In the cybersecurity field much of the NLP research
concentrates on extracting IOCs from unstructured
text [8] [20], mining social media [21] [22] or amass
other cyber security related data [23] [10] [12]. One
of the main difficulties in using NLP techniques in the
cyber domain is the lack of consistent and annotated
datasets [24]. This dearth of data stymies further TTP
text classification research [1] [8] [9] [13] [14] [25].
Legoy et al [8] test multiple text representation meth-
ods with different multi-label classification models. The
best performance was achieved by the TD-IDF bag-of
words text representation method used in conjunction
with a Linear SVC classifier.

Husari et al [9] presented TTPDrill, an approach
employing TF-IDF method with a version of BM25 infor-
mation retrieval algorithm. TTP-Drill claims to achieve
averages of 84% precision and 82% recall. However,
later studies challenge that claim [8] [4]. TTPDrill’s
researchers later presented ActionMiner [26], an ap-
proach which employs the concepts of entropy and
mutual information (from Information Theory) on top of
some basic NLP techniques. Other similar works seek
for threat actions using a variety of techniques [12]
[27]. However, neither ActionMiner nor those other
researches map the threat actions to a standardized
TTP framework, such as MITRE ATT&CK.

Ayoade et al [4] uses a bias correction method and
confidence propagation to predict kill chain phases,
tactics and techniques present at a CTI report. KMM,
KLIEP and arulSIF methods are applied to estimate
the importance weight, which is passed to a SVM
classifier. You et al [1] propose the Threat Intelligence
Mining (TIM) framework, developing the Threat Con-
text Enhanced Network (TCENet). This tool groups sets
of three continuous sentences as candidate text for
TTP discovery. The authors limited the scope of their
research to the five most popular techniques and one
tactic from ATT&CK, obtaining good results.

Another relevant work is TRAM (Threat Report
ATT&CK Mapper), done by MITRE Corporation. This
tool applies Logistics Regression to predict techniques

for sentences. It uses MITRE Procedure Examples for
each technique as a training dataset. However, each
proposed classification should be manually reviewed by
a human analyst [28].

Following the recent trend of merging machine
learning with traditional NLP techniques, we use BERT
models to match cyber text sentences to its correspond-
ing TTP in ATT&CK framework. We work on sentence
level, similar to [1], [9] and [28], not on document level
like [4] and [8].

III. Methodology

This section describes our strategy to identify TTPs
from sentences, classifying them according to MITRE
ATT&CK. Figure 1 presents an overview of our pro-
posal. The first step is to prepare the data, by tok-
enizing and encoding the sentences to BERT format.
Next, we split the sentences into training, validation
and testing datasets using a stratification procedure to
ensure representation of all techniques in each dataset.
After that, we fine-tune 11 BERT models using the
training and validation datasets using initial hyper-
parameters derived from literature. We also perform
a hyperparameter search to seek for optimization. At
last, we use our fine-tuned models, with both initial
and optimized hyperparameters, to perform the classi-
fication task on the testing dataset and on a manually
annotated dataset and analyze the results.

The next subsections describe the data used and
further detail each of these steps.

A. MITRE’s dataset

Since the public release of ATT&CK framework in
2015, MITRE maintains a curated knowledge base with
information extracted from CTI reports and manually
annotated [3] [5]. This repository, at the time of this
writing, contains 10360 sentences (called “procedure
examples”) illustrating cyber-attack techniques (and
subtechniques).

Not all techniques are illustrated with these proce-
dures examples though. Of the 576 techniques, 466
have at least one example. We chose to work with
the most commonly seen techniques, the ones with at
least 5 sentences, since the machine learning approach
needs examples to learn. That reduces our scope to 253
techniques and subtechniques. With that definition, our
dataset is comprised of 9909 of the 10360 sentences,
effectively using 95.6% of the examples.

In MITRE’s repository, each sentence is labeled with
one technique or subtechnique. Considering this speci-
ficity, we tackled the problem of TTP classification us-
ing a multiclass approach. Each of the 253 techniques
and subtechniques will constitute one class.
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B. Tokenization, Encoding and Splitting

Another peculiarity of this dataset is that it is highly
imbalanced. While we limited the smaller classes to 5
elements, the largest one has 371. Class imbalance is
a common issue in textual datasets [29]. Some studies
demonstrate, however, that BERT deals competently
with imbalanced dataset and augmentation strategies
normally have limited to no effect on performance [24]
[30]–[32]. Nonetheless, as our dataset contain some
very small classes, we want to avoid the extreme case
were no sentence of one class falls into the training
dataset when randomly sampling.

After tokenizing and BERT-ready encoding each sen-
tence, we split the data into training, validation and
testing datasets with a 60:20:20 ratio. We use a strati-
fied sampling strategy to ensure that even the smaller
classes (5 samples) are represented in each of the
three datasets. After the splitting, we have training,
validation and testing datasets comprising 5945, 1982
and 1982 samples, respectively.

C. Models tested

We start by running a simple baseline model com-
prised of a combination of TF-IDF bag-of-words tok-
enization scheme with Linear Regression classification
model. The datasets are then processed using eleven
versions of BERT. Nine of those are of known pre-
trained BERT models: BERT base cased, BERT base
uncased, BERT Large cased, BERT Large uncased,
RoBERTa base, RoBERTa large, DistilRoBERTa, Dis-
tilBERT uncased and DistilBERT cased. We also run
two models pretrained on a corpus of cybersecurity
text: SecBERT and SecRoBERTa. The domain specific
pretraining includes data from CTI reports and has its
own enhanced vocabulary.

D. Initial hyperparameters

To define initial hyperparameters for fine-tuning, we
resort to some previous works as well as some experi-
mentation. Devlin et al [17] suggest some specifications

that should work fine across different tasks: batch
sizes of 16 or 32; learning rates of 5e-5, 3e-5 or 2e-5;
training for 2, 3 or 4 epochs. In their article about fine-
tuning, Sun et al [33] found batch size of 24, learning
rate of 2e-5, maximum sentence length of 128 and
4 epochs training to be reasonable settings for most
tasks. Jeawak et al [34] fine-tuned for domain specific
classification during 4 epochs with learning rate of 2e-
5, batch size of 16 and maximum length of 256.

Analysing MITRE’s sentences, we find that the
largest one is 136 tokens long. We set the max_length
parameter to 256 to support that and account com-
fortably for longer sentences in CTI reports. Every
sentence is padded or truncated to this fixed limit.
Considering our generous max_length and the high
number of classes we have (253 labels), we set the
batch size to 16, to ensure our training steps will fit into
GPU memory available. Our large number of classes
should also make for slower convergence, so we fine-
tune every model for 30 epochs. We use the suggested
2e-5 learning rate in our initial settings.

E. Hyperparameters search

We conduct a brief hyperparameter search to in-
vestigate how some hyperparameters affect accuracy
on a model and seek possible improvements in our
settings. We chose to examine learning rate and batch
size parameters. Learning rate is, arguably, the most
important parameter to fine-tune [35]–[37], whereas
batch size effect on accuracy is yet to be fully under-
stood [38]–[40].

Considering all the aforementioned theoretical and
empirical evidence, we opt to test learning rates of 1e-
4, 5e-5, 2e-5 and 1e-5 and batch sizes of 8, 16, 24 and
32. We sweep through all 16 possible combinations.
After discovering the best settings, we run the models
again with these values to observe the impact on
performance.

Figure 1: Summarized workflow for TTP classification proposal.
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F. Manually annotated sentences

We also examine how the fine-tuned models per-
forms in data not from MITRE’s repository. We make
predictions on an annotated dataset consisting of 80
sentences manually extracted from CTI reports for this
inference task. Those sentences were retrieved from
18 reports from 15 different source organizations to
ensure language and writing style variety.

IV. Results and Discussion

We use accuracy to evaluate the performance. Since
there is some imbalance but no strong dominance of
classes in MITRE’s base (the largest class comprises
only 3.58% of all samples) and our classification prob-
lem does not value one class over other, accuracy
provide good insights into overall performance [41].
This metric is defined as the correct predictions divided
by the total predictions, as in Equation 11:

accuracy =
TP + TN

TP + FN + TN + FP
(1)

The baseline TF-IDF/Linear Regression model pro-
vides an accuracy of 0.6051 on testing dataset and
0.4771 on inference dataset. We fine-tuned the eleven
versions of BERT on MITRE’s knowledge base. Fig. 2
below illustrates the models behavior by showing accu-
racy and training loss curves for BERT Base Uncased
trained for 30 epochs:

Figure 2: BERT Base Uncased accuracy and training loss curves

(learning rate = 2e-5 and batch size = 16).

The curves present the expected machine learning
pattern, with accuracy plotting an ascending curve
and training loss decaying, demonstrating the model
trained correctly. Table I presents the accuracy ob-
tained against the testing dataset, which consists of
a detached subset of the MITRE base (not seen by
the model during training), and against the set of
annotated sentences we use for inference.

1TP=True Positive; TN=True Negative; FN=False Negative;
FP=False Positive.

Table I: BERT models accuracy on testing and inference datasets

with initial hyperparameters.

Models Testing Dataset Inference Dataset

BERT Base Uncased 0.7719 0.6375
BERT Base Cased 0.7906 0.7125

BERT Large Uncased 0.8143 0.7250
BERT Large Cased 0.8032 0.7875

RoBERTa Base 0.7951 0.7000
RoBERTa Large 0.8264 0.7750

DistilRoBERTa Base 0.7931 0.6500
DistilBERT Base Uncased 0.7840 0.7125

DistilBERT Base Cased 0.7729 0.6750
SecBERT 0.7830 0.7000

SecRoBERTa 0.7633 0.7000

The best performing models were RoBERTa Large,
with an accuracy of 0.8264 on the testing dataset,
and BERT Large Cased, with an accuracy of 0.7875
on the inference dataset. The three Large models had
the three best accuracy results for both datasets. This
result is expected because the size of the BERT pre-
trained model affects performance, albeit not drasti-
cally [17].

The table also shows that predictions performance
on the inference data is lower than on the testing
dataset. We assess this difference is due to some
longer, more complex sentences in CTI reports than
in MITRE’s set of example procedures. Different orga-
nizations and analysts have distinct report conventions
and writing styles, resulting in a more heterogeneous
dataset.

BERT achieves very good overall performance on the
TTP classification problem. Comparing our best mod-
els to the baseline TD-IDF/Linear Regression model,
we observe an uptick of 22.13 percentage points on
accuracy for the testing dataset and 31.04% for the
inference data. Comparison between our results and
preceding works is somewhat difficult because similar-
ities are limited by distinct initial assumptions.

You et al [1] TCENet classifies TTPs with an average
accuracy of 94.1%. However, TCENet testing involved
only the five most popular techniques and one tactic.
Our study applied BERT models to classify 253 classes
of TTPs. Husari et al [9] claim to 84% precision and
82% recall come under significantly different premises.
Their approach do not employ machine learning and
rely on a previously built ontology, which should be
manually rebuilt with every update to the ATT&CK
Framework.

In search of optimization on the fine-tuning, we
conduct a hyperparameter sweep of 16 possible com-
binations. Fig. 3 show our results:

For our experimental architecture, we found that
learning rate had a positive correlation of 0.670 to the
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Figure 3: BERT Base Uncased hyperparameters sweep.

target accuracy, meaning higher learning rates should
likely produce better results. Batch size, however, did
not have a significant correlation (-0.283). The best
combination of hyperparameters was batch size of 24
and learning rate of 1e-4. However, when applying this
learning rate our experiment faced the catastrophic
forgetting effect. This phenomenon consists of the in-
ability of the neural network to retain old information
when presented with new one. It is a common prob-
lem in machine learning applications for NLP. Higher
learning rates setups are more prone to catastrophic
forgetting [33] [42]. In our experiment, all three of our
Large models, when set with the higher learning rate
used (1e-4), incurred in catastrophic forgetting.

Table II bellow show the results obtained by each
model when fine-tuned with the optimized hyperparam-
eters.

Table II: BERT models accuracy on testing and inference datasets

with optimized hyperparameters (learning rate = 1e-4; batch size =

24). CF = Catastrophic Forgetting.

Models Testing Dataset Inference Dataset

BERT Base Uncased 0.7996 0.7000
BERT Base Cased 0.7840 0.7250

BERT Large Uncased CF CF
BERT Large Cased CF CF

RoBERTa Base 0.8007 0.6875
RoBERTa Large CF CF

DistilRoBERTa Base 0.8012 0.7538
DistilBERT Base Uncased 0.7825 0.7625

DistilBERT Base Cased 0.7936 0.7125
SecBERT 0.7926 0.6750

SecRoBERTa 0.7845 0.7000

Comparing these results to the initially obtained (Ta-
ble 2) a slight improving tendency is noted in the eight
models that did train. The “distilled” models (Distil-
BERT Cased and Uncased and DistilRoBERTa) showed
the highest improvement. Nevertheless, none of these
models improved enough to topple the performance
achieved by the Large models with our initial empirical
parameters. Best accuracies for testing and inference

dataset was obtained with RoBERTA Large (0.8264)
and BERT Large Cased (0.7875), respectively, using a
learning rate of 2e-5 and batch size of 16.

At last, we manually examine the misclassifications
from our models. This brief qualitative assessment aims
at better understanding where is the model making
mistakes and discerning some of the reasons behind
those errors. Table III shows a few selected misclas-
sified sentences along with the predicted and correct
labels:

Sentence 1 illustrates an interesting yet uncommon
case: the predicted label is more precise than the
manually annotated one. Both labels are similar: the
predicted one is a technique and the annotated is a
subtechnique of it. The sentence alone does present
enough elements so that the machine learning system
could classify it into the subtechnique, though the
analyst might have done it considering some context
outside of the data in the base.

Sentence 2 reports a case in which both the cor-
rect and the predicted label are subtechniques of the
same technique. We also observe that the attacker
mixed both subtechniques, making both labels correct.
Sentences 3 and 4 present a common situation: both
labels are adequate, though, in this case, they repre-
sent different techniques. This happens because some
sentences actually portray more than one technique or
subtechnique.

Sentence 5 goes a little further: not only both labels
are correct, but there is arguably a third possibil-
ity: Exfiltration Over C2 Channel (T1041). This shows
that, though MITRE’s database organization leads to
a multiclass modeling, the data itself also allow for a
multilabel approach.

V. Conclusions and Future Work

Engineering cyber resilience requires that the best
security models are employed to alleviate the burden
of cyber analysts [10]. Our work contributes to this
intent by harnessing the power of NLP state-of-the-
art BERT architecture to the manually cumbersome
TTP classification problem. We used MITRE’s labeled
sentences base and ran 11 different BERT models, ob-
taining 82.64% accuracy on test dataset with RoBERTa
Large model and 78.75% on inference dataset with
BERT Large Cased.

We investigated learning rate and batch size hyper-
parameters effects on accuracy for potential optimiza-
tion. Using these optimized settings, we run our pre-
trained models again. Low correlation between batch
size and accuracy was found. Learning rate, on a dif-
ferent note, produces some improvement on accuracy.
The tradeoff is assuming the risk of possibly incurring
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Table III: Example of misclassified sentences with correct and predicted labels.

Sentence Correct Label Predicted Label

1 MuddyWater has performed credential dumping
with LaZagne.

OS Credential Dumping: Cached Do-
main Credentials (T1003.005)

OS Credential Dumping (T1003)

2 SHIPSHAPE achieves persistence by creating a
shortcut in the Startup folder.

Boot or Logon Autostart Execution:
Shortcut Modification (T1547.009)

Boot or Logon Autostart Execution:
Registry Run Keys / Startup Folder
(T1547.001)

3 MobileOrder has a command to upload informa-
tion about all running processes to its C2 server.

Process Discovery (T1057) Exfiltration Over C2 Channel (T1041)

4 JPIN can use the command-line utility cacls.exe
to change file permissions.

Command and Scripting Interpreter:
Windows Command Shell (T1059.003)

File and Directory Permissions Modi-
fication: Windows File and Directory
Permissions Modification (T1222.001)

5 IcedID can inject itself into a suspended
msiexec.exe process to send beacons to C2 while
appearing as a normal msi application.

System Binary Proxy Execution:
Msiexec (T1218.007)

Process Injection (T1055)

in catastrophic forgetting, which we observed in the
Large models using the higher learning rate. We also
proceeded a qualitative assessment of the misclassifi-
cations, learning that some of the supposed errors were
actually reasonable predictions but not accounted for
due to the multiclass nature of the annotated dataset.

Our proposed work shows that BERT is a powerful
tool to help automate mapping of sentences to MITRE
ATT&CK TTP framework. To the best of our knowledge,
our work is the first to use BERT transformers architec-
ture to the cyber domain specific TTP text classification
problem. In the future, it is possible to extend this
approach to a multilabel modeling, tackling the issue of
longer sentences with multiple TTP descriptions. Also,
further investigation can be done into the effects of
different parameters on accuracy or other metric of
choice.
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