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Abstract: Intrusion Detection Systems (IDS) still prevail as an important line of defense in modern
computing environments. Cloud environment characteristics such as resource sharing, extensive
connectivity, and agility in deploying new applications pose security risks that are increasingly
exploited. New technologies like container platforms require IDS to evolve to effectively detect
intrusive activities in these environments, and advancements in this regard are still necessary. In this
context, this work proposes a framework for implementing an IDS focused on container platforms
using machine learning techniques for anomaly detection in system calls. We contribute with the
ability to build a dataset of system calls and share it with the community; the generation of anomaly
detection alerts in open-source applications to support the SOC through the analysis of these system
calls; the possibility of implementing different machine learning algorithms and approaches to detect
anomalies in system calls (such as frequency, sequence, and arguments among other type of data)
aiming greater detection efficiency; and the ability to integrate the framework with other tools,
improving collaborative security. A five-layer architecture was built using free tools and tested in a
corporate environment emulated in the GNS3 software version 2.2.29. In an experiment conducted
with a public system call dataset, it was possible to validate the operation and integration of the
framework layers, achieving detection results superior to the work that originated the dataset.

Keywords: IDS; machine learning; autoencoder; system call; container; SOC; cybersecurity

1. Introduction

The use of containers and other tools associated with Development and Opera-
tions (DevOps) has caused a cultural shift in the way IT teams work in the corporate
environment [1]. To meet the needs resulting from this new process of building, deploying,
and managing the life cycle of applications, container technology has grown in adoption not
only among large cloud providers, but also in various companies and government agencies.
Tools for task management and automation have also been introduced for the orchestration
of a massive volume of containers running on multiple computers distributed in clusters
with great computational power [2]. Thus, this change that ranges from the application
development cycle to the technological infrastructure that supports this operation has
made institutions adapt to become true providers of private cloud, which according to [3],
provide services that have essential characteristics such as on-demand self-service; broad
network access; resource pooling; rapid elasticity; and measured service.

Malware refers to a code segment crafted with the intention of inflicting damage upon
or undermining the operations of a computer system. It serves as a broad term encom-
passing viruses, spyware, trojans, adware, and various other forms of malicious code [4].
According to IBM’s X-Force Threat Intelligence Index 2022 security report, malware is
shifting its target from generic Linux systems to Docker containers and other container
platforms [5]. In the ENISA Threat Landscape 2022 threat report, it was observed that the
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advent of COVID-19 has accelerated the adoption of cloud services in support of organiza-
tional business processes. As cybercriminals follow technology trends, it is not surprising
that they are targeting cloud environments [6]. Furthermore, the same report states that
attack vectors for cloud environments include the exploitation of misconfigured container
images as well as misconfigured Docker containers and Kubernetes clusters. Another study
published by [7] demonstrated that on average, over 180 vulnerabilities were found in
versions of official and community container images hosted on DockerHub, one of the
main repositories for container images available on the Internet. In addition, due to the
sharing of resources on the same host operating system, the attack surface on hosts running
multiple containers is expanded [2].

A computer system intrusion refers to any series of actions aimed at compromising
the integrity, confidentiality, or availability of a resource [8]. By monitoring the events
occurring in a computer system or network, an Intrusion Detection System (IDS) searches
for signs of possible incidents that may be caused by malware, attackers gaining unau-
thorized access to systems from the Internet, or authorized users of systems who misuse
their privileges [9]. IDS have been employed to ensure an adequate level of security for
computational environments and are an important source of information for the Security
Operations Center (SOC) team. However, with the evolution of these environments and
the use of new technologies, security flaws, threats, and risks of attacks targeting these
technologies emerge as new challenges for intrusion detection. In this sense, approaches
focused on container platforms have been neglected and advances in this context are still
sparse [10–12]. Moreover, the high computational cost of host-based intrusion detection
remains a challenge in the face of the large volume of system calls generated [13]. Addition-
ally, the main known datasets have numerous deficiencies such as obsolescence due to age,
lack of volume, absence of complementary data, and most are not focused on container
system calls [14–18]. Finally, False Positive Rate (FPR) and Detection Rate (DR) need to be
improved in host-based intrusion detection systems based on system calls [13,19].

Given this scenario, cybersecurity precautionary measures are necessary and require
network administrators and security teams to propose current solutions to detect and
remediate possible security breaches in a heterogeneous and constantly evolving com-
putational environment. In this work, a framework containing a reference architecture
for implementing a HIDS (Host-based Intrusion Detection System) focused on container
platforms is proposed. The choice to use a HIDS architecture (rather than antivirus) is
due to its non-invasive approach in containers, as it assesses the normality or abnormality
of the communication between the container and the operating system through system
calls. We aimed (1) to reduce the processing overhead caused by intrusion detection on the
nodes of a Kubernetes cluster; (2) to develop a reference architecture for implementing a
distributed HIDS targeting container orchestration platforms with free or open-source tools;
(3) to enable the generation of datasets with system calls from containerized applications;
and (4) to provide alerts for SOC decision-making in the event of anomalies in containerized
applications detected through machine learning techniques.

It should be noted that, as an Intrusion Detection System, no automated actions are
taken when an alert occurs. Therefore, as an improvement to the framework, automated
response actions can be developed to interrupt the propagation and continuation of an
attack in the containerized environment. Additionally, an anomaly in a sequence of system
calls invoked by a container does not provide high-level information that immediately
leads to the origin of the access causing such anomaly in the application. Moreover, it is
also important to state that a trained machine learning model for anomaly detection is
typically specific to the behavior of a single application. Therefore, if multiple applications
are desired to be monitored, a specific machine learning model must be trained and used
for the behavioral analysis based on system calls for each application.



Appl. Sci. 2023, 13, 9301 3 of 28

2. Related Works

Over the last years, several studies have been conducted aiming at improving Intrusion
Detection Systems and the security of cloud computing environments. However, many
challenges still lack a definitive solution and require advances that address the existing
gaps in this research field. Due to the ability to detect new attacks by anomaly-based
IDSs, the state-of-the-art literature on anomaly detection techniques used in HIDSs will be
addressed in this work.

In the literature review works [16,20], as well as in the intrusion detection study [21],
it was found that current cloud environment IDSs suffer from low Detection Rate (DR),
high False Positive Rate (FPR), and False Alarm Rate (FAR), as well as operational costs.
According to [20], one of the main limitations of current intrusion detection technology
is the need to reduce the FAR so that security teams are not confused with this type of
information. According to [16], the evolution of malware and the increasing sophistication
of attacks aimed at circumventing existing protection mechanisms represent a critical
challenge in the design and implementation of IDSs. In accordance with [21], the detection
of zero-day attacks, True Negative Rates (TNR) and FPR, computational overhead, and
real-time detection remain a problem for IDSs. Thus, ref. [21] highlights that it is important
for researchers to continue working to develop better systems and algorithms to minimize
the effects of these problems, as well as ensuring good performance. Similarly, ref. [15]
emphasizes that research to optimize IDSs for increased security and reduced overhead
is necessary.

Corroborating the understanding of [15,20,21] states that the main disadvantage of
anomaly detection is precision, notably, these techniques suffer from a higher number of
false alarms. Ref. [13] also highlights that speed and accuracy in detection are generally
difficult to balance well. Another aspect raised by [13,17] is that the performance evaluation
metrics of techniques used in many studies are not consistent. In other words, different
metrics and datasets are used, making it difficult to compare results between studies since
there is no standardization.

In the literature review article on system call-based HIDS, ref. [13] does not specifically
address the intrusion detection scenario in container environments. However, important
contributions and directions can be obtained from the study. Among them, a discussion on
the main limitations and indications of future work in this research area are raised. As the
main research trends in the context of HIDS, ref. [13] lists the following issues: reducing
FAR, improving DR, and enhancing collaborative security.

Regarding container environments, ref. [10,11] state that intrusion detection has been
widely used in multiple contexts, however, its application to containers is still sparse and
has been neglected. The same observation is highlighted by [12], who states that while
many IDSs have been introduced to ensure the security of VM-based cloud environments,
few efforts have been directed towards container security in the cloud. According to [22],
the dynamic nature of the development and operation of containerized applications makes
it difficult to secure these environments. Thus, ref. [22] considers the development of
intrusion detection systems with ML techniques for active container detection and analysis
systems as an area for future research.

In two studies, [23,24], published by the same authors, it was demonstrated that
factors such as the difficulty of altering a container to monitor it, especially when critical
applications are running, make an HIDS the most appropriate detection system for con-
tainers. Additionally, multi-tenancy characteristics of container environments, where the
kernel of the same OS is shared by multiple containers, make the host a potential target for
attacks. As a result of these studies, an HIDS was implemented to detect anomalies in the
behavior of containers by monitoring the system calls between the container process and
the host kernel. To do so, the technique known as Bag of System Calls (BoSC), proposed
by [25], was used for anomaly detection.

The study presented by [24] was continued in [12], where a Resilient IDS (RIDS) was
developed for container-based clouds. The RIDS uses an intelligent real-time behavior
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monitoring mechanism to detect malicious containers and a defense approach that can
migrate containers at runtime to a quarantine zone, aiming to minimize the spread of
an attack. Results showed that this RIDS efficiently detected and migrated containers of
malicious applications, ensuring secure container operation. The Moving Target Defense
(MTD) approach, which is a novel contribution of this study, makes it possible to defend
the target while it is moving.

In [10], an analysis of anomaly detection algorithms in containerized environments was
carried out using the Sequence Time-Delaying Embedding (STIDE) and BoSC algorithms.
Both algorithms showed potential for intrusion detection. However, the analysis was
limited to the learning performance of the algorithms, and the authors recommended
evaluation tests of state-of-the-art intrusion detection algorithms for future work. According
to the authors of [10], “These experiments are still in their infancy since there are no available
datasets for intrusion detection in containers.”

One recurring problem mentioned in many works such as [13,18,26–29] is the process-
ing overhead associated with anomaly detection. The high volume of data and complexity
of the techniques involved in the analysis often results in a performance penalty for moni-
tored systems or compromises detection effectiveness.

According to [13], due to the rapid development of techniques and data center facilities,
HIDS have recently faced the well-known Big Data challenge. High FPR poses a challenge
for HIDS, and new system call records are being generated with the emergence of new
applications. Thus, traditional mining methods and database management systems on
a single host may not be able to handle the massive amount of system calls efficiently.
As per [13], most traditional HIDS perform intrusion analysis on an independent host
with a standalone detection software installed, and there is no interaction between HIDS
installed on different hosts. Since HIDS only have databases of normal or known behaviors,
new sets of normal system calls that do not conform to databases or models may be
mistakenly reported as anomalies.

In the study conducted by [19], several impediments to implementing a standalone
IDS were found. According to the research, high FPR left the system unable to detect
zero-day attacks in real-time. According to [13,19], traditional HIDS based on system calls
cannot achieve robust performance as expected. Thus, several works in this area are in
progress and have ample scope for future development.

Another limitation in the field involves the outdated datasets currently available
for IDS development. According to [14–18,29], the main known datasets have numerous
deficiencies such as obsolescence due to age, lack of volume, absence of complementary
data, and most of them are not focused on container system calls. In the work developed
by [15], some of the main public datasets available with useful host data for a HIDS were
listed and organized. The description, characteristics, and limitations of each dataset were
compiled to facilitate use and research in the field. In order to address this gap involving
datasets, ref. [14] proposes a methodology for generating new datasets that may be useful
in the context of intrusion detection.

Among the most recent works on HIDS focused on anomalies in system calls, there are
many approaches used for intrusion detection. Intrusion detection through the sequence
of system calls was first presented in 1996 by [30] and is still used in conjunction with
probabilistic analysis techniques in works such as [28], as well as neural networks in [18].
Other works such as [12,26,27,31] use approaches based on the analysis of system call
frequency, and joint use with neural networks is also possible, as in [32].

In the study conducted by [28], a real-time HIDS was proposed for detecting malicious
applications running in Docker containers. For detection, system call analysis was also used,
but using an approach with system call n-grams and their probability of occurrence. In this
research, sequential analysis of system calls was preferred over frequency-based analysis
used by BoSC, with the belief that the latter would be less accurate. In the experiments
conducted in this study, anomaly detection accuracy ranged from 87 to 97%.
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The BoSC algorithm uses an approach based on the analysis of system call frequency
and requires less computational effort. However, general trends indicate that although
sequence-based system call models are computationally more expensive, they offer better
detection [15]. It is also noteworthy that with the popularization of labeled datasets,
several researches have emerged comparing IDSs and testing many machine learning
algorithms [15]. Different machine learning techniques have been applied in HIDSs to
improve detection performance, aiming at increasing precision and reducing FPR. However,
less emphasis is given to the practical implementation of a HIDS for real-time detection [26].

Regarding scenarios where container orchestration platforms are used as production
environments, there are few studies on the implementation of HIDS based on system call
anomalies developed so far [33]. In the work of [32], a distributed learning framework was
developed aiming at building application-based detection models through neural networks.
However, it is known that the system implemented on each host of the container platform
generates computational overhead that competes with the actual workload of applications,
and this overhead was not considered [33].

In [34], a HIDS focused on a Kubernetes cluster was proposed with anomaly detection
through supervised learning neural networks and four categories of system calls. Although
the system is capable of monitoring the various hosts of the cluster and performing detection
in an external component, filtering rules based on a limited set of system calls may restrict
the scope of attack detection [33]. Another aspect concerns the limitation regarding the lack
of analysis of reported anomalies and the need for developing own subcomponents such
as a web portal and a Restful API service for IDS implementation [33].

In comparison to existing works in the area, the proposed framework enhances the
IDS implementation in container platforms with regards to a distributed and scalable
architecture built using open-source tools. The layered architecture is feasible to changes
and integration with other security systems. Additionally, detailed information on how the
implementation can be done in conjunction with the related configuration and codes are
made available through a public repository.

The Table 1, summarizes the related works on Intrusion Detection Systems and the
security of cloud computing environments topics with the key contributions and limitations
in comparison to this paper.

Table 1. Related works on Intrusion Detection Systems and the security of cloud computing environ-
ments topics and our new contributions.

Related Work Key Contributions Limitations

[10] Makes a preliminary feasibility analysis
of host-based container-level intrusion detection

Extract meaningful metrics and compare its performance
with other IDS used in the same context

[11] Presents an approach that uses attack injection to evaluate the
effectiveness of intrusion detection in container-based systems

Adapt the work to an application context of
microservices and research intrusion
tolerance and reaction mechanisms

[12] Presents a resilient intrusion detection and resolution system
for cloud-based containers

IDS feedback to guide a frequent live migration of
the running containers between different hosts
to complicate targeted zero-day attacks

[13] Provides a review of the development of system-call-based
HIDS and future research trends

Data preparation and feature extraction are the decisive
factors and therefore deserve more attention

[14]
Proposes a methodology for recording data
that is useful in the context of intrusion
detection

Many of the included features cannot
be extracted from previous datasets

[15] Main public datasets available with useful
host data for a HIDS are listed and organized

Datasets not focused on container
system calls

[16]
Presents a classification of network anomaly
IDS evaluation metrics and discusses the
importance of the feature selection

Developing IDS capable of overcoming
the evasion techniques remains a major
challenge for this area of research
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Table 1. Cont.

Related Work Key Contributions Limitations

[17]
Describes a literature review of deep
learning (DL) methods for cyber security
applications

The use of different datasets for training
and testing did not allow for fair
comparison across all of the different approaches

[20]

Proposes a model for a real-time intrusion
detection system (IDS) that can be used
to detect malicious applications running
in Docker containers

The sequence of the system calls
are ignored (frequency based approach).
Does not utilize machine learning models.

[21]

Proposes a detail study of intrusion detection,
discussing popular attacks, examining
problems associated with their detection and
exploring possible solutions

Existing systems need to leverage all
available countermeasures discussed
in their work and automate them
as immediate responses in order to
minimize the continued damage that
can be done to systems

[22]

Provides empirical evidence to identify the
gap, and provide data useful for identifying
and developing new and more effective
methods to secure application container
networks

Limited to assessing the effectiveness
of methods for conducting intrusion
detection and analysis in Docker
Linux application container networks

[23]

Introduces a real-time host-based intrusion
detection system that can be used to
passively detect malfeasance against
applications within Linux containers

Applying the same workload to the
MySQL database may not generate the
exact same BoSCs, which is normally
expected by an instance-based technique

[24]

Presents the results of using bags of system
calls for learning the behavior of Linux
containers for use in anomaly-detection-based
intrusion detection system

Modify the algorithm to be more
suitable for deployment in a real-time
intrusion detection system

[25]

Compares the performance of several machine
learning techniques far misuse detection and
show experimental results on
anomaly detection

If the attacker knows the intrusion
detection mechanism, their approach
can be deceived by mimicry attacks

[26]

Propose a machine learning based HIDS
using the same ADFA-LD dataset that
possesses the ability to perform early detection
of intrusions

Need to improve the model in detecting
real-time intrusion

[27]
Proposes a computation efficient HIDS
framework that initially transforms the system call
traces to n-gram vector representational model

Improve and fine tune various
parameters of the proposed framework
to further enhance its performance

[28]
Proposed a Probabilistic real-time HIDS for
detecting malicious applications running in
Docker containers

Make possible the detection of other
attacks toward Docker containers, such
as Container Breakout, Cross-site Request
Forgery, XSS injection, and
detection of malware in the container

[29]

Proposes to use unsupervised introspection
tools to perform the non-intrusive
monitoring, which leverages the system
call traces to classify the anomalies

Necessity of an extension of features for
detecting certain classes of anomalies

[32]
Present CDL, a classified distributed
learning framework to achieve efficient
security attack detection for containerized applications

Overcome the challenges of lacking
sufficient training data for individual
short-lived containers

[33]

Proposes a framework for implementing
a Host-based Intrusion Detection System
(HIDS) by analyzing system calls with machine
learning on a Kubernetes container
orchestration cluster

Ongoing research. Provides an initial
version of a framework for a HIDS
focused on containerized environments

[34]

Proposes KubAnomaly, a system that
provides security monitoring capabilities
for anomaly detection on the Kubernetes orchestration
platform

Limitation in identifying container
behavior as normal or abnormal, and
runtime anomaly behavior detection
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Table 1. Cont.

Related Work Key Contributions Limitations

This paper

In comparison to existing works in the area,
the proposed framework enhances the IDS
implementation in container platforms with
regards to a distributed and scalable
architecture built using open-source tools.
The layered architecture is feasible to changes
and integration with other security systems.
Additionally, detailed information on how the
implementation can be done in conjunction
with the related configuration and codes are
made available through a public repository

No automated actions are taken in alerts occurrence.
Impossibility to track the application action that
caused the alerts without extra tools.
Need to train a dedicated model per application.

3. Materials and Methods

The methodology used to conduct this work began with a bibliographic survey of the
state of the art regarding Intrusion Detection Systems and their application to containerized
environments. From the related literature, limitations and gaps not yet explored by studies
were identified and some of them were defined as research targets to be addressed by this
work. The main IDS implementations and intrusion detection techniques from the state of
the art were studied and served as a reference for the design of a framework containing
an architecture for a HIDS based on the analysis of anomalies in system calls with a focus
on container orchestration platforms, addressing some of the existing limitations in the
research field.

For the implementation of the framework, the software used for emulating GNS3
networks was used and the topology of a corporate environment was built containing a
cluster of orchestration of Kubernetes containers, multiple VLANs, in addition to a firewall,
routers and switches. The proposed architecture presents a HIDS with distributed compo-
nents that enables the elasticity of the system according to the need and was implemented
using open-source and free tools. A pipeline was then built comprising five layers and
starting with data collection to generating alerts of detected anomalies and data analysis in
the last layer. Each layer of pipeline was built with tools configured for specific purposes
and that allow the integration between adjacent layers.

Preliminary tests were performed with a public dataset of system calls for training
and evaluating machine learning algorithms in the anomaly detection layer. This approach
allowed the operation of the framework and the architecture to be tested with minimal
changes to the pipeline in the data capture layer, simulating an application running in the
monitored cluster Kubernetes. Based on the test results of some state-of-the-art machine
learning algorithms using the test dataset, the model that presented the best performance
in detecting anomalies was selected for emulating the operation of HIDS and implemented
in layer four machine learning module in the proposed architecture.

To validate the functioning of the built IDS, machine learning models were trained
with different parameters using a public dataset of system calls with normal behavior of a
given application. A subset of the public dataset containing selected attacks was then used
to simulate the exploitation of security holes and attacks targeting the application running
on cluster Kubernetes. For each dataset representing an attack, the detection effectiveness
was measured and evaluated by comparing the trained machine learning algorithms. In the
event of anomaly detection, alerts are generated and displayed on a cluster dashboard built
for monitoring by the SOC team, which can then proceed with the analysis of any incident
and apply the appropriate actions as recommended by the security policy.

4. Proposed Framework

The proposed framework comprises a set of tools and processes integrated into a
reference architecture for implementing an Intrusion Detection System based on Host in a
cluster of container orchestration. To implement the framework, the GNS3 network emula-
tor software was used in version 2.2.29. A topology of a corporate network environment
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was then built containing a Kubernetes container orchestration cluster at version 1.18, vlans,
a firewall, routers and switches, according to the Figure 1.

A possible intrusion or attack on a containerized system can be identified by detecting
anomalies in the system calls invoked by the containers to the kernel of the Operating Sys-
tem of the host of the container platform. Thus, the framework aims to improve Intrusion
Detection Systems on container platforms and was designed with the aim of contributing to
the resolution of problems exposed by related works such as: the computational overhead
caused in container platforms across HIDS, the absence of current datasets, and the need
for improvements in anomaly detection in system calls.

Figures 2–4 show respectively the flowcharts that describe the operation of frame-
work in three stages of operation: training (Figure 2), testing (Figure 3), and production
(Figure 4), in five processing layers: layer 1 (data capture), layer 2 (feature engineering),
tier 3 (indexing and searching), tier 4 (anomaly detection), and tier 5 (alert generation and
data analysis). Thus, the operation of the IDS begins in the training phase, followed by the
test phase and, finally, the production phase. Eventually, the IDS operation cycle may be
reset in view of the need to train the model with new data or parameter adjustments.

Figure 1. Network topology implemented in the GNS3 software.
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Figure 2. Flowchart describing how the framework works during the training phase.

Figure 3. Flowchart describing how the framework works during the testing phase.
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Figure 4. Flowchart describing how the framework works during the production phase.

Due to the fact that the machine learning model used performs batch learning, its
learning is carried out offline [35]. That is, the model trained and in use in the production
phase is used only for detection and does not learn simultaneously with the data being
analyzed. Although training a new model has to be done offline, this requirement does
not prevent the IDS from working while new models are being trained or tested. That way,
after training and testing a model with new parameters or datasets, it can be deployed for
production operation to replace another model in use.

In the framework training phase (Figure 2), the main objective is to train a machine
learning model through benign behaviors of a containerized application. The model trained
with normal behaviors will be able to identify anomalies through the discrepancy between
the system calls invoked in normal use and malicious use of the system. To do so, it is
necessary to ensure that no attack or malicious activity occurs while capturing the system
calls that make up the dataset with benign behavior. Data processing in this phase starts at
layer 1 of the framework and proceeds through the intermediate layers to layer 4, where
the model is trained and terminated when the model reaches satisfactory levels of detection
using the data of training. In addition to the trained machine learning model that can
be used in the test and production phases of the framework, another by-product of the
training phase is the datasets stored in Elasticsearch in layer 3, after treatment and filtering
performed in layer 2.

After training the machine learning model, in the testing phase of the framework
(Figure 3), different datasets from the one used in the training phase are used to evaluate
the performance of the trained model in anomaly detection. These datasets should contain
benign or malicious behaviors of the same containerized application. Its construction
should ensure the systematic capture of system calls in behaviors identified as normal
and/or anomalous in the usage of the application. In this operational phase, the processing
of the data begins at layer 1 and extends to the last layer of the framework. Differently
from the training phase, in layer 4, the trained machine learning model is used solely to
detect anomalies in the test datasets. In layer 4, performance metrics of the model can be
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visualized, as detailed in Section 5 of this work. The detection results of the model are also
stored in Elasticsearch and can be queried and analyzed later on. In layer 5, it is possible
to analyze the detection results of the model and the alerts generated in case of detected
anomalies through a web interface of Kibana. If necessary, depending on the performance
of the model, the choice of a new value of threshold for anomaly detection by the model
can be adjusted. If the performance of the model in anomaly detection is unsatisfactory, the
operation of the framework can return to the training phase for the construction of a new
model of machine learning. It is worth noting that in both the training and testing phases of
the framework, once the training and testing datasets are already indexed in Elasticsearch,
the processing of layers 1 and 2 does not need to be repeated for each training or testing of
a new model with indexed datasets. In this scenario, the execution of the processing flow
can start at layer 3.

During the production phase of the framework (Figure 4) the main objective is to
detect anomalies in the behavior of the target application using the machine learning model
trained and tested in the phases of previous operations. The capture of system calls occurs
in layer 1 at application runtime and data processing follows the processing and indexing
flow through layers 2 and 3, respectively. The indexing of system calls in Elasticsearch is
done on indexes that are created in a fixed and adjustable time interval. At each defined
time interval, a new index is created with a set of system calls executed in that period.
Thus, the time window represented by an index introduces a delay between the occurrence
of the system call and the analysis of anomalies by the model, being an important factor
to be observed in the configuration of the framework. The frequency of creation of new
indexes in Elasticsearch can be every day, hour or even smaller fractions of time, according
to the detection time tolerance accepted by the IDS. After creating an index, it will be used
as input for anomaly analysis by the machine learning model in layer 4. The indexes are
read individually and sequentially, according to the creation time of each index. At layer
5, the SOC team will be able to track detection results by the IDS in a dashboard created
in Kibana. In the event of an eventual anomaly, the SOC will be able to carry out a more
in-depth analysis of the event, correlating it with other sources of information such as a
SIEM, for example. In addition, the detection threshold can be adjusted to allow greater or
lesser sensitivity in the detection of anomalies by the IDS. Even so, if the performance of
the IDS is unsatisfactory, the framework operation may return to the previous phases to
improve the machine learning model or make adjustments to other components.

The developed architecture presents a HIDS with distributed components, enabling
the elasticity of the system as needed [33]. Segregation of the architecture into different
layers allows for a clearer identification of functions and tools involved in data processing
and serves the purpose of reducing processing overhead on the container platform. Thus,
the data flow of the detection system permeates five layers, where free tools are used
for specific purposes, as shown in Figure 5. According to the flowcharts illustrated in
Figures 2–4, different tasks can occur in layers 3, 4, and 5, depending on the operation
phase from framework. However, in essence, the main functions performed in each layer
are common to all phases of operation. Additional information about the integration
between the tools of the layers of the proposed architecture and the topology implemented
in software GNS3 can be consulted in [33] and in the following github repository [36].
Briefly, next, details of each layer of the proposed architecture will be provided.
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Figure 5. Proposed architecture with five layers and it’s tools [33].

4.1. Layer 1—Data Capture

In the first layer of the architecture, called the data capture layer, the processing flow
starts through an agent located in the Kubernetes cluster nodes responsible for running
the application containers. This agent collects the system calls of the desired containers
using the Sysdig tool and records them in a local file on the node’s file system, avoiding
dependency on external services in this task [33]. When capturing system calls from a
container through Sysdig, it is possible to specify which attributes of each system call
invoked will be collected through filters. These attributes will later be used to build the
features that will compose the dataset of system calls. Sysdig provides a list of filters
available for use in its documentation [37] and for demonstrative purposes, the filters listed
in Table 2 were used to capture the system calls of containers.
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Table 2. System calls attributes collected by Sysdig.

Filter Description

evt.num Incremental event number.

evt.time.iso8601 Event timestamp in iso8601 format (including nano seconds and timezone).

proc.name Name of the process that generated the event.

evt.dir Event direction (‘>’ for input events and ‘<’ for output events).

evt.category Event category (e.g., ‘file’ for file opening and closing operations,
‘net’ for network operations, etc.).

syscall.type Name of the invoked system call.

evt.latency Delta between an exit event and the correspondent enter event, in nanoseconds.

evt.rawres Event return value as a number.

evt.info Returns the arguments as the evt.args field and higher level information.

As system calls are written to a file, a service provided by the Filebeat tool reads each
new line added to the file and sends them to Redis, an in-memory database external to the
cluster [33]. To provide secure communication between Filebeat and Redis, a password is
required to authenticate to Redis before data is received by this service. This password must
be parameterized in the Filebeat configuration. Still in the data capture layer, Redis acts as
a cache, giving resilience and high performance to the flow of system calls captured in real
time from containers running [33]. Different queues containing system calls can be created
in Redis for each monitored container. Queues remain in Redis until Logstash, a Layer 2
service in the architecture, reads and removes data from the queues. In this way, the data
only persists in Redis in memory until it is consumed by layer 2, giving way to the entry of
new system calls. To prevent this workload from running on cluster Kubernetes, Redis has
been configured on a host dedicated to this service. If necessary, the Redis server can be
scaled horizontally to work as a cluster, offering greater performance in the data stream.

4.2. Layer 2—Feature Engineering

The second layer, or feature engineering, takes its name because it is where raw
data from system calls is processed into features (characteristics) that will compose the
datasets of input to the machine learning model. According to [13,19], data preparation and
features extraction are decisive factors and therefore need more attention when compared
to choosing the best detection model. Thus, a critical part of a project involving machine
learning is defining a good set of features data that will be used for training the [35] model.
According to [16], the selection of features is useful to decrease the computational difficulty,
eliminate data redundancy, improve the detection rate of machine learning techniques,
simplify the data and reduce false alarms. Thus, it can be said that the selection of features
in framework begins with determining which filters will be used in Sysdig to capture
attributes of system calls.

Logstash is the tool used to consume Redis data and filter and process raw data
from system calls [33]. Through Logstash, it is possible to manipulate and treat each
attribute that makes up a system call, converting strings into numerical values, discarding
unnecessary information and adding other information if necessary. To avoid an additional
processing load on cluster Kubernetes, Logstash was configured on a host dedicated to
this service. If necessary, multiple instances of Logstash can be configured, allowing the
scalability of this service and greater capacity in processing the data flow. After data
processing by Logstash, each event corresponding to an invoked system call is indexed as
a document in Elasticsearch in indexes that can be created dynamically according to the
number of documents indexed or at predefined time intervals. Indexes in Elasticsearch
are the data structures that contain the datasets with the system calls and their features
already encoded in numerical format, suitable for the processing done by the machine
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learning algorithms [33]. Just as communication between Logstash and Redis requires
authentication, so does the integration between Logstash and Elasticsearch.

4.3. Layer 3—Indexing and Search

In the third layer, or indexing and search, the main component is Elasticsearch. Elas-
ticsearch is a high-performance [38] indexing and search engine. Its use as a repository for
storing system calls allows for high availability of data, in addition to enabling searches
through useful metadata for filtering, aggregation, sorting, etc. [33]. In addition to contain-
ing the indexes created by Logstash representing the datasets, Elasticsearch integrates with
the layer 4 machine learning module, with the layer 5 Kibana tool, and is also used to store
the results of anomaly analyses. Thus, its operation takes place through the provision of
data from queries to datasets or anomaly detection results, or simultaneously indexing new
datasets and anomaly detection results by the machine learning module. For each index
representing a dataset in the processing flow described in Figure 4, after its analysis, a new
index is created in Elasticsearch with the anomaly score corresponding to the windows of
system calls parsed by the machine learning module [33]. system calls windows consist of
a data structure that stores sequences of system calls of multiple sizes and is a common
approach for analyzing system calls [33]. Several operations can be done in Elasticsearch
for manipulation and storage of datasets in conjunction with Kibana.

4.4. Layer 4—Anomaly Detection

The fourth layer (anomaly detection), contains the machine learning module repre-
sented in the architecture of Figure 5 and can run several state-of-the-art algorithms for
detecting anomalies [33]. In order to reduce the processing overhead on cluster Kubernetes,
the machine learning module was configured on a host dedicated to this type of workload.
Due to the large number of operations with matrices performed by Deep Learning models
and the high demand for computational power, graphics processors (GPUs) are indicated
for training these models in a more acceptable time [17,39]. Thus, a host with one or more
GPUs is recommended for running the machine learning module. In the host configura-
tion used in this work, the GNU/Linux Operating System (Kernel 5.19.8) was used with
Python and its dependencies installed to run the Neural Network models. For integration
between the machine learning module and the cluster Elasticsearch in layer 3, the existing
requirement is that the communication be performed through the Elasticsearch API for
reading and writing data. In Python-based environments, there is a library that integrates
with Elasticsearch [33]. Several Python libraries were used to implement the functions
performed by the machine learning module in this layer. Among them, the following
libraries stand out: Keras [40] and Tensorflow [41]. The joint use of Keras and Tensorflow
libraries facilitated the implementation and training of DL models as well as the conduction
of tests. Other libraries like Pandas and Scikit-learn were also used in the other processing
steps of the pipeline executed by the machine learning module. Still, to make use of the
computational power of the GPUs produced by the manufacturer NVIDIA, it is necessary
to use the cuDNN library made available by the company for performance optimization in
Deep Learning. In a study where the cuDNN library was presented, the authors achieved a
36% increase in the performance of a Neural Network model in addition to the reduction
in [42] memory consumption.

According to the flowcharts represented by Figures 2–4, the machine learning module
can operate in two distinct modes: training (the training phase of the framework) and
detection (the testing and production phases of the framework). In both training and
detection modes, the machine learning module interacts with the Elasticsearch cluster
to obtain the datasets via API. To facilitate the interaction between the machine learning
module and the Elasticsearch cluster, a Python function called read_from_elastic (used in
the INPUT lines in Algorithms 1 and 2) was developed using the elasticsearch_dsl library
and made available through a custom functions file that is used in other operations in the
machine learning module’s processing pipeline. Details of the file containing the developed
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functions can be found in the public github repository [36]. To facilitate understanding of
the machine learning module’s operating modes, Algorithms 1 and 2 detail the training
mode and detection mode of the machine learning module, respectively.

Algorithm 1 Machine learning module processing (training mode)

1: Elasticsearch connection parameters definition (index, es)
2: INPUT: d f _benign_data← read_ f rom_elastic(index, es)
3: d f _train_data← 80% of d f _benign_data
4: d f _test_data← 20% of d f _benign_data
5: window_size← 6 (defined arbitrarily)
6: n_ f eatures← number of columns of d f _benign_data
7: train_data← MinMaxScaler(d f _train_data)
8: train_data_wz← sliding_window(train_data, window_size)
9: ds_train_ f ull← Generate tensorflow dataset from (train_data_wz)

10: ds_train← 95% of ds_train_ f ull
11: ds_validation← 5% of ds_train_ f ull
12: model←Model definition
13: training_parameters← Training parameters
14: While training_parameters are satisfied Do:
15: model. f it(ds_train, ds_validation, training_parameters)
16: End While
17: Save trained model
18: test_data← MinMaxScaler(d f _test_data)
19: test_data_wz← sliding_window(test_data, window_size)
20: ds_test← Generate tensorflow dataset from test_data_wz
21: d f _pred← model.predict(ds_test)
22: Calculate value difference (error) between d f _pred and ds_test
23: OUTPUT: Save error threshold for the confidence intervals (1, 0.995, 0.99, 0.98, 0.97)

Algorithm 2 Machine learning module processing (detection mode)

1: Elasticsearch connection parameters definition (index, es)
2: INPUT: d f _detection← read_ f rom_elastic(index, es)
3: window_size← 6 (defined arbitrarily)
4: n_ f eatures← number of columns of d f _detection
5: d f _data← MinMaxScaler(d f _detection)
6: d f _data_wz← sliding_window(d f _data, window_size)
7: ds_data← Generate tensorflow dataset from (d f _data_wz)
8: modelo← load_model( f ilepath, compile = True)
9: d f _pred← model.predict(ds_data)

10: Define error threshold
11: Calculate value difference (error) between d f _pred and ds_data
12: Verify errors exceeding the threshold
13: Save dataframe with errors on disk
14: OUTPUT: Write detection results on Elasticsearch

The preprocessing of each dataframe involves operations such as data normalization
and the creation of sliding windows containing sequences of system calls. The system
call windows consist of a data structure that stores sequences of system calls of multiple
sizes and is a common approach for system call analysis [33]. The choice of the size of
the system call windows is a factor that directly influences the detection results, with the
literature recommending window sizes in the range of 6 to 10 [13,15,43,44]. At the end of
the processing performed in the machine learning module, the result of anomaly detection
for each model prediction is recorded in an index created in Elasticsearch (OUTPUT line in
Algorithm 2), where it can be graphically viewed and analyzed by the SOC team through
the Kibana tool or through Python notebooks [33].
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4.5. Layer 5—Data Generation and Analysis

In the fifth and final layer of the proposed architecture, data analysis and alert activities
are concentrated, including performance evaluation of detections made by the machine
learning module, adjustment of detection thresholds (acceptable error threshold), and SOC
action in case of alerts. For the performance of these activities, the dataframes generated in
the previous layer and Kibana are important tools to aid the SOC team. According to the
flowcharts shown in Figures 2–4, the actions performed in layer 5 are executed during the
testing and production phases of the framework.

During the test phase, the SOC team does not act in the event of alerts and any
anomalies detected. Thus, the main objective of framework operation in this phase is to
evaluate the performance of the IDS before its entry into production. After indexing the
datasets and detection results in Elasticsearch done in layer 3, you can analyze and inspect
this data through Kibana. Kibana has native integration with Elasticsearch and provides
a graphical interface for analyzing both datasets and anomaly indices generated by the
IDS [33]. Still in the test phase, the performance of the IDS can be evaluated according
to the analysis of the alerts generated by the machine learning module, in addition to the
detection metrics calculated through the Equations (2)–(7). Depending on the performance
of the machine learning module, it is possible to adjust the acceptable error threshold for
other confidence intervals in order to improve performance in detecting anomalies. As the
distribution of prediction errors resembles a normal distribution, most of the samples are
concentrated in the center of the curve. In this way, the acceptable error threshold obtained
is reduced as the confidence interval used is reduced, and the lower the acceptable error
threshold, the more sensitive the model becomes to detect anomalies. Given the above,
the detection sensitivity of the IDS can be adjusted by varying the confidence interval
and the corresponding error threshold. Even so, if the performance of the IDS is still
unsatisfactory after adjusting the acceptable error threshold, the test phase can be closed
and the framework operation goes back to the training phase to improve the machine
learning module.

In the operation of the framework in the production phase, the activity of the SOC
team is inserted in layer 5 of the flowchart described in Figure 4. Therefore, the detection
of anomalies and alerts produced by the IDS causes the SOC team to act to analyze the
event. The preliminary analysis of alerts and anomalies detected by the IDS is performed
through the Kibana interface, which allows system calls windows with an anomalous score
to be identified. The anomaly detected at a given time must also be investigated using
other security and environment monitoring tools, with a view to correlating the alert with
other security events. As a HIDS usually cannot provide complete protection to systems,
in today’s industry, a HIDS is usually integrated with other security mechanisms such as
vulnerability analysis and management and incident response [13]. If the IDS performance
is unsatisfactory, it is possible that the acceptable error threshold is adjusted to other
confidence intervals, changing the IDS detection sensitivity. However, if the performance
of the IDS is not adequate, the framework can go back to operating in the training phase to
improve the machine learning model.

After analyzing and investigating an anomaly, the SOC team will be able to act with
measures to contain the propagation of a possible attack through actions such as: restricting
application communication to limited contexts (sandboxing), verifying changes in the
configuration of the running application (e.g., recent deploy of a new version), contacting
the team responsible for developing the application, or even interrupting the execution of
the application container that generated the alert. Through layer 5 tools, it is possible for
dashboards to be created with customized metrics and alerts in the event of anomalies in
containerized applications. That said, the information generated by the container platform
IDS offers greater visibility into the security of this environment, representing an additional
relevant source of security events to support the monitoring of the SOC and perform
correlation with events generated by other tools.
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5. Results and Discussion

In this section, details of the execution of an experiment carried out with the frame-
work implemented in an emulated environment will be provided, demonstrating its ability
to function and integrate between the layers of the proposed architecture. To conduct the
experiment, a public dataset of system calls was used as a data source for a containerized
application and processed according to the pipeline in each operation mode of the frame-
work. Subsequently, the detection results obtained in the experiment were analyzed and
compared with the results of the work that originated the public dataset.

The work published by [29] utilized introspection tools and an unsupervised machine
learning approach to enable non-intrusive monitoring of a containerized application. As a
result of this research, a dataset was made available, containing system calls of both benign
and anomalous behavior of an application. To generate this dataset, the Sysdig tool was
employed, and the following attributes were collected for each system call:

• syscall—name of the system call invoked
• time—timestamp at the time of system call invocation
• process—name of the process that invoked the system call
• fields—number of arguments of the invoked system call
• length—number of characters of the arguments
• value—encoded value of arguments

In the dataset made available in a public repository by [29], the attributes of each
system call are provided in pre-processed form, with their values already converted to
numeric format. As explained by the author, to generate benign behavior data, a container-
ized MySQL database server was used as an example application, and random pairs of
users and passwords were generated, inserted, and updated in randomly selected tables
in the database through a MySQL client [29]. Seven attacks were selected and executed to
generate the anomalous behavior of the application, which include: Brute Force Login, Sim-
ple Remote Shell, Meterpreter, Malicious Python Script, Docker Escape, SQL Misbehavior,
and SQL Injection. A description of each attack performed, as well as more details of the
tests conducted, can be found in the same publication.

To evaluate the proposed framework in this work, the dataset provided by [29] was
copied to a node of a Kubernetes cluster as a representation of captured system calls
performed by the Sysdig tool for an application running in the cluster. Since the public
dataset was available on GitHub in multiple parts in CSV (Comma Separated Values)
format, it was necessary to concatenate the different parts into a single file for each behavior
(normal or attack). From that point onwards, the files representing the dataset could
be read by the Filebeat tool, and the processing pipeline described in Figure 5 could be
initiated from layer 1. For the indexing of data in Elasticsearch, each CSV file created
was individually read by Filebeat, and Logstash created a separate index for each dataset
in Elasticsearch.

A dashboard was then created to provide a better visualization of the characteristics of
the benign behavior dataset. Figure 6 displays this dashboard, which allows user interaction
through filtering, aggregation, and the creation of other graphs for data inspection and
understanding. The dashboard shown in Figure 6 consists of the following graphs: total
number of system calls in the dataset, distribution of system calls by process, distribution
of the number of arguments, histogram displaying the distribution of system calls by
timestamp, line graph illustrating the histogram of the number of arguments by timestamp,
map indicating the main system calls by process, and a proportional map showcasing the
most invoked system calls.
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Figure 6. Dashboard for viewing the public dataset with benign behavior.

With the data already stored in Elasticsearch, the machine learning module was trained
by reading the benign dataset represented by the index proc-public-benign, which consisted
of 1,551,011 indexed documents (system calls). The training process of the machine learning
module followed the Algorithm 1. The Python code executed in a Jupyter Notebook format
is available in the GitHub repository [36].

In addition to the model training, an additional task was performed, which involved
creating a database containing the calculation of the hash of system calls windows from the
benign dataset. This database contains a list of unique hashes computed from all system
calls windows along with their attributes, collected during normal application behavior
using the defined window size. Similarly, by calculating the unique hashes of the system
calls windows from the dataset with malicious behavior, it was possible to generate labels
for the attacks dataset. Therefore, sequences of system calls with all their attributes that
form a window and have a hash calculation equal to one of the constant hashes based on the
benign hashes are considered benign. This approach enables measuring the performance
of the machine learning model in predicting the data by comparing the model’s prediction
with the corresponding label for a given system call window.

This procedure was necessary to complement the dataset, as the malicious dataset
provided by [29] includes a mixture of normal application behaviors and anomalous
behaviors, but does not provide label information indicating the class (benign or anomalous)
of system calls. It is acknowledged that there are different techniques available to classify
and label a dataset. However, the approach used in this work benefits from its ease of
implementation and presents an alternative to more computationally expensive techniques,
allowing for a preliminary analysis of the results.

As shown in the Figure 7, the data structure df_benign_data_hash contains the hashes
of system calls windows from the benign dataset, and it consists of 1,551,006 records.
Among these records, there are 395,138 unique hashes, which form the base of benign
hashes. In this experiment, a window size of six system calls was used. Consequently,
the total number of windows is six less than the total number of system calls in the
benign dataset.
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The model used in the experiment was obtained through Hyperopt from a range of
possible models. Hyperopt is a Python library used for hyper-parameter optimization
in machine learning algorithms [45]. Using this library, it was possible to test various
combinations of hyper-parameters that form a model, in order to find the combination
that achieved the best performance. Other parameter combinations, such as window size
for system calls, activation functions, data normalization functions, etc., were empirically
tested to determine the final model used in this experiment.

Several Python libraries were used to implement the functions performed by the
machine learning module. In addition, to reduce the time needed to train the models, a
GeForce RTX 3060 video card was used. In Deep Learning. In a work where the cuDNN
library was presented, the authors achieved a 36% increase in the performance of a Neural
Network model, in addition to the reduction in [42] memory consumption.

As in the machine learning model employed by [29], a DAE-type Neural Network
with LSTM units was the base structure used to arrive at the final model of this experiment.
From this framework, a Convolutional Neural Network (Conv1D) layer was added to the
sequential model before the layers in the Autoencoder framework. This Conv1D layer has
the ability to extract the most representative features from complex data, eliminating the
least significant features for [46] classification. For the dataset used in this experiment, this
layer provided a performance gain in the prediction of data by the model. The Figure 8
presents the definition of the model that obtained the best results in the search performed
with Hyperopt.

Table 3 provides detailed information on the values of acceptable error thresholds
(Loss thresholds) obtained using the model defined above for each confidence interval
during the tests conducted with the benign dataset. Once the model was trained and the
error thresholds were determined, the machine learning module operated in detection
mode, where it read each attack index from Elasticsearch and executed the remaining
processing steps, following the Algorithm 2 presented above. The code executed in the
Jupyter Notebook format for detecting anomalies in the performed attacks is also available
in the GitHub repository [36].

As a result of the anomaly detection performed for each attack, an index was created
in Elasticsearch to store the detection information and the obtained results. Figure 9 show-
cases a Kibana dashboard designed to visualize the indexed data, specifically the anomalies
detected during the Brute Force attack. This dashboard allows for interactive analysis of
the results through its graphical interface. The components of the dashboard depicted in
Figure 9 include: the total number of analyzed system call windows, a pie chart displaying
the percentage of anomalous and normal windows, the confidence interval and loss thresh-
old used, a graph illustrating the error obtained in each system call window by timestamp
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in comparison to the defined loss threshold, a distribution histogram of anomalous and
normal windows by timestamp, and a table providing detailed information about each
analyzed system call window.
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model = Sequential()

# Conv1D
model.add(keras.layers.Conv1D(filters=n_features, kernel_size=window_size, strides=1,

padding="same", activation="relu", input_shape=(None, window_size, n_features)))↪→

# Encoder
model.add(CuDNNLSTM(160, kernel_initializer='he_normal', return_sequences=True))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('tanh'))

model.add(CuDNNLSTM(64, kernel_initializer='he_normal', return_sequences=True))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('tanh'))

model.add(CuDNNLSTM(24, kernel_initializer='he_normal', return_sequences=False))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('tanh'))

model.add(RepeatVector(window_size))

# Decoder
model.add(CuDNNLSTM(24, kernel_initializer='he_normal', return_sequences=True))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('tanh'))

model.add(CuDNNLSTM(64, kernel_initializer='he_normal', return_sequences=True))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('tanh'))

model.add(CuDNNLSTM(160, kernel_initializer='he_normal', return_sequences=True))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('tanh'))

model.add(TimeDistributed(Dense(n_features)))

model.compile(loss='mae', optimizer='nadam', metrics=['accuracy'])

Figure 8. Model definition obtained by using the Hyperopt library.
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Figure 8. Model definition obtained by using the Hyperopt library.

Table 3. Loss threshold for each confidence interval.

Confidence Interval Loss Threshold

1 0.2456
0.995 0.0251
0.99 0.0164
0.98 0.0110
0.97 0.0091

In binary classification problems (normal or anomaly class) normally, primary results
of algorithm evaluation are used and other metrics can then be obtained based on these
results. These results can be represented through a confusion matrix, demonstrating the
prediction capacity of the algorithm’s classes, according to Table 4.
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Figure 9. Dashboard for viewing anomalies detected during the Brute Force attack.

Table 4. Confusion matrix with classification results of an algorithm.

Predicted Value

False True

Real Value
False True Negative (TN) False Positive (FP)

True False Negative (FN) True Positive (TP)

From the results of the confusion matrix of Table 4, the following metrics can be
derived [17,47]:

• Negative Predicted Value (NPV): Ratio of items correctly predicted as not being of a
class over total items predicted as not being of this class (correctly or not).

NPV =
TN

TN + FN
(1)

• Accuracy (Acc): Success rate in the classification of all results of the confusion matrix.

Acc =
TP + TN

TP + TN + FP + FN
(2)

• True Negative Rate (TNR), Coverage (COV), or Specificity: Rate of items correctly
predicted to not be of a class over all items not belonging to that class class.

TNR =
TN

TN + FP
(3)

For performance analysis in attack detection, the following evaluation metrics were
adopted by [29] in their work:

• NPV—according to Equation (1)
• ACC (Accuracy)—according to Equation (2)
• COV (Coverage)—according to Equation (3)
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In total, forty-two models were tested in the experiment conducted by [29], which
involved different combinations of window sizes for system calls, sets of features, data
normalization methods, and confidence intervals. Figure 10 showcases the results obtained
by [29] for six out of the seven attacks present in the dataset. The figure also presents
the results for six models that utilized different data normalization functions and sets of
features from the dataset.

Although the metrics shown in Figure 10 are useful for analyzing the effect of different
combinations of parameters on model performance, in practice, the same model compiled
with its parameters should be used to detect anomalies in the application to any of the
attacks. Thus, it is expected that the model used in a real scenario simultaneously offers
acceptable performance for different attacks.

For purposes of comparison with the results obtained in this experiment, the Table 5 as
well as the graph in Figure 11 were generated by gathering the results obtained by [29] for
each attack using only the model called SFN-opt from Figure 10 and the results obtained
using the framework proposed in this work.

Table 5. Comparison table of the performance metrics of Figure 10 SFN-opt model and the results
obtained in this work.

Attack
NPV ACC COV

SFN-opt This Work SFN-opt This Work SFN-opt This Work

Brute Force Login 67.85% 78.34% 92.09% 84.18% 81.95% 99.53%
Remote Shell 49.37% 77.79% 82.49% 88.94% 99.36% 99.31%
Meterpreter 10.01% 85.55% 95.39% 91.44% 18.62% 99.70%
Malicous Script 67.62% 69.89% 79.95% 86.74% 48.41% 99.32%
Docker Escape 81.87% 78.10% 75.91% 95.48% 75.67% 99.50%
SQL Injection 7.00% 76.56% 0.93% 76.60% 0% 99.00%
SQL Misbehavior N/A 60.12% N/A 64.64% N/A 99.77%

The SFN-opt model in Figure 10 makes use of a custom function for data normalization
and includes as features of dataset the number of arguments (fields) and the number of
characters of the arguments (length) of system calls, just like in this experiment.

Figure 10. Attack detection performance metrics obtained by [29].



Appl. Sci. 2023, 13, 9301 23 of 28

In Table 5, the values obtained by this work that surpassed the performance of the
study carried out by [29] using the model SFN-opt were highlighted in bold, which corre-
sponds to 80.95% of all metrics collected.

Figure 11. Comparison graph of the performance metrics of Figure 10 SFN-opt model and the results
obtained in this work.

To summarize the results obtained in this experiment, the Table 6 contains the metrics
obtained for all attacks with the confidence interval (CI) set to 99%, which is equivalent to
a loss threshold equal to 0.0164. In addition to NPV, ACC and COV values, other metrics
such as Precision, TPR, FPR, F1-Score shown respectively in Equations (4)–(7), as well
as the ROC-AUC metric were calculated for better comparison of results with possible
future work.

• Precision (Pre): Ratio of items correctly predicted to be of a class over the total of items
predicted to be of this class (correctly or not).

Pre =
TP

TP + FP
(4)

• True Positive Rate (TPR), Recall (Rec) or Sensitivity: Rate of items correctly predicted
to be of a class over all items belonging to that class class.

TPR =
TP

TP + FN
(5)

• False Positive Rate (FPR) or False Alert Rate (FAR): Rate of items incorrectly predicted
to be of a class over all items not of that class.

FPR =
FP

TN + FP
(6)

• F1 Score or F-Score: Harmonic mean between Precision (Pre) and True Positive Rate
(TPR).

F1Score = 2 ∗ Pre ∗ TPR
Pre + TPR

(7)
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Table 6. All attack detection performance metrics obtained in this work.

Attack NPV ACC COV PRE TPR FPR F1 ROC CI

Brute Force Login 78.34% 84.18% 99.53% 99.06% 64.24% 0.47% 77.93% 81.88% 99%
Remote Shell 77.79% 88.94% 99.31% 99.49% 82.55% 0.69% 90.23% 90.33% 99%
Meterpreter 85.55% 91.44% 99.70% 99.64% 83.21% 0.30% 90.69% 91.46% 99%
Malicous Script 69.89% 86.74% 99.32% 99.63% 81.21% 0.68% 89.48% 90.26% 99%
Docker Escape 78.10% 95.48% 99.50% 99.90% 94.72% 0.50% 97.24% 97.11% 99%
SQL Injection 76.56% 76.60% 99.00% 77.76% 10.34% 1.00% 18.26% 54.67% 99%
SQL Misbehavior 60.12% 64.64% 99.77% 98.96% 24.63% 0.23% 39.44% 62.20% 99%

According to [29], the experiment carried out in their study failed to detect SQL
Injection and SQL Misbehavior attacks. However, the model trained in this work achieved
significantly better results for these attacks. For instance, the Coverage metric (COV) had
values equal to or greater than 99%, indicating the model’s ability to correctly classify a
system call window as negative (benign). This indicates the negative rating model (TNR)
capability of a system call window. According to Table 6, it is also worth noting the high
Precision (PRE) obtained in this experiment with values greater than 98% for all attacks,
with the exception of the SQL Injection attack. Furthermore, a low FPR is noted for all
attacks, with values less than or equal to 1%. On the other hand, metrics such as Accuracy
(ACC) and TPR have room for improvement. This result can probably be achieved with
more samples of malignant and benign behavior of the application, complementing the
dataset used for training the model. The improvement of the dataset used in this experiment
is among the authors’ future goals, since the available version serves as a baseline [29].

The authors of the study presented in [29] state that the work carried out is not aimed
at developing a new machine learning technique for unsupervised introspection, but rather
making use of state-of-the-art techniques to investigate its feasibility of implementation.
Likewise, this work does not present revolutionary techniques or techniques that no longer
exist today. But it primarily aims at using state-of-the-art tools and methodologies to
demonstrate the applicability of the framework proposed in this work. Finally, this first
experiment attested through the use of a public dataset that it is possible to make use of the
proposed framework to provide an additional layer of security for detecting anomalies in
containerized applications.

6. Conclusions

The developed work presented a framework comprising a reference architecture for
the implementation of a HIDS focused on container platforms. The main contributions of
this framework are highlighted as follows:

• Remote collection of system calls from different nodes of a cluster of container orches-
tration, enabling collaborative learning of anomalies;

• Reduction of processing overhead caused by intrusion detection in the nodes of a con-
tainer orchestration cluster through a HIDS architecture with distributed components;

• Scalable architecture implemented with free tools in an emulated
corporate environment;

• Ability to build own datasets of system calls and possibility of sharing with the
community;

• Generation of anomaly detection alerts in applications to support the SOC through
the analysis of system calls;

• Data analysis through web interface containing datasets and indexed anomalies;
• Possibility of implementing different machine learning algorithms and approaches for

detecting anomalies in system calls (frequency, sequence, arguments and other data)
aiming at greater detection efficiency;

• Ability to integrate framework with other tools, improving collaborative security.

Through experimentation with a public dataset of system calls it was possible to
validate the feasibility of implementing and functioning the proposed framework with
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free tools in a functional architecture composed of five layers. Techniques and approaches
used in state-of-the-art studies in the field of research were studied and applied for the
development of the framework. More than the theoretical proposition of a framework, the
main objective of this work was to guarantee the real functioning of an architecture and
integration between its tools, for this reason, the topology emulated in the software GNS3
containing a functional environment.

The results obtained by this work for seven different attacks achieved values equal
to or greater than 99% for the COV metric and less than or equal to 1% for the FPR. Also,
80.95% of all metrics collected surpassed the performance of the study that originated
the dataset with model SFN-opt. The unsupervised machine learning approach achieved
promising performance, demonstrating to be an alternative to supervised techniques.

The possibility of visualizing datasets through an analytical graphical interface is a
differential of the framework, facilitating the understanding and analysis of data through
filtering, aggregation, searches, and other functionalities that can contribute to the activities
of experts and improvement of detection methods. Additionally, through the analysis of
detected anomaly alerts, the SOC team will be provided with additional information about
the security of containerized environments for correlation with data from other tools and
support in decision-making and response.

Regarding the machine learning algorithms and anomaly detection, many optimiza-
tions can be performed in a universe of parameters and possible fine-tuning. Thus, time
becomes a limiting factor when it comes to model optimization and training.

Initially, there was an understanding that the research gap related to real-time intrusion
detection could be addressed without in-depth knowledge of the criteria and complexity
inherent in this problem. Such aspiration can be seen in the publication [33], which, as of
the writing of this work, could not be addressed. This limitation, along with other issues
encountered during the study, were addressed as scope for future work in the framework.
Furthermore, at the end of this study, the obtained perception points out that one of the
main challenges related to intrusion detection in container platforms is related to the large
volume of data involved, presenting itself as a Big Data problem.

Similarly to what has been found in several works in the related literature, the research
field involving intrusion detection in containerized environments is vast and lacks many
advancements and experiments that generate inputs for further research. The contribution
of previously conducted works served as the basis for the development of the proposed
framework and was essential to achieve the results obtained in this study. In this sense, it is
expected that the developed work can be used as an additional reference for the implemen-
tation of Intrusion Detection Systems focused on container environments. Furthermore,
it is expected that future works will bring improvements to the proposed framework
through the implementation of new algorithms, modifications to the architecture, and tests
in production environments.

7. Future Work

Although contributions resulting from this work have been presented, due to the
complexity and scope of the addressed subject, limitations and possible optimizations have
been observed. It should be noted that, as an Intrusion Detection System, no automated
actions are taken when an alert occurs. Therefore, as an improvement to the framework,
automated response actions can be developed to interrupt the propagation and continuation
of an attack in the containerized environment.

An anomaly in a sequence of system calls invoked by a container does not provide
high-level information that immediately leads to the origin of the access causing such
anomaly in the application. In other words, it is not possible to inform the user responsible
for the anomalous behavior in the application, the source IP, or data that would allow
the identification of the agent causing the anomaly without cross-referencing data from
other information sources such as request logs or network traffic for this association. This



Appl. Sci. 2023, 13, 9301 26 of 28

capability to analyze and correlate detection data with other sources of information for
high-level access tracing can be implemented for more effective action against an intrusion.

A trained machine learning model for anomaly detection is typically specific to the
behavior of a single application. The difficulty of achieving good detection performance for
a limited context is already a non-trivial task. However, approaches involving the analysis
of behavior and anomaly detection in multiple interacting containerized applications are
an area that needs to be researched, considering this as a characteristic of current container
environments. Furthermore, for optimizing the training process and improving detection
by machine learning models, distributed processing tools can be studied in conjunction
with federated learning techniques.

According to the current classification used to categorize existing IDS (Intrusion
Detection Systems), a hybrid IDS combines features of both signature-based IDS and
anomaly detection. Thus, the identification of anomalous sequences of system calls can
provide input for building attack signatures and contribute to studies aiming at constructing
a hybrid IDS. In this type of IDS, a signature-based detection step occurs before the anomaly
analysis, enabling the detection of known attacks with lower computational cost. Another
trend that can be studied is the construction of a collaborative IDS, where the capabilities
of a HIDS (Host-based IDS) and NIDS (Network-based IDS) can be combined to enhance
intrusion detection.

The proposed architecture in five layers and its tools aims to serve as a reference for
implementing a HIDS aimed at container orchestration platforms, and its configuration is
not limited to the proposed architecture. It is expected that from this initial version other
tools and processes can be inserted in the processing pipeline aiming at improving the IDS
in each applied scenario. Improvements can be made to the agent used to collect system
calls and to the other components of each layer to increase performance, high availability
and process automation.

Another research idea is left to explore in this paper for additional work, such as the
role of blockchain within the pipeline of the IDS adding extra features and capabilities to
create a large-scale Distributed Container IDS and integrate it with other security systems.

Finally, other experiments can also be carried out in the topology built for applications
running in the configured cluster Kubernetes. New datasets can be generated and pene-
tration tests and attacks executed to evaluate the performance of the IDS. This ongoing
evaluation and testing process, conducted within the pipeline of the IDS, will contribute
to the continuous improvement and enhancement of the IDS, ensuring its effectiveness in
detecting and mitigating intrusions in containerized environments. The results obtained
from these experiments can serve as valuable input for future research and development in
the field of intrusion detection in container orchestration platforms.

Author Contributions: Conceptualization, G.D.A.N. and S.L.R.; Methodology, R.R.N. and S.L.R.;
Data curation, R.S.P. and G.D.A.N.; Writing—original draft, S.L.R.; Writing—review & editing, R.R.N.;
Supervision, F.L.L.d.M. and G.D.A.N. All authors have read and agreed to the published version of
the manuscript.

Funding: The APC was funded by FUNAPE-Fundação de Apoio à Pesquisa, Universidade Federal
de Goiás.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the following public
repository [36].

Acknowledgments: This work is supported in part by CNPq-Brazilian National Research Coun-
cil (Grant 310941/2022-9 PQ-1D), in part by FAPDF-Brazilian Federal District Research Support
Foundation (Grant 625/2022 SISTeR City), in part by the University of Brasilia (Grant 7129 UnB
COPEI), in part by the Ministry of Justice and Public Security (Grant MJSP 01/2019), in part by the
Administrative Council for Economic Defense (Grant CADE 08700.000047/2019-14), in part by the



Appl. Sci. 2023, 13, 9301 27 of 28

General Attorney of the Union (Grant AGU 697.935/2019), in part by the Institutional Security Office
of the Presidency of Brazil (Grant ABIN 008/2019), in part by the Department of Federal Police (Grant
DPF 03/2020), and in part by the General Attorney’s Office for the National Treasure (Grant PGFN
23106.148934/2019-67).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ebert, C.; Gallardo, G.; Hernantes, J.; Serrano, N. DevOps. IEEE Softw. 2016, 33, 94–100. [CrossRef]
2. Souppaya, M.; Morello, J.; Scarfone, K. NIST-SP-800-190-Application Container Security Guide; NIST: Gaithersburg, MD, USA, 2017.

[CrossRef]
3. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; NIST: Gaithersburg, MD, USA, 2011. [CrossRef]
4. Ali, R.; Ali, A.; Iqbal, F.; Hussain, M.; Ullah, F. Deep Learning Methods for Malware and Intrusion Detection: A Systematic

Literature Review. Secur. Commun. Netw. 2022, 2022, 2959222. [CrossRef]
5. IBM Security. X-Force Threat Intelligence Index 2022 Full Report; IBM: Armonk, NY, USA, 2022.
6. ENISA. ENISA Threat Landscape 2022; European Union Agency for Cybersecurity: Attiki, Greece, 2022. [CrossRef]
7. Shu, R.; Gu, X.; Enck, W. A study of security vulnerabilities on docker hub. In Proceedings of the CODASPY 2017—Proceedings

of the 7th ACM Conference on Data and Application Security and Privacy, Scottsdale, AZ, USA, 22–24 March 2017; Association
for Computing Machinery, Inc.: Rochester, NY, USA, 2017; pp. 269–280. [CrossRef]

8. Biermann, E.; Cloete, E.; Venter, L. A comparison of Intrusion Detection systems. Comput. Secur. 2001, 20, 676–683. [CrossRef]
9. Scarfone, K.; Mell, P. Guide to Intrusion Detection and Prevention Systems (IDPS). NIST Spec. Publ. 2007, 800, 94.
10. Flora, J.; Antunes, N. Studying the applicability of intrusion detection to multi-tenant container environments. In Proceedings

of the 2019 15th European Dependable Computing Conference, EDCC 2019, Naples, Italy, 17–20 September 2019; pp. 133–136.
[CrossRef]

11. Flora, J.; Goncalves, P.; Antunes, N. Using Attack Injection to Evaluate Intrusion Detection Effectiveness in Container-based
Systems. In Proceedings of the IEEE Pacific Rim International Symposium on Dependable Computing, PRDC, Perth, Australia,
1–4 December 2020; pp. 60–69. [CrossRef]

12. Kashkoush, M.; Clancy, C.; Abed, A.; Azab, M. Resilient intrusion detection system for cloud containers. Int. J. Commun. Netw.
Distrib. Syst. 2020, 24, 1. [CrossRef]

13. Liu, M.; Xue, Z.; Xu, X.; Zhong, C.; Chen, J. Host-Based Intrusion Detection System with System Calls: Review and Future Trends.
ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]

14. Rohling, M.M.; Grimmer, M.; Kreubel, D.; Hoffmann, J.; Franczyk, B. Standardized container virtualization approach for collecting
host intrusion detection data. In Proceedings of the Federated Conference on Computer Science and Information System. Leipzig,
Germany, 1–4 September 2019; pp. 459–463.

15. Bridges, R.A.; Glass-Vanderlan, T.R.; Iannacone, M.D.; Vincent, M.S.; Chen, Q. A survey of intrusion detection systems leveraging
host data. ACM Comput. Surv. 2019, 52, 128. [CrossRef]

16. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

17. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of deep learning methods for cyber security. Information 2019,
10, 122. [CrossRef]

18. Byrnes, J.; Hoang, T.; Mehta, N.N.; Cheng, Y. A Modern Implementation of System Call Sequence Based Host-Based Intrusion
Detection Systems; In Proceedings of the Second IEEE International Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020; pp. 218–225. [CrossRef]

19. Taj, R. A Machine Learning Framework for Host Based Intrusion Detection Using System Call Abstraction. Master’s Thesis,
Dalhousie University, Halifax, NS, Canada, 2020.

20. Bharathy, A.M.V.; Umapathi, N.; Prabaharan, S. An Elaborate Comprehensive Survey on Recent Developments in Behaviour
Based Intrusion Detection Systems. In Proceedings of the 2019 International Conference on Computational Intelligence in Data
Science, Chennai, India, 21–23 February 2019.

21. Adeleke, O. Intrusion detection: Issues, problems and solutions. In Proceedings of the 3rd International Conference on
Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; pp. 397–402. [CrossRef]

22. Hickman, A.; Vandeven, S. Container Intrusions: Assessing the Efficacy of Intrusion Detection and Analysis Methods for Linux
Container Environments. SANS White Paper, 2018. Available online: https://sansorg.egnyte.com/dl/ySCI2LpMC3 (accessed on
25 March 2021).

23. Abed, A.S.; Clancy, C.; Levy, D.S. Intrusion Detection System for Applications Using Linux Containers. In Proceedings of the
Security and Trust Management: 11th International Workshop, STM 2015, Vienna, Austria, 21–22 September 2015. Volume 9331.
[CrossRef]

24. Abed, A.S.; Clancy, T.C.; Levy, D.S. Applying Bag of System Calls for Anomalous Behavior Detection of Applications in Linux
Containers. In Proceedings of the 2015 IEEE Globecom Workshops, San Diego, CA, USA, 6–10 December 2015.

http://doi.org/10.1109/MS.2016.68
http://dx.doi.org/10.6028/NIST.SP.800-190
http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.1155/2022/2959222
http://dx.doi.org/10.2824/764318
http://dx.doi.org/10.1145/3029806.3029832
http://dx.doi.org/10.1016/S0167-4048(01)00806-9
http://dx.doi.org/10.1109/EDCC.2019.00033
http://dx.doi.org/10.1109/PRDC50213.2020.00017
http://dx.doi.org/10.1504/IJCNDS.2020.10025197
http://dx.doi.org/10.1145/3214304
http://dx.doi.org/10.1145/3344382
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.3390/info10040122
http://dx.doi.org/10.1109/TPS-ISA50397.2020.00037
http://dx.doi.org/10.1109/ICICT50521.2020.00070
https://sansorg.egnyte.com/dl/ySCI2LpMC3
http://dx.doi.org/10.1007/978-3-319-24858-5


Appl. Sci. 2023, 13, 9301 28 of 28

25. Kang, D.K.; Fuller, D.; Honavar, V. Learning Classifiers for Misuse and Anomaly Detection Using a Bag of System Calls
Representation. In Proceedings of the Sixth Annual IEEE SMC Information Assurance Workshop, West Point, NY, USA, 15–17
June 2005.

26. Zhang, X.; Niyaz, Q.; Jahan, F.; Sun, W. Early Detection of Host-based Intrusions in Linux Environment. In Proceedings of
the 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020;
pp. 475–479. [CrossRef]

27. Subba, B.; Biswas, S.; Karmakar, S. Host based intrusion detection system using frequency analysis of n-gram terms. In Pro-
ceedings of the 2017 IEEE Region 10 Conference (TENCON 2017), Penang, Malaysia, 5–8 November 2017; pp. 2006–2011.
[CrossRef]

28. Srinivasan, S.; Kumar, A.; Mahajan, M.; Sitaram, D.; Gupta, S. Probabilistic real-time intrusion detection system for docker
containers. In Security in Computing and Communications: 6th International Symposium, SSCC 2018, Bangalore, India, 19–22 September
2018 ; Springer: Singapore, 2019; Volume 969, pp. 336–347. . [CrossRef]

29. Cui, P.; Umphress, D. Towards Unsupervised Introspection of Containerized Application. In Proceedings of the 2020 10th
International Conference on Communication and Network Security, Tokyo, Japan, 27–29 November 2020; pp. 42–51. [CrossRef]

30. Forrest, S.; Hofmeyr, S.A.; Somayaji, A.; Longstaff, T.A. A Sense of Self for Unix Processes. In Proceedings of the IEEE Symposium
on Security and Privacy, Washington, DC, USA, 6–8 May 1996.

31. Haider, W.; Hu, J.; Moustafa, N. Designing anomaly detection system for cloud servers by frequency domain features of system
call identifiers and machine learning. In Mobile Networks and Management: 9th International Conference, MONAMI 2017, Melbourne,
Australia, 13–15 December 2017; Springer: Cham, Switzerland, 2018; Volume 235, pp. 137–149. [CrossRef]

32. Lin, Y.; Tunde-Onadele, O.; Gu, X. CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized
Applications. In Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020;
pp. 179–188. [CrossRef]

33. Rocha, S.L.; Daniel Amvame Nze, G.; Lopes de Mendonça, F.L. Intrusion Detection in Container Orchestration Clusters:
A framework proposal based on real-time system call analysis with machine learning for anomaly detection. In Proceedings of
the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022, pp. 1–4.
[CrossRef]

34. Tien, C.; Huang, T.; Tien, C.; Huang, T.; Kuo, S. KubAnomaly: Anomaly detection for the Docker orchestration platform with
neural network approaches. Eng. Rep. 2019, 1, e12080. [CrossRef]

35. Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.

36. Rocha, S.L. s4vio/dcids-public: DCIDS—Distributed Container IDS, 2023. Available online: https://github.com/s4vio/dcids-
public (accessed on 7 August 2023).

37. Sysdig. Home · draios/sysdig Wiki, 2023. Available online: https://github.com/draios/sysdig/wiki/ (accessed on 7 Au-
gust 2023).

38. Elasticsearch Elasticsearch: The Official Distributed Search & Analytics Engine|Elastic, 2023. Available online: https://www.
elastic.co/elasticsearch/ (accessed on 7 August 2023).

39. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine Learning and Deep Learning Methods for
Cybersecurity. IEEE Access 2018, 6, 35365–35381. [CrossRef]

40. Keras Team. Keras: The Python Deep Learning API; Keras: Mountain View, CA, USA, 2022.
41. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467.
42. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient Primitives for Deep

Learning. arXiv, 2014, arXiv:1410.0759.
43. Tan, K.; Maxion, R. “Why 6?” Defining the operational limits of stide, an anomaly-based intrusion detector. In Proceedings of the

2002 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 12–15 May 2002; pp. 188–201. [CrossRef]
44. Laszka, A.; Abbas, W.; Sastry, S.; Vorobeychik, Y.; Koutsoukos, X. Optimal Thresholds for Intrusion Detection Systems.

In Proceedings of the Symposium and Bootcamp on the Science of Security, Pittsburgh, PA, USA, 19–21 April 2016. [CrossRef]
45. Bergstra, J.; Yamins, D.; Cox, D. Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning

Algorithms. In Proceedings of the 12th Python in Science Conference, Austin, TX, USA, 24–29 June 2013; pp. 13–19. [CrossRef]
46. Raut, M.; Dhavale, S.; Singh, A.; Mehra, A. Insider threat detection using deep learning: A review. In Proceedings of the 3rd

International Conference on Intelligent Sustainable Systems, ICISS 2020, Thoothukudi, India, 3–5 December 2020; pp. 856–863.
[CrossRef]

47. Buczak, A.L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE
Commun. Surv. Tutorials 2016, 18, 1153–1176. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/EIT48999.2020.9208245
http://dx.doi.org/10.1109/TENCON.2017.8228190
http://dx.doi.org/10.1007/978-981-13-5826-5_26
http://dx.doi.org/10.1145/3442520.3442530
http://dx.doi.org/10.1007/978-3-319-90775-8_12
http://dx.doi.org/10.1145/3427228.3427236
http://dx.doi.org/10.23919/CISTI54924.2022.9820103
http://dx.doi.org/10.1002/eng2.12080
https://github.com/s4vio/dcids-public
https://github.com/s4vio/dcids-public
https://github.com/draios/sysdig/wiki/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
http://dx.doi.org/10.1109/ACCESS.2018.2836950
http://dx.doi.org/10.1109/SECPRI.2002.1004371
http://dx.doi.org/10.1145/2898375.2898399
http://dx.doi.org/10.25080/Majora-8b375195-003
http://dx.doi.org/10.1109/ICISS49785.2020.9315932
http://dx.doi.org/10.1109/COMST.2015.2494502

	Introduction
	Related Works
	Materials and Methods
	Proposed Framework
	Layer 1—Data Capture
	Layer 2—Feature Engineering
	Layer 3—Indexing and Search
	Layer 4—Anomaly Detection
	Layer 5—Data Generation and Analysis

	Results and Discussion
	Conclusions
	Future Work
	References

