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Abstract—The use of cryptography techniques to
guarantee confidentiality, authenticity and integrity of
sensitive data has become mandatory. Besides, advance-
ments in quantum computers are gradually posing a
threat to public key encryption technology. Without
proper security measures, fraudsters may easily gain
access to one’s personal and sensitive data. The result
of the third round of NIST’s Post-Quantum Cryptog-
raphy (PQC) process for standardization of public-key
cryptography systems brought CRYSTALS-Kyber as the
first mechanism selected for key encapsulation. The aim
of this study is to provide the specification of a re-
configurable CRYSTAL-Kyber accelerator using High-
Level Synthesis (HLS) technology. Our architecture re-
quires about 2200 LUTs, 3001 FFs and 28 DSP on a low-
cost Zynq FPGA (XC7Z020-1 CLG400C). The total time
spent by the accelerator in a key exchange simulation is
approximately 0.84 ms, operating at 100 MHz, and the
estimated power consumption in this process is 1.695W.

Keywords—Post-Quantum Cryptography; CRYSTALS-
Kyber; accelerator; FPGA; HLS.

I. Introduction

Cryptography techniques have become mandatory
in the last couple of years, as the use of connected
digital services have also increased substantially in the
same time period. The use of cryptography techniques
and protocols to guarantee confidentiality, authenticity
and integrity of sensitive data is crucial [1]. The stan-
dardization of public-key cryptography schemes has
enabled their implementation on various devices, such
as computers, tablets and smartphones, allowing for
secure communication applications [2].

However, quantum computers are gradually posing a
threat to public key encryption technology, which is the
main cryptography system used to date. For instance,
RSA (Rivest–Shamir–Adleman) and Elliptic Curve Cryp-
tography are not quantum-resistant [3], since the un-
derlying mathematical operations (e.g. factoring of
large integers and the discrete logarithm problem, that
are the basis of these systems) are difficult to solve on
conventional computers, but can be easily solved by a
quantum computer [4].

Considering the time and effort required for the
development, standardization and transition to post-
quantum cryptography (PQC) technology, NIST (Na-
tional Institute of Standards and Technology) began
in December of 2016 a public process to establish
a new standard for public-key cryptography, which
purpose is to assure secure new algorithms for digi-
tal signatures and key encapsulation in classical and
quantum computers, as well as being compatible with
existing communication protocols and networks. In July
2022, after three rounds of analysis and evaluation, the
first four algorithms selected for standardization were
released, being the CRYSTALS – Kyber, the only key
encapsulation mechanism chosen [5].

This works presents a FPGA co-processor for
Crystals-Kyber, designed and implemented using Xilinx
Vitis High-Level Synthesis (HLS) tool, which enables
fast and efficient development of hardware accelera-
tors with a high degree of flexibility and performance.
This HLS tool makes it possible to synthesize a spec-
ification in Register Transfer Level (RTL) architecture
using VHDL or Verilog. For this paper, we chose Verilog
as the synthesis language of CRYSTALS-Kyber C/C++.

Our paper is organized as follows: Section II
describes the state-of-the-art related works. The
CRYSTALS-Kyber Key Encapsulation Mechanism and
the implemented accelerator is presented in Section
III. Experimental results are presented in Section IV.
Finally, Section V concludes and presents ideas for
future work.

II. Related Works

Studies on post-quantum cryptographic algorithms
have intensified in recent years and the algorithms that
have passed through the NIST contest rounds have
become even more in evidence by researchers.

The pure hardware implementations, such as in
Huang [6], Xing [7], Bisheh-Niasar [8] [9] and Guo
[10], proved to be more efficient since they presented
a better performance with a shorter execution time
compared to the implementations in software and in
hardware/software codesign. Among these implemen-978-1-6654-7456-6/22/$31.00 ©2022 IEEE
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tations, the architecture proposed by Bisheh-Niasar [9]
has the best value (0.47) of area x time ratio compared
with the others, while Huang [6] has the worst value
(192.89). Xing [7] and Guo [10] offer reasonable exe-
cution time with less use of resource.

Although they do not present the best performance
or architecture, studies carried out with hardware/soft-
ware codesign approaches or using High-Level Syn-
thesis (HLS) tools, like in Zhao [11] and Basu [12],
show to be more flexible and easier to develop, while
also presenting better execution time than software
centered implementations.

As polynomial multiplication operations have a high
computational and time cost for post-quantum algo-
rithms based on lattices, such as Kyber, efforts to
optimize implementations of the Number Theoretic
Transform (NTT) are carried out in several studies [9]
[13] [14].

Our accelerator brings an implementation in HLS of
the polynomial multiplication function, based on NTT,
with the purpose of optimizing the execution of the
algorithms of generation, encapsulation and decapsu-
lation of keys. Further details are presented in Section
IV, including comparison with previous works.

III. CRYSTALS-Kyber Mechanism and Accelerator

This section briefly describes Kyber, the first
quantum-resistant key encapsulation mechanism
(KEM) selected for standardization by NIST [5], and
then details the implementation of the proposed
accelerator.

A. Kyber Mechanism

Kyber is part of the Component of the Cryptographic
Suite for Algebraic Lattices (CRYSTALS) package. It
is a key encapsulation mechanism (KEM) based on
Module-Learning-With-Errors (MLWE) and had its orig-
inal design presented in [15].

A key encapsulation mechanism is useful when there
are the necessity to share symmetric keys securely
between two parties. It can be seen as similar as Public
Key Encryption scheme. The difference is that in KEM
the symmetric key is derived by a Key Derivation Func-
tion, such as a cryptographic hash, using a random
element, eliminating the need for padding of traditional
public key systems.

Kyber is constructed by a CPA-Secure Public Key
Encryption (PKE) scheme that, with the application of
a variant [16] of the Fujisaki-Okamoto transform [17],
results in a CCA-Secure KEM, having as main algo-
rithms the key generation (Kyber.CCAKEM.KeyGen),
encapsulation (Kyber.CCAKEM.Enc) and decapsulation
(Kyber.CCAKEM.Dec) [18].

This mechanism is presented in three versions, Ky-
ber512, Kyber768 and Kyber1024, which result in dif-
ferent post-quantum security levels according to the
adopted parameter set. In the supporting documenta-
tion [18] it is possible to find the final version of the
algorithms that make up Kyber KEM, with the design
modifications and changes in the parameter values that
were carried out during the NIST PQC Project rounds.

Figure 1 shows a simple example of a key exchange
protocol using Kyber KEM functions. Alice uses the key
generation algorithm to generate her public (pk) and
private (sk) key pair, sending pk to Bob. Bob performs
the key encapsulation algorithm that takes Alice’s pub-
lic key as input parameter and returns a ciphertext (c)
and key (K). Alice receives the ciphertext from Bob and
she executes the key decapsulation algorithm with the
input parameters c and sk and obtains as an output the
same key K that Bob has.

Figure 1: Key Exchange Protocol between Alice and
Bob using Kyber.CCAKEM algorithms

B. Kyber Accelerator Architecture

Our Kyber accelerator architecture was designed us-
ing Xilinx Vitis High-Level Synthesis (HLS) tool (version
2022.1), targeting a low-power XC7Z020-1CLG400C
Xilinx FPGA chip that embeds an ARM Cortex-A9 mi-
croprocessor. This RTL architecture results from the
HLS synthesis and implementation of the proposed
code executed by Vitis HLS, without optimizations. Ver-
ilog was the hardware description language selected to
model the RTL architecture.

The co-processor architecture, showed in simplified
form in Figure 2, uses AXI (Advanced eXtensible Inter-
face) protocol, allowing the ARM processing system to
communicate with the proposed co-processor. The in-
terface is automatically produced by the HLS compiler,
as shown later in Listing 1.
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Figure 2: Kyber Architecture and Interface

The module "ps7_axi_periph" allows the connec-
tion and arbitration of the periphery by the process-
ing system and "axi_mem_intercon" module enables
the access to the external memory. Thus, the first is
used for handling simple control signals and memory-
mapped register data, while the latter is used for fast
data transfer between the co-processor BRAM’s and
the external DDR memory.

C. Kyber Accelerator HLS Specification

The proposed accelerator implementation is based
on the official reference code available in the public
git repository [19] with the necessary modifications to
enable the generation of the RTL architecture by HLS
compiler.

The snippet presented in Listing 1 shows the main
Kyber accelerator specification in HLS, while the whole
specification is available in [20]. It takes as input
parameters the addresses of two vectors of polynomi-
als, i.e. a and b, and calculates the polynomial multi-
plication as specified in the reference code. For the
proposed multiplication to be performed, it is neces-
sary that all elements of the vector are in the NTT
domain. The value returned by the accelerator into
the address of polynomial r results from applying the
Barrett reduction to all coefficients of the polynomial
resulting from the multiplication.

Listing 1: CRYSTALS-Kyber Polynomial Multiplication
Vitis HLS Implementation

1
2 #define KYBER_N 256
3 #define KYBER_K 3
4
5 void kyber_accelerator(volatile poly *r, volatile const

polyvec *a, volatile const polyvec *b)
6 #pragma HLS INTERFACE mode=m_axi depth=1 port=r

offset=slave
7 #pragma HLS INTERFACE mode=m_axi depth=1 port=a

offset=slave
8 #pragma HLS INTERFACE mode=m_axi depth=1 port=b

offset=slave
9 #pragma HLS INTERFACE mode=s_axilite port=r

bundle=CONTROL
10 #pragma HLS INTERFACE mode=s_axilite port=a

bundle=CONTROL
11 #pragma HLS INTERFACE mode=s_axilite port=b

bundle=CONTROL

12 #pragma HLS INTERFACE mode=s_axilite port=return
bundle=CONTROL

13
14 unsigned int i,j;
15 poly t;
16 poly r_hls;
17 polyvec a_hls;
18 polyvec b_hls;
19
20 //copy data into the accelerator
21 for (i = 0 ; i < KYBER_K_hls ; i++) {
22 for (j = 0 ; j < KYBER_N_hls ; j++) {
23 #pragma HLS PIPELINE
24 a_hls.vec[i].coeffs[j] = a->vec[i].coeffs[j];
25 b_hls.vec[i].coeffs[j] = b->vec[i].coeffs[j];
26 }
27 }
28
29 /********** polynomial multiplication **********/
30
31 poly_basemul_montgomery_hls(&r_hls, &a_hls.vec[0],

&b_hls.vec[0]);
32
33 for(i=1;i<KYBER_K_hls;i++) {
34 poly_basemul_montgomery_hls(&t, &a_hls.vec[i],

&b_hls.vec[i]);
35 poly_add_hls(&r_hls, &r_hls, &t);
36 }
37
38 //Barrett reduction
39 poly_reduce_hls(&r_hls);
40
41 /************************************************/
42
43 //copy computed data back to main processor
44 for (j = 0 ; j < KYBER_N_hls ; j++) {
45 #pragma HLS PIPELINE
46 r->coeffs[j] = r_hls.coeffs[j];
47 }
48 }

Lines 6-12 specifies the communication protocol def-
initions established between the HLS design and exter-
nal components. The m-axi interface allows fast bursts
of data into and out of the FPGA’s Block RAM memory
(BRAM), as shown in Lines 21-27 and Lines 44-47.
This interface follows the AXI standard and allows
data transfer in bursts of up to 256 cycles with just a
single address phase. This same interface returns the
results of the polynomial multiplication calculated by
the function from BRAM to the AXI master interface.
The "poly_basemul_montgomery_hls" is the function
that calculates the multiplication of two polynomials in
NTT domain, while the "poly_reduce_hls" function, in
line 39, applies Barrett reduction to all coefficients of
a polynomial. These functions follow the code available
in [19] with the suffix hls to indicate the functions that
have been implemented in FPGA.

IV. Experimental Results

This section presents performance, circuit-area and
power consumption results of the Kyber accelerator,
when compared with the part of the system that is
executed by the ARM Cortex-A9 processor. The perfor-
mance results were obtained when using the accelera-
tor for the processing of the Kyber768 version, that has
estimated 128-bit post-quantum security. Circuit-area
and performance results are provided by the synthesis
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process of Xilinx Vitis HLS tool (v2022.1) targeting the
XC7Z020-1CLG400C Xilinx FPGA (Pynq-Z1).

A. Performance

Table I shows the average values related to latency,
interval and the total execution time, in clock cycles,
of the accelerator. As the proposed design was syn-
thesized at 100 MHz, the total time spent processing
the accelerator was approximately 0.84 milliseconds.
This value corresponds to the time spent during a key
exchange simulation, being the sum of all the times
the accelerator was executed during one execution
of Kyber.CCAKEM.KeyGen(), Kyber.CCAKEM.Enc() and
Kyber.CCAKEM.Dec().

Table I: Results of accelerator performance

RTL
Latency

(clock cycles)
Interval

(clock cycles)
Total execution time

(clock cycles)
Verilog 6983 6983 83804

B. Circuit-area

The summary of resources used during the synthesis
process performed by Vitis HLS is shown in Table II.
Given the information provided by the reports it is
possible to observe that there is still room to implement
more operations into the FPGA logic.

Table II: FPGA Resources utilization

Resource Available Utilization %
LUT 53200 2200 4.14

LUTRAM 17400 215 1.24
FF 106400 3001 2.82

BRAM 140 3.50 2.50
DSP 220 28 12.73

As expected, the DSP slices is the resource with
the highest percentage of use (12.73%), which shows
that the HLS compiler was able to take advantage
of DSP slices to accelerate the polynomial multiplica-
tions. Also, as expected, the LUTRAM is the least used
(1.24%) resource, as most of the design implemented
in FPGA is focused in accelerating polynomial multipli-
cations and handles small portions of data.

C. Power consumption

Using Vivado HLS vectorless power analysis it was
possible to estimate the power consumption of the
implemented design and the power analysis of the
project is given in Table III. This analysis shows that
the estimated total power consumption is about 1.695
W during the key exchange simulation using Kyber768
algorithms.

The power consumption related to the polyno-
mial multiplication functions implemented in the pro-
grammable part of the FPGA can be interpreted as

the sum of the power consumed by the dynamic com-
ponents clocks, signals, logic, BRAM and DPS. Thus,
the accelerator consumed approximately 0.03 W of
power. The highest power consumption (1.527 W) was
by the ARM Cortex-A9 processor, defined as PS7, for
the execution of the other functions of the algorithms
that were not synthesized in the accelerator.

Table III: Power consumption of implemented design

Component Power (W)

Dynamic

Clocks 0.005
Signals 0.006
Logic 0.003
BRAM 0.003
DSP 0.014
PS7 1.527

Static - 0.137
Total - 1.695

D. Comparison with related works

Table IV shows a comparison of our results with
related works. In addition to our work, only Basu
[12] used HLS as a tool for RTL design development.
Their work is implemented using the Kyber512 version
parameters and uses almost 900x more LUTs and 65x
more FFs than our work, but they had implemented all
operations related to encapsulation and decapsulation
of keys.

Table IV: Comparison with previous works

Related
Works

Function HLS LUT FF DSP BRAM
Freq

(MHz)
[6] Enc / Dec No 110260 - 292 202 155
[7] KeyGen / Enc / Dec No 7412 4644 2 3 161
[8] KeyGen / Enc / Dec No 16000 6000 9 16 115
[9] NTT No 801 717 4 2 222
[12]2 Enc / Dec Yes 1977896 194126 - - -
[13] NTT / PM1 No 9508 - 16 35 172
[14] NTT / PM1 No 5181 4833 16 - 227
Our PM1 Yes 2200 3001 28 3.5 100

1 Polynomial Multiplication
2 Kyber512 version

Xing [7] and Bisheh-Niasar [8] present a pure hard-
ware implementation for all main CRYSTALS-Kyber
algorithms. Between the two works, Xing [7] consumes
less resources of area circuit, with the consumption
of LUTs and FFs being approximately 3.4x and 1.5x
higher than our results. Their implementation uses
less DSP and BRAM resources than our work, that
are a hardware/software co-design proposal, with part
of the algorithms running on FPGA and part on ARM
processor.

In [9], Bisheh-Niasar proposes a Number Theoretic
Transform optimization that uses low resources of a
Artix-7 platform, while Yaman [13] and Ma [14] have
the NTT and polynomial multiplication functions in
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their implementations. Our co-processor initially brings
the implementation of the polynomial multiplication
function, which makes it difficult to directly compare
the results with the other works, as the results are
not from the separate operations. In future work, more
functions, like NTT, should be implemented in our co-
processor and optimized using HLS tools.

V. Conclusions and Future Work

The evolution in the development of quantum com-
puters is a threat to the cryptography used in several
current protocols, making it necessary to evolve to
quantum cryptography to ensure the continuity of data
security.

In this paper, an accelerator for the polynomial
multiplication for the CRYSTALS-Kyber Post-Quantum
Cryptography algorithm is presented. The accelerator
is synthesized for XC7Z020-1CLG400C Xilinx (Pynq-Z1)
FPGA using High Level Synthesis tool to translate C
specification to Register Transfer Level architecture in
Verilog.

The results showed that the use of resources by
the accelerator was low, with the DSP slice being the
resource with the highest percentage of use (12.73%).
This makes it possible to expand the use of the FPGA
to implement other functions that can speed up the
execution of Kyber, the first algorithm selected for stan-
dardization by NIST. The time taken for the accelerator
to run during a key exchange simulation was 0.84 mil-
liseconds and the estimated power consumption was
only 0.03 W.

Our future work will focus on optimizing the poly-
nomial multiplication function and also implementing
in hardware the functions needed to perform the NTT
operations.
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