
Enhancing IoT Device Security in Kubernetes: An Approach with
Network Policies and the SARIK Framework
Jonathan G. P. dos Santosa, Geraldo P. Rocha Filhob, Rodolfo I. Meneguettec, Rodrigo Bonacind,
Gustavo Pessine and Vinícius P. Gonçalvesa

aUniversity of Brasilia, Electrical Engineering Department, Brasilia, Distrito Federal, Brazil
bState University of Southwest Bahia, Department of Exact and Technological Sciences, Candeias, Bahia, Brazil
cUniversity of São Paulo, Department of Computing System, Sao Carlos, Sao Paulo, Brazil
dCTI Renato Archer, Campinas, Sao Paulo, Brazil
eInstituto Tecnológico Vale, Ouro Preto, Minas Gerais, Brazil

A R T I C L E I N F O
Keywords:
Kubernetes
Cluster
Network policy
Kube-proxy
SARIK
IoT
Edge computing

A B S T R A C T
The Internet of Things (IoT) has ushered in an era of connected devices that, while facilitating real-
time data collection and sharing, it also exposes these devices to significant security risks. This study
addresses security risks challenges by employing the Network Policy feature in Kubernetes, focusing
on the SARIK framework. SARIK is designed to automate the creation and implementation of network
policies, aiming to enhance both the efficiency and protection of IoT devices. In experiments conducted
in a controlled environment with Minikube in Kubernetes, the implementation of SARIK notably im-
proved the security of IoT devices. Key observations included a measurable decrease in vulnerability
to cyberattacks and a significant increase in the overall system resilience. Notably, the study revealed
improvements in the performance metrics analyzed, providing evidence of SARIK’s effectiveness
in real-world scenarios. Compared to existing solutions - e.g., Sysdig -, SARIK stands out in its
integration with Kubernetes network policies and its emphasis on automated security management.
Although automation is a common feature in related works, SARIK’s unique approach to leveraging
the native capabilities of Kubernetes offers a distinct advantage in securing IoT environments. This
aspect, along with its performance benefits, marks SARIK as a notable contribution to IoT security.
The application of SARIK in securing IoT devices in Kubernetes environments underscores the need
for automated and cohesive strategies to tackle contemporary security challenges. This study not only
highlights the efficiency of SARIK but also emphasizes the need for continuous evolution in security
strategies, adapting to the dynamic threats in complex and interconnected IT environments.

1. Introduction
The security of the Internet of Things (IoT) is a sig-

nificant challenge, especially in smart urban environments
where many devices are not initially designed with security
in mind, making them vulnerable to cyberattacks. As high-
lighted by Bardoutsos et al. [1], it is crucial to implement
effective measures to protect these devices and the sensitive
data they manage. One such essential measure is the imple-
mentation of security policies, such as Network Policy in
Kubernetes, which has become a vital tool in managing IoT
devices.

According to Alawneh et al. [2], a container is a software
process that runs a microservices image in a predefined
execution environment with allocated resources. In the IoT
scenario, the use of containers and Kubernetes is becoming
common, in which various technologies are applied to solve
specific problems faced by cities. Kubernetes, in particular,
is often used in IoT applications that require device man-
agement on a large scale [3], being capable of handling the
deployment, update, and monitoring of devices deployed as
containers.

jonathanti@unb.br (J.G.P.d. Santos); geraldo.rocha@uesb.edu.br
(G.P.R. Filho); meneguette@icmc.usp.br (R.I. Meneguette);
rodrigo.bonacin@gmail.com (R. Bonacin); gustavo.pessin@itv.org (G.
Pessin); vpgvinicius@unb.br (V.P. Gonçalves)

ORCID(s):

The literature presents several research works focused on
open-source tools and projects related to the protection of
IoT systems and Kubernetes clusters. For example, kub-Sec
[4] generates AppArmor [5] profiles for Kubernetes clusters
based on container behavior at runtime, while Sysdig [6]
acts as an admission controller applying security policies
during the deployment process. Another work [7] proposes
an integrity protection solution for Kubernetes resources
based on digital signatures. However, these existing works,
including [4], [5], [6], and [7], did not explore scenarios with
network policies and the application of rules to kube-proxy.

This paper presents the SARIK framework [8], which
stands for “Automatic Security of Iptables Rules in Kuber-
netes." SARIK was developed to enhance container security
in Kubernetes by applying blocking rules directly to the
Pods. The previous work presented a preliminary approach
that is limited to implementing rules only at the application
layer. In this work, we propose improvements in the SARIK
approach by suggesting that blocking rules be handled at the
network and transport layers through kube-proxy. This inno-
vation eliminates the need to create Pods with the privileged
flag, providing a safer and more comprehensive approach to
configuring network policies in the Kubernetes cluster.

Aiming to advance this research theme, this paper also
describes and evaluates a voting system in a Kubernetes
cluster utilizing the SARIK framework. Nine experiments

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 1 of 21

were conducted to evaluate several metrics, including la-
tency, response rate, and transfer rate, and to quantify the
amount of data generated. The CPU and memory usage of
the cluster’s Pods were analyzed using Kubernetes resources
like Prometheus and Grafana. The main objective of this
study is to verify whether the selected metrics are capable
of evaluating port and protocol blocking in accordance with
network policies in Kubernetes using the SARIK framework.
Thus, this study contributes by providing an approach to
minimally block the communication between Pods using the
cluster’s output interface as defined by the network policies.

This paper is organized as follows. Section 2 presents
the theoretical exploration and literature review. Section
3 presents the proposed solution. Section 4 describes the
experiment and illustrates the application of the proposed
tool in a use case. Section 5 presents performance evaluation
results, Section 6 presents discussions and implications and
Section 7 presents conclusions and future work.

2. Theoretical Exploration and Literature
Review
In this section, we will present an in-depth theoretical

exploration, covering the fundamental concepts that under-
pin our study. Initially, in the subsection of ’Theoretical
Framework’, we will discuss the key works highlighted in
the literature that are related to this research. Then, in the
subsection of ’Related Works’, we will conduct a compre-
hensive review of the existing literature, analyzing previous
studies that address similar or complementary topics to our
research.
2.1. Theoretical Framework

The work by Borgwardt et al. [9] compares the con-
tainer orchestration systems Borg, Omega, and Kubernetes,
highlighting that each has distinct strengths and limitations.
Borg is scalable and mature but complex; Omega is simpler
and easier to use but less scalable; and Kubernetes is an
intermediate option, combining scalability with usability
complexity. The authors argue that the choice of the most
suitable system depends on the specific needs of an organi-
zation: Borg is recommended for scalability and maturity,
Omega for simplicity and ease of use, and Kubernetes for
a combination of scalability, maturity, and ease of use. This
comparative analysis helps organizations select the container
orchestration system that best suits their needs.

In Medel et al. [10], the authors present a methodol-
ogy for predicting application performance in Kubernetes
environments. The methodology is based on the analysis of
application execution data, such as creation time, completion
time, memory usage, and CPU usage. Using this data, a
model is constructed that can predict the performance of
new applications. This approach provides a valuable tool for
developers and system administrators who wish to improve
the performance of their applications in Kubernetes environ-
ments.

In the work of Chang et al. [11], the authors present a
Kubernetes-based monitoring platform for dynamic cloud

resource provisioning. The platform utilizes a data collector
and a data analyzer to gather performance information from
applications running on the Kubernetes cluster. Based on
this data, the platform is capable of predicting and pro-
visioning additional resources for the cluster as needed.
Evaluation of the platform demonstrated its effectiveness
in resource prediction and provisioning, contributing to im-
proved performance and scalability of applications hosted
on the Kubernetes cluster. The platform offers a compre-
hensive monitoring mechanism, deployment flexibility, and
automatic operation for continuous optimization of resource
provisioning.

In another work [12], the authors Vayghan et al. explore
the high availability (HA) architecture in microservices ap-
plications, highlighting Kubernetes as a suitable platform for
its implementation. The author emphasizes the importance
of designing fault-tolerant applications when using Kuber-
netes for HA. A case study is presented to exemplify the
challenges and lessons learned during the implementation
of a microservices application on Kubernetes. The article is
well-structured, providing a clear and concise explanation
of HA concepts, along with valuable recommendations for
resilient application design. Overall, this work is a useful
read for developers interested in deepening their understand-
ing of HA in microservices applications, providing practical
insights through the presented case study.

Muralidharan et al. [13] address the implementation of
a secure, distributed, and reliable cloud monitoring system
for IoT applications in smart cities. The proposal presents a
container-based system with low latency and reliable com-
munication between IoT devices, focusing on horizontal
interoperability between different applications. The con-
tribution of the work is to provide an efficient solution
for managing IoT applications in smart cities. The system
was evaluated through experimentation with containeriza-
tion techniques using Docker and the Kubernetes orchestra-
tion platform.

In this work [14] new resource scheduling algorithm
for Kubernetes is proposed based on ant colony and par-
ticle swarm optimization, aiming to enhance scheduling
efficiency. The algorithm consists of two phases: host fil-
tering and host scoring. Host filtering uses ant colonies to
identify the most suitable hosts for specific Pods, while the
host scoring phase utilizes optimization techniques to assign
weights based on available resources and current load. Com-
pared to the standard Kubernetes algorithm, experiments
demonstrated that the new algorithm scheduled Pods more
efficiently, reducing resource wastage and showing higher
capacity in handling dynamic workloads, minimizing the
risk of network congestion.
2.2. Related works

This subsection presents an analysis of related works
about security in IoT and Kubernetes cluster environments.
Based on a literature review and authors’ previous expe-
rience, this subsection provides an overview of the most
recent works that investigate and propose solutions in this

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 2 of 21

Reference Consolidated
Framework

Dependency-
free Framework

Egress
interface

Ingress
interface

Conducting
Experiments

BALABANIAN et al., 2019 [15] ✓ ✓

NAM et al., 2020 [16] ✓ ✓ ✓

KULATHUNGA, 2021 [17] ✓

ROCHA et al., 2023 [18] ✓ ✓

SYSDIG Secure, 2023 [6] ✓ ✓ ✓

KUDO et al., 2021 [7]
ZHU et al., 2022 [4] ✓ ✓

BRINGHENTI et al., 2023 [19] ✓

Kano et al., 2022 [20] ✓ ✓

LEE et al., 2023 [21] ✓ ✓ ✓ ✓

Our work ✓ ✓ ✓ ✓ ✓

Table 1
Related works characteristics

field, as well as it provides a summary of these studies and
a comparison between the solutions found for Kubernetes
(Table 1).

Balabanian et al. [15] developed the Tocker framework
with the specific goal of restricting communication between
containers to the bare minimum. Tocker achieves this by
blocking unnecessary ports and introducing firewalls as an
additional layer of security. This approach not only mini-
mizes attack surfaces but also offers an automated approach
to security management in container environments. This
innovative focus of Tocker boosted subsequent research in
the area, including the development of the SARIK frame-
work for Kubernetes environments. SARIK was designed to
address similar challenges in container security, but within
a Kubernetes context, thus filling a gap left by the work on
Tocker.

In the BASTION proposal by Nam et al. [16], the authors
identified a significant gap in container network security
and introduced the innovative BASTION security network
stack. This network stack not only provides effective isola-
tion between containers but also implements more advanced
and detailed network security policies. The relevance of the
BASTION proposal is evidenced by its ability to mitigate
a variety of adversarial attacks, as well as improve network
performance by up to 25.4%. The efficacy of BASTION was
proven through rigorous testing, standing out as a valuable
contribution to the field of container network security, es-
pecially in terms of innovation in security management and
isolation.

Kulathunga’s work [17] represents a significant contri-
bution to security in container orchestration platforms. The
author proposes a dynamic security model that incorporates
an Intrusion Detection System (IDS) designed to efficiently
monitor network traffic in Kubernetes environments. This
IDS is configured to categorize traffic based on applications
in relevant namespaces, allowing for precise identification of
suspicious or anomalous patterns. A new component, named
operator-IDS, is introduced to extend the Kubernetes API,
facilitating an advanced level of monitoring. This innova-
tive component enables the system to detect and respond

to threats more effectively, providing a more granular and
adaptable security approach.

The paper by Rocha et al. [18] addresses the growing
need for more efficient Intrusion Detection Systems (IDS) in
cloud container environments. The study proposes an inno-
vative framework that employs machine learning techniques
for anomaly detection in system calls, offering a robust
and adaptable solution for security in these environments.
This framework stands out for its ability to integrate with
other security tools, promoting a more collaborative and
comprehensive approach to security. The system’s validation
was carried out in an emulation environment with GNS3,
where it demonstrated superior effectiveness in intrusion
detection compared to traditional methods.

The Sysdig Secure platform [6] addresses security in
container environments, integrating monitoring, compli-
ance, and incident response. Its admission controller gener-
ates security policies before image deployment, contributing
to more effective security management. Sysdig Secure col-
lects real-time data from sources such as the Linux kernel
Docker and Kubernetes APIs, analyzing them with machine
learning and AI techniques for efficient threat detection. The
solution stands out for its complete integration, enabling
real-time threat detection, compliance with security policies,
and agile responses to incidents. Being a commercial solu-
tion, access may be limited for some users.

Another relevant work in the field, presented by Kudo
et al. [7], proposes an approach to reinforce the integrity
of resources managed by Kubernetes. The research focuses
on signature verification in the admission controller to ad-
dress the recurring issue of inconsistencies between signed
resources in the admission request and signature messages
automatically generated by Kubernetes. These discrepancies
can lead to failures in signature verification, compromising
the system’s integrity. The main contribution of this study is
the creation of an effective solution to ensure the integrity
of resources in the Kubernetes environment, implementing
a more reliable and integrated signature verification mech-
anism. However, an important limitation identified is the
potential increase in overhead during the admission process
due to signature verification.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 3 of 21

In the study conducted by Zhu et al. [4], an automated
solution named Kub-Sec was proposed for creating AppAr-
mor profiles in Kubernetes clusters. The identification of
gaps in manual profile generation is a time-consuming and
error-prone process, thus Kub-Sec introduces an automated
approach. The system analyzes network traffic to identify
the resources used by running containers, and automatically
generates corresponding AppArmor profiles. This method-
ology reduces the time and efforts necessary for imple-
menting security policies, as well as it ensures that only
authorized resources are accessed, significantly elevating the
security level of Kubernetes clusters. The effectiveness of
Kub-Sec was proven in empirical evaluations, demonstrating
its ability to create accurate and reliable AppArmor profiles
for operational containers.

The paper by Bringhenti et al. [19] addresses the chal-
lenging task of manually configuring security policies in
multi-cluster Kubernetes architectures. The proposed solu-
tion, the "Multi-Cluster Orchestrator", automates the genera-
tion and implementation of network security policies in each
cluster. This approach significantly reduces the possibility
of human errors and facilitates efficient communication be-
tween clusters, thus contributing to the improvement of oper-
ational efficiency and security in multi-cluster environments.
Although the paper indicates that the solution was validated
in realistic use scenarios, a more detailed description of
the validation methodology could enrich the reader’s under-
standing of the applicability and effectiveness of the "Multi-
Cluster Orchestrator".

In the study conducted by Kano et al. [20], a tool is pro-
posed for the verification of network policies in native cloud
environments. This tool utilizes a formal modeling approach,
creating a formal model based on automata networks to
accurately represent network traffic behavior in Kubernetes
environments. The main contribution of this research is
the development of an efficient solution for network policy
verification, capable of identifying and resolving conflicts
and inconsistencies in real-time. This mitigates the risk of
network disruptions, improving the reliability and efficiency
of the system. The study also identified some limitations of
the proposal, including the lack of support for all Kubernetes
network features and the need for manual intervention in
certain situations.

Lee et al. [21] address the security challenges in con-
tainer environments, with a particular focus on human errors
and inadequate configurations that can compromise security.
They introduce KUNERVA, an automated solution that an-
alyzes network logs to generate an optimized and effective
set of network security policies. The tool stands out for its
integration with the Gatekeeper policy application system,
which significantly increases the reliability of the generated
policies. This work represents a significant advancement in
container security automation, offering a practical solution
to mitigate common risks. The authors detail the methodol-
ogy used for evaluating and validating the effectiveness of
KUNERVA, including tests in realistic scenarios to ensure

the applicability and efficacy of the solution in dynamic
container environments.

The SARIK framework stands out from other works
analyzed in several aspects. While many frameworks and
solutions focus on specific aspects of container security, such
as network isolation [15], [16], intrusion detection [17], [18],
or compliance [6], SARIK offers a more comprehensive
and modular approach to network policy management in
Kubernetes environments. The framework allows not only
manual and automatic configuration but also the exclusion
of network policies for both inbound (ingress) and out-
bound (egress) traffic, as well as it offers advanced func-
tionalities such as real-time monitoring, policy validation,
and backup. This flexibility and comprehensiveness make
SARIK a unique solution, as it addresses multiple facets of
network security within a single framework. Additionally,
SARIK incorporates an integrated help module and envi-
ronment checks, making it more accessible to users with
varying levels of expertise. This combination of features
makes SARIK a robust and flexible solution, filling gaps left
by other works that focus on more limited areas of security
in container and Kubernetes environments.

3. Proposed solution
This section presents the SARIK framework, which pro-

vides the ability to configure Pods through network policies,
which enables the control of network traffic. Our goal is
to allow blocking of protocols and ports in the cluster,
thereby adding a layer of security. In this way, it is expected
to prevent security attacks on misconfigured or vulnerable
Pods, strengthening the overall protection of the cluster. By
using SARIK, it is possible to establish effective network
policies that contribute to the mitigation of potential risks
and enhance security in the Kubernetes environment.

Figure 1 presents the SARIK execution diagram, divided
into seven steps, which are described below in a summarized
manner, steps (1) and (2) involve performing various tests to
determine if the framework is capable of executing the script.
In step (3), the framework maps the cluster configurations
and stores this data in variables or arrays. In step (4), after
storing the data, the framework handles with line breaks
by using the readarray function, which stores each line in
a distinct index of the array. In step (5), the framework
generates several YAML manifests for each Pod, which
include network policy rules based on the extracted mapping
data. This includes changing IPs, protocols and ports, as
well as blocking other protocols. In step (6), the framework
generate network policies in each Pod, and then these rules
are converted into iptables rules, which are executed in kube-
proxy, allowing or denying packet traffic between different
hosts or networks. Finally, in step (7), the script completes
the configuration of network policies in the Pods.
3.1. Concepts, Techniques and Tools Employed in

SARIK Framework
SARIK utilizes Kubernetes network policies, which con-

tribute to provide the necessary protections to restrict traffic
Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 4 of 21

Figure 1: SARIK execution diagram

between Pods (within and/or across namespaces) [22] to
create security rules in the cluster. In Kubernetes, Net-
workPolicies are a way to allow security rules to control
the traffic between Pods in a cluster. According to Liz Rice
[23], "Network Policy can be used to implement progressive
security policies, allowing teams to add security restrictions
as needed, rather than having to design and implement all
security policies at once." This means that you can start with
basic rules and gradually add more restrictions as needed,
ensuring increasing security. Network Policies are applied
at the transport layer, specifically at Layer 3 or 4 of the OSI
model (Network layer). They are used to control the traffic
flow between Pods in the cluster, by allowing or denying
access between different Pods. They are implemented at the
cluster level, yet they are applied in conjunction with the
Container Network Interface (CNI) plugin and kube-proxy.

Unfortunately, by default, Minikube [24] /Kubernetes
does not support network policies due to the use of the CNI
plugin, which is the cluster’s standard. The CNI plug-in is
responsible for providing the network infrastructure of the
Pods and ensuring properly configured IP addresses, which
prevents the acceptance of network policies in this plug-in.

Reference [25] investigated various options to overcome
this limitation, including container network interface plugins
such as Flannel [26], Weave [27], Cilium [28], and Calico
[29]. In this paper, we have chosen Calico plugin, as it is
the first option suggested on the Minikube page. However,
it is important to mention that SARIK framework is capable
of automatically generating network policies for Kubernetes
clusters regardless of the network plugin. In the following
we present Calico and Kube-proxy and make considerations
about their use in the SARIK framework.

3.1.1. Enabling Calico in the cluster
Calico is a CNI plugin that applies NetworkPolicy rules

at Layer 3 of the OSI model (i.e., the network layer), using
technologies such as iptables or eBPF (Berkeley Packet
Filter). This plugin enables the enforcement of NetworkPol-
icy rules to control traffic flow between Pods, allowing or
denying access among different Pods based on the rules
defined in NetworkPolicies.

The choice of Calico as a CNI plugin in Minikube is
significant, as it offers a more direct and effective approach to
implementing and managing network policies in Kubernetes
environments, especially compared to other available op-
tions. The command minikube start –network-plugin=cni –
cni=calico is crucial in this context, as it modifies the default
CNI configuration in Minikube to use Calico. This allows
Minikube to configure the user-defined network policies in
the cluster environment, which is essential for the tests and
validations conducted in this study.

Iptables is a Linux packet filtering table manipulation
tool that enables the creation of firewall and NAT rules.
The use of iptables in Calico allows for fine-grained control
over network traffic, offering security and efficiency. Alter-
natively, eBPF, a more recent technology, offers advanced
capabilities for packet filtering and performance monitoring
with lower overhead, increasingly being adopted in modern
network security scenarios.

Studies, such as those presented in [30] "eBPF: A New
Approach to Cloud-Native Observability, Networking and
Security for Current (5G) and Future Mobile Networks (6G
and Beyond)" and [31] "A methodology for using eBPF to
efficiently monitor network behavior in Linux Kubernetes
clusters", highlight the capabilities of iptables and eBPF

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 5 of 21

in network traffic management and security policy imple-
mentation in distributed environments. These technologies
are fundamental for the effective implementation of network
policies in Kubernetes and provide a relevant context for
choosing Calico as a CNI plugin in this work.
3.1.2. Kube-proxy

The kube-proxy is the component of a Kubernetes sys-
tem responsible for monitoring network resource changes,
such as Pods, services, and IP addresses, and configuring
firewall and routing rules to reflect these modifications.
When a Network Policy is applied, the kube-proxy is respon-
sible for configuring the firewall and routing rules to ensure
compliance with the Network Policy rules, i.e., the kube-
proxy is a central hub of cluster communication. Kube-proxy
offers a wide range of services including load balancing,
traffic forwarding, high availability, reverse proxy, and IP
address management [32]. Thus, kube-proxy is a key compo-
nent, which uses iptables to configure the necessary network
rules to ensure connectivity between the cluster components.
Algorithm 1 : Network Policy

a p i V e r s i o n : n e t w o r k i n g . k8s . i o / v1
k ind : Ne tworkPo l i cy
m e t a d a t a :

name : b lock −p o r t −e g r e s s −db
namespace : v o t e

spec :
p o d S e l e c t o r :

ma tchLabe l s :
app : db

p o l i c y T y p e s :
− E g r e s s
e g r e s s :
− p o r t s :

− p r o t o c o l : TCP
p o r t : 22

− t o :
− p o d S e l e c t o r :

ma t chLabe l s :
app : db

3.2. SARIK and Network Policies
We present the generation of the files during the execu-

tion of the SARIK framework (Figure 1). A detailed expla-
nation of how this process occurs and how SARIK, CNI, and
kube-proxy ensure the security of the infrastructure through
network policies is provided. In Algorithm 1, we detail each
field (selectors) and how SARIK handles these fields.

The default header of the manifest consists of the ApiVer-
sion and Kind fields. The Metadata section contains in-
formation such as the name and namespace, which are
filled based on the Pods ID, name, and the network in
which the Pods reside. The spec field contains information
about the Pod’s specifications, such as the podSelector and
the corresponding labels (matchLabels). The policyTypes
section provides restriction options, as shown in the case of
Algorithm 1 the "egress" was chosen. Based on a mapping
(step (3) in Figure 1), a series of protocols and ports are
blocked using the egress, ports, protocol, and port fields. The

podSelector section again refers to the selection of Pods and
their corresponding labels.

In summary, SARIK populates the selection fields of
the manifest shown in Algorithm 1 through a mapping,
resulting in N manifests that block outbound communication
of each Pod in their respective namespaces. After this step,
a additional step is performed to apply the network policies
in the cluster. The command “kubectl apply -f rules” is used
to this end.

The Kubernetes ecosystem, along with the selected CNI
network plugin, performs several procedures to direct spe-
cific network policy requests from the manifests generated
by SARIK to the kube-proxy. Within kube-proxy, chains
and rules are created to reflect the communication blocking.
Algorithm 2 presents an example of iptables configuration
that is executed throughout the process. These rules aim to
allow incoming traffic on a specific TCP port (443) and mark
the network traffic arriving at that port with a mark value
(0x10000/0x10000).
Algorithm 2 : Iptables rules in kube-proxy

[1] −A c a l i −po−_dUocG07UHnoYGHwzj1q −p t c p
−m comment −−comment " c a l i :

RUtNW8LPCr3T_zE7" −m m u l t i p o r t −−
d p o r t s 443 − j MARK −−s e t −xmark 0 x10000
/ 0 x10000

[2] −A c a l i −po−_dUocG07UHnoYGHwzj1q −m
comment −−comment " c a l i :
AX7qYuyJPSjHM8J7 " −m mark −−mark 0
x10000 / 0 x10000 − j RETURN

[3] −A c a l i −po−_dUocG07UHnoYGHwzj1q −m
comment −−comment " c a l i :
KVjlLm06huMbM5nt " −m s e t −−

match− s e t c a l i 4 0 s : CVtTjVoVYfBCPNXq7iYGrlr
d s t − j MARK −−s e t −xmark 0 x10000 / 0
x10000

[4] −A c a l i −po−_dUocG07UHnoYGHwzj1q −m
comment −−comment " c a l i : 5
EN0O5PuSQjj41WP " −m mark −−mark 0
x10000 / 0 x10000 − j RETURN

The first rule of Algorithm 2 defines the TCP port (443)
and the mark that will be set for the incoming traffic on this
port. The second rule verify if the received traffic has the
mark defined by the first rule, and then it returns the traffic
control to the originating process. The third rule defines a set
IP addresses that is allowed to access the port defined by the
first rule and applies the previously defined mark. The last
rule checks the mark defined in the first rule again, and then
it returns the traffic control to the originating process.

The rule mentioned above are part of a larger set of
network security policies, which can be used to ensure
authorization and security of network traffic.

In Algorithm 3, a list of iptables rules is created to
enhance the security and efficiency of data management on
Linux systems. In summary, the rules are as follows:

1. Rule [1]: Allows related and established traffic, using
the conntrack module to verify the connection state
of packets. The ACCEPT action allows packets that

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 6 of 21

meet these conditions to be forwarded for further
processing.

2. Rule [2]: Blocks invalid traffic, identifying packets
marked as "INVALID". The DROP action discards
these packets, preventing their propagation on the
network.

3. Rule [3]: Applies a mark (xmark) to packets, using the
MARK action with the parameter –set-xmark to set
the mark as 0x0/0x10000. This mark can be used later
to apply other specific rules or policies.

4. Rule [4]: Blocks UDP packets encapsulated in VXLAN
using port 4789. This rule prevents encapsulated
VXLAN packets, originated from specific workloads,
from being forwarded, adding an additional layer of
security to the network.

5. Rule [5]: Blocks IP-in-IP encapsulated packets orig-
inated from specific workloads. This rule discards
packets that match this condition, using the -p ipen-
cap parameter to identify the IP-in-IP encapsulation
protocol.

6. Rule [6]: Directs traffic to the cali-pro-kns.vote chain
without specifying a protocol or any related traffic
condition. The chain likely contains other rules to
process the packet.

7. Rule [7]: Checks if the packet has been accepted
by the security profile by verifying if the packet’s
mark matches 0x10000/0x10000. If the condition is
met, the packet is returned (RETURN) to the normal
processing flow.

8. Rule [8]: Routes the packet to the default voting of the
Calico authorization service (cali-pro-ksa.vote). The
decision to accept or block the packet is determined
by the policies and permissions configured for the
authorization service.

9. Rule [9]: Performs an immediate return (RETURN) if
the associated profile of the packet is accepted. This
rule is triggered when the packet has a mark that
matches 0x10000/0x10000, interrupting the evalua-
tion of subsequent rules in the chain.

10. Rule [10]: Drops (DROP) packets that do not match
any defined profiles. This rule is triggered when no
traffic profile is found for the packet, ensuring that only
packets meeting specific criteria are allowed.

11. Rule [11]: Utilizes marking (MARK) at the beginning
of the firewall policies, using the mark set (–set-
xmark) with the value 0x0/0x20000. This marking
serves as an indicator to identify the starting point of
the applied firewall policies.

In Algorithm 4, the process of blocking ports and proto-
cols is detailed. In summary, the rules are as follows:

1. Rule [1]: Checks if a policy has been accepted. If
positive, the packet is returned (RETURN) using the
marking (MARK) 0x10000/0x10000. This approach
allows the packet to return to the normal processing
flow after being processed by a specific policy, assist-
ing in the control and proper routing of traffic based
on established policies.

Algorithm 3 : Calico iptables rules in kube-proxy
[1] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment " c a l i : ZuYBI2b8cXggjkHK " −m
c o n n t r a c k −− c t s t a t e RELATED,
ESTABLISHED − j ACCEPT

[2] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment " c a l i : HbLByr_5h7−iV ibx " −m
c o n n t r a c k −− c t s t a t e INVALID − j DROP

[3] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment " c a l i : QuLrKssNqb4cPtof " − j
MARK −−s e t −xmark 0x0 / 0 x10000

[4] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −p udp −m
comment −−comment " c a l i :
vXfahtOQI3y4FFWb " −m comment −−comment

" Drop VXLAN encapped p a c k e t s
o r i g i n a t i n g i n work loads " −m m u l t i p o r t
−−d p o r t s 4789 − j DROP

[5] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −p i p e n c a p
−m comment −−comment " c a l i : 6
H8FrGk4Wk6Ve17w" −m comment −−comment
" Drop I P i n I P encapped p a c k e t s
o r i g i n a t i n g i n work loads " − j DROP

[6] −−A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment " c a l i : −4b85r6VZynUeOd4 " − j

c a l i −pro −kns . v o t e
[7] −−A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment " c a l i : h5PhrImYCuzL6qET " −m
comment −−comment " Re tu rn i f p r o f i l e
a c c e p t e d " −m mark −−mark 0 x10000 / 0
x10000 − j RETURN

[8] −−A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment " c a l i : E4Gsbi4OgMASZZUh" − j

c a l i −pro −ksa . v o t e . d e f a u l t
[9] −−A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment " c a l i : 0 vRfCptgGHBh−1l −" −m
comment −−comment " Re tu rn i f p r o f i l e
a c c e p t e d " −m mark −−mark 0 x10000 / 0
x10000 − j RETURN

[1 0] −−A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m
comment −−comment " c a l i :
tYr2s6kuv49jm0yz " −m comment −−comment

" Drop i f no p r o f i l e s matched " − j DROP
[1 1] +−A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m

comment −−comment " c a l i : 8 0
ryJuwKsNJyBhFx " −m comment −−comment "
S t a r t o f p o l i c i e s " − j MARK −−s e t −xmark
0x0 / 0 x20000

2. Rule [2]: Marks (MARK) packets with the value
0x0/0x20000, directing them to the specific policy
cali-po-_Ipke1sZDAZREYnL9Cs8. This marking al-
lows the packets to be processed according to the rules
defined in that policy, facilitating traffic management
based on the established configurations.

3. Rule [3]: Checks if the associated policy has been
accepted by verifying the marking (MARK) of pack-
ets with the value 0x10000/0x10000. If the marking
matches, the packets are directed to the RETURN
action, continuing their processing according to the
established policy.

4. Rule [4]: Aims to discard packets that have not been
approved by any policy. This is done by checking the
marking (MARK) of the packets and comparing it to
the value 0x0/0x20000. If the marking does not match,
the packets are directed to the DROP action, indicating
that they should be discarded.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 7 of 21

5. Rule [5]: Related to the policy voting process in a spe-
cific namespace. This rule directs packets to the cali-
pro-kns.vote table, where evaluation and decision-
making regarding the forwarding of these packets
based on the policies defined for the namespace take
place.

6. Rule [6]: Related to the packet return process after
accepting a security profile. It checks if the marker
(mark) assigned to the packets is equal to
0x10000/0x10000, indicating that the security profile
has been accepted. In this case, the packets are re-
turned to their source without any additional action.

7. Rule [7]: Related to the voting process to determine
whether a packet is allowed or not based on the secu-
rity policies defined for the default Kubernetes Service
Account (KSA) namespace. This rule forwards the
packet to the voting table of the default KSA names-
pace, where the policies are evaluated, and a decision
is made.

8. Rule [8]: Aims to return the packet if the associated
profile is accepted. It uses marking (mark) to identify
packets that have gone through the profiling process
and had their profile accepted. When a packet matches
this condition, it is returned, meaning it will proceed
to subsequent steps of firewall processing or be for-
warded to the specified final action in the chain.

9. Rule [9]: Aims to discard the packet if no correspond-
ing profile is found. This rule is applied when no pro-
file associated with the packet is identified, indicating
that there is no match with the defined policies or
rules. The packet is immediately discarded, preventing
any further processing and ensuring it is not allowed
in the network.

4. Experiment and use case
This section presents experiments using a minikube clus-

ter divided into secure and insecure environments. We con-
ducted experiments in the insecure environment using the
default configuration of Kubernetes. While in the secure
environment, the same experiments were performed with the
addition of SARIK to protect the Pods.

The proposed solution was developed in a controlled
environment using a minikube cluster with the following
configurations: Processor: Intel Core i5-3360M CPU @
2.80 GHz; Memory: 16 GB DDR3; Network interface:
Intel 82579LM Gigabit Ethernet; Storage: 256 GB SSD;
Operating System: Ubuntu Mint. In the development of the
SARIK framework, shell script language was chosen due
to its presence in most Unix systems and cloud computing
platforms.

Algorithm 5 presents the kube-system namespace, which
is responsible for maintaining key components of Kuber-
netes, such as: the Calico network controller, CoreDNS,
etcd, among others. These components are necessary for
the proper functioning of the Kubernetes cluster. The vote

Algorithm 4 : Calico iptables block rules in kube-proxy
[1] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment
" c a l i : ZWtp0l5QKTr_VPXU" −m comment −−

comment
" R e t u r n i f p o l i c y a c c e p t e d " −m mark −−

mark
0 x10000 / 0 x10000 − j RETURN

[2] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment

" c a l i : v3−lAQEi−QRHNeZ−" −m mark −−mark 0
x0 / 0 x20000

− j c a l i −po−_Ipke1sZDAZREYnL9Cs8
[3] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment
" c a l i : 5 6 JZ_F− i a R R s h p s l " −m comment −−

comment
" R e t u r n i f p o l i c y a c c e p t e d " −m mark −−

mark
0 x10000 / 0 x10000 − j RETURN

[4] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment

" c a l i : dv6l1Ow96eEW40m0 " −m comment −−
comment

" Drop i f no p o l i c i e s p a s s e d p a c k e t " −m
mark

−−mark 0x0 / 0 x20000 − j DROP
[5] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment
" c a l i : mB6IM8g−g1Nz−OS6" − j c a l i −pro −kns .

v o t e
[6] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment
" c a l i : RLFlTbD−Wm0owtSk" −m comment −−

comment
" R e t u r n i f p r o f i l e a c c e p t e d " −m mark −−

mark
0 x10000 / 0 x10000 − j RETURN

[7] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment

" c a l i : qKtZvJTKIWtHBwfX " − j c a l i −pro −ksa .
v o t e . d e f a u l t

[8] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment
−−comment

" c a l i : NKUtuKuCn6gyOB8m" −m comment −−
comment

" R e t u r n i f p r o f i l e a c c e p t e d " −m mark −−
mark

0 x10000 / 0 x10000 − j RETURN
[9] −A c a l i −fw−c a l i 5 6 d d e 0 e d 2 4 e −m comment

−−comment
" c a l i : fH_OupKrlVyQyFBo " −m comment −−

comment
" Drop i f no p r o f i l e s matched " − j DROP

namespace is used to maintain the Pods of a voting applica-
tion. In this experiment, we have the db, redis, result, vote,
and worker Pods running in this namespace. Additionally,
we can observe in Algorithm 5 network policies applied to
these Pods, blocking ports 22, 443, 7, and 80 for each of
the Pods that make up the voting application. Finally, all
Pods communicate with each other through the Kubernetes
Service, which is responsible for exposing these Pods within
the cluster, allowing other components of the cluster to
communicate with them.

The conducted experiments aim to test the secure and
insecure scenarios to evaluate the time required to execute

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 8 of 21

Algorithm 5 : Pods execution diagram
NAME READY STATUS RESTARTS AGE
c a l i c o −kube− c o n t r o l l e r s −58497 c65d5 −9cd9p 1 / 1 Running 0 88 s
c a l i c o −node−wsx4z 1 / 1 Running 0 88 s
co redns −78 fcd69978 −kw5xj 1 / 1 Running 0 88 s
e t cd −minikube 1 / 1 Running 0 108 s
kube−a p i s e r v e r −minikube 1 / 1 Running 0 103 s
kube− c o n t r o l l e r −manager −minikube 1 / 1 Running 0 101 s
kube−proxy −c s 5 8 s 1 / 1 Running 0 88 s
kube−s c h e d u l e r −minikube 1 / 1 Running 0 109 s
s t o r a g e − p r o v i s i o n e r 1 / 1 Running 1 (46 s ago) 83 s

NAME READY STATUS RESTARTS AGE
db −684 b9b49fd −45h76 1 / 1 Running 0 2m3s
r e d i s −67db9bd79b −9x66h 1 / 1 Running 0 2m3s
r e s u l t −77 f68799c4 −wr5p6 1 / 1 Running 0 2m3s
vote −79787 c6c8b −f z44b 1 / 1 Running 0 2m2s
worker −78 b 9 f f 5 9 f c −58nk6 1 / 1 Running 0 2m2s
NAME POD−SELECTOR AGE
block −p o r t s −e g r e s s −db −684 b9b49fd −45h76 −22 app=db 53 s
block −p o r t s −e g r e s s −db −684 b9b49fd −45h76 −443 app=db 53 s
block −p o r t s −e g r e s s −db −684 b9b49fd −45h76−7 app=db 53 s
block −p o r t s −e g r e s s −db −684 b9b49fd −45h76 −80 app=db 53 s
block −p o r t s −e g r e s s − r e d i s −67db9bd79b −9x66h −22 app= r e d i s 53 s
block −p o r t s −e g r e s s − r e d i s −67db9bd79b −9x66h −443 app= r e d i s 53 s
block −p o r t s −e g r e s s − r e d i s −67db9bd79b −9x66h −7 app= r e d i s 53 s
block −p o r t s −e g r e s s − r e d i s −67db9bd79b −9x66h −80 app= r e d i s 53 s
block −p o r t s −e g r e s s − r e s u l t −77 f68799c4 −wr5p6 −22 app= r e s u l t 53 s
b lock −p o r t s −e g r e s s − r e s u l t −77 f68799c4 −wr5p6 −443 app= r e s u l t 53 s
b lock −p o r t s −e g r e s s − r e s u l t −77 f68799c4 −wr5p6 −7 app= r e s u l t 53 s
b lock −p o r t s −e g r e s s − r e s u l t −77 f68799c4 −wr5p6 −80 app= r e s u l t 53 s
b lock −p o r t s −e g r e s s −vote −79787 c6c8b −fz44b −22 app=v o t e 53 s
block −p o r t s −e g r e s s −vote −79787 c6c8b −fz44b −443 app=v o t e 53 s
block −p o r t s −e g r e s s −vote −79787 c6c8b −fz44b −7 app=v o t e 53 s
block −p o r t s −e g r e s s −vote −79787 c6c8b −fz44b −80 app=v o t e 53 s

each command and, based on this information, quantify and
assess the security of each analyzed group.

In the first experiments, the Pods named "db," "re-
dis," "result," and "vote" were accessed, from which the
commands "ping," "curl," "apt," and "wget" were executed
within the "vote" Pod and outside the cluster; using the
Google website to download and copy files. During the
experiments in the insecure scenario, it was observed that
the communication between these Pods and outside the
cluster occurred correctly, that is, they were able to ping
each other and download data from the internet. This shows
that, in a default Kubernetes environment, adjacent Pods
are vulnerable to attacks that map existing Pods on the
node, and the Pods can download content. These attacks
can be exploited by attackers to gather information about the
cluster’s structure, as well as to install malware, posing var-
ious security risks. Figure 2 illustrates the communication
between the Pods and highlights the vulnerability of adjacent
Pods to Pod mapping attacks. It is important to note that, to
mitigate this type of vulnerability, network policies can be
implemented to block such communication, as done in this
work.

In the next experiments, the ports 22, 443, 7, and 80
were blocked in each of the Pods that make up the voting
application using network policies to prevent communica-
tion between them. During the experiments in the secure
scenario, it was observed that the communication between

Figure 2: Connection established

Figure 3: Connection block

the Pods and outside the cluster was successfully blocked,
i.e., the commands "ping," "curl," "apt," and "wget" were not
executed. This shows that by implementing network policies
to block communication on vulnerable ports, it is possible
to increase the security of the Pods and reduce the risk of
malicious invasions. Figure 3 illustrates the blocked commu-
nication between the Pods and highlights the effectiveness
of the network policies in preventing Pod mapping attacks

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 9 of 21

Latency metric Response rate metric Transmission rate metric
Day Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
1 1.5425 21.1753 3.38343 336.25 10.0823 31.831
2 1.62673 21.1511 3.28344 336.283 10.0817 31.8277
3 1.60383 21.2002 5.68344 469.55 10.0833 31.827
4 1.62517 21.1992 3.38344 336.35 10.082 31.829
5 1.5257 21.1454 2.81678 334.917 10.082 31.8533
6 1.69003 21.153 3.28344 336.283 10.0827 31.847
7 1.60157 21.1489 3.31678 334.95 10.083 31.8473
8 1.52497 21.1483 3.28344 334.917 10.085 31.8537
9 1.54467 21.139 3.38345 336.25 10.0817 31.833
10 1.59287 21.1842 3.35011 336.283 10.0813 31.8423

Table 2
The average of groups 1 (insecure) and 2 (secure) of the metrics from the experiments

and the installation of malware through the "curl," "apt," and
"wget" commands.

The experiments generated several tables containing the
average execution times of each command according to the
metrics detailed in Section 5. These values were collected
over ten consecutive days using various scripts that per-
formed the tests and gathered the information. To ensure the
accuracy of the results, each command was tested 30 times
for both the insecure and secure groups.

In this work, we conducted experiments to evaluate three
metrics: transmission rate, latency, and response rate. The
transmission rate metric was tested using iperf, while the
latency and response rate metrics were assessed by executing
four commands, namely “apt,” “curl,” “ping,” and “wget,”
on each study Pod. For a more detailed analysis, we took
the “db” Pod and the “apt” command as a reference, using
Table 2. The results indicate that the average execution time
of the commands in Group 1 (insecure), shown in the second
column of the latency metric, is lower compared to Group 2
(secure), presented in the third column. This behavior can
be attributed to the activation of blocking rules in Group
2, which hinder the quick completion of the commands.
This finding highlights the effectiveness of the implemented
blocking rules in Group 2, contributing to a more secure
environment.

In Group 1 (insecure), tests were conducted without
network policies, which means that all Pods in the cluster had
unrestricted access to all network resources. The results ob-
tained showed an average time of 1.5878 seconds with a time
variation ranging from 1 to 21 seconds for the latency metric.
Regarding the response rate metric, the results showed an
average time of 3.5167 seconds with a time variation ranging
from 3 to 5 seconds. In the transmission rate metric, the
average time was 10.0825 seconds with a time variation of 10
seconds, as observed in Table 2. The experiments involved
performing certain actions to simulate atypical behavior of
an application, such as the Pod downloading or updating the
system without the administrator’s authorization (malicious
script that accesses the internet to send and receive data).

In Group 2, network policies were enabled, which means
that all Pods in the cluster lost network communication
access. The results obtained showed an average time of

21.1644 seconds with a time variation of 21 seconds for
the latency metric. Regarding the response rate metric, the
results showed an average time of 338.0741 seconds with a
time variation ranging from 334 to 469 seconds. In the trans-
mission rate metric, the average time was 31.8391 seconds
with a time variation of 31 seconds, as observed in 2. The
experiments involved blocking the communication of Pods
to prevent the previously reported atypical behaviors.

5. Performance evaluation
This section summarizes the performance evaluation

results of several tests applied to the experimental data.
The findings were based on a confidence interval of 95%
(p < 0.05). The performance of four Pods was evaluated
to measure response rate, latency, and transmission rate in
experiments conducted on each Pod. The overall objective of
these experiments was to measure the execution time of each
metric in seconds and assess whether the Pods are connected
or if the traffic is being blocked by active network rules.

After an exploratory analysis of the data, outliers were
identified in data from both groups, and upon further re-
view, they were identified as measurement errors. As recom-
mended by Hair et al. [33], the outlier were excluded to avoid
influences in the statistical analysis. Also, the exclusion of
these data points allowed the data to meet the normality
criterion. By improving the fit of the data to a normal
distribution, it was possible to use more robust parametric
tests.

The data in this study were analyzed using tests for nor-
mality and variance homogeneity, using the Jamovi software
[34]. Some variables were transformed using the natural
logarithm (LOG) to improve their fit to the normality crite-
ria. The next subsections presents a summary of results and
findings, additional details of the static analysis are available
on the SARIK1 project page.
5.1. Latency metric

Latency, a key measure for in distributed systems and
computer networks, was the first analysed metric, as it rep-
resents the delay time between sending a data packet and

1SARIK project validation: https://github.com/jonathamgg/

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 10 of 21

https://github.com/jonathamgg/sarik_validation_graphics

Table 3
Comparison of Statistical Tests in Pods

Comparison of Statistical Tests for Latency Metrics in the Pod db
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt p ≥ 0.05 NO p < 0.05* NO YES p < 0.05
curl*** p ≥ 0.05** NO p ≥ 0.05 YES NO p < 0.05
ping p ≥ 0.05 NO p ≥ 0.05 YES NO p < 0.05
wget*** p ≥ 0.05** NO p < 0.05* NO YES p < 0.05

Comparison of Statistical Tests for Latency Metrics in the Pod redis
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt*** p ≥ 0.05** NO p ≥ 0.05 YES NO p < 0.05
curl p ≥ 0.05 NO p < 0.05* NO YES p < 0.05
ping p ≥ 0.05 NO p ≥ 0.05 YES NO p < 0.05
wget*** p ≥ 0.05** NO p ≥ 0.05 YES NO p < 0.05

Comparison of Statistical Tests for Latency Metrics in the Pod result
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt*** p ≥ 0.05** NO p ≥ 0.05 YES NO p < 0.05
curl*** p ≥ 0.05** NO p ≥ 0.05 YES NO p < 0.05
ping p ≥ 0.05 NO p ≥ 0.05 YES NO p < 0.05
wget*** p ≥ 0.05** NO p < 0.05* NO YES p < 0.05

Comparison of Statistical Tests for Latency Metrics in the Pod vote
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt p ≥ 0.05 NO p < 0.05* NO YES p < 0.05
curl*** p ≥ 0.05** NO p < 0.05* NO YES p < 0.05
ping p ≥ 0.05 NO p ≥ 0.05 YES NO p < 0.05
wget*** p ≥ 0.05** NO p < 0.05* NO YES p < 0.05

* The Levene test is significant, suggesting a violation of the assumption of homogeneity of variances. ** Significant normality
test indicates a violation of the normality assumption. *** An outlier was excluded to correct the normality in the distribution of
the data.

receiving the response by the system. In latency analysis,
we used the TIME tool in each Pod, applying regular ex-
pressions to filter the corresponding field and obtain the
measurement time in seconds, as observed in the latency2
metric available on the validation project page. This ap-
proach allows us to obtain accurate and relevant results for
evaluating the performance of network policies in the cluster.

A customized approach using a script that executes the
’kubectl exec’ command on each Pod was used to measure
the latency in the proposed Kubernetes cluster. Specifically,
the ’time apk update’ command was used to measure the
system’s response time. The time data collected were then
analyzed using regular expressions, allowing for the precise
extraction of the latency metric, represented in seconds. This
methodology provided detailed and accurate measurements
of the delay in network communication within the cluster,
essential for assessing the impact of network policies on
system performance.

As shown in Figure 4, the Pod db in Group 1 achieved the
average latency of less than 1.5 seconds in three variables,
and 7.5 seconds in the PING variable, considering a cycle of
30 experiment repetitions. While Group 2 achieved approx-
imately 20 seconds of latency in the same test cycle. It is
worth noting that the CURL and WGET variables in Group
1 exhibited outlier values during the experiment.

2Script latency: https://github.com/jonathamgg/

Furthermore, it is noticeable that Group 1 exhibited
faster command execution speed as compared with Group
2. This occurred because, unlike Group 2, Group 1 does not
have any network policies to be applied and, consequently,
affect the latency of data packets.

Figure 4: Comparison of mean values between Groups 1 and 2
with 95% confidence intervals in the Pod db.

According to Table 3, related to the Pod db, only the
Curl and Wget variables exhibited outliers and non-normal
distribution (p < 0.05). After excluding outliers, a normal
distribution was obtained, and it was not necessary to per-
form logarithmic transformation. In the Levene’s test, only

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 11 of 21

https://github.com/jonathamgg/sarik_validation_graphics/tree/master/validacao/latencia

Figure 5: Comparison of mean values between Groups 1 and 2
with 95% confidence intervals in the Pod redis.

Curl and Ping showed homogeneous distribution, so they
were submitted to the t-test. The other two variables - Apt
and Wget - did not have homogeneous distribution, requiring
the application of Welch’s t-test. The results of the exper-
iments indicated a p-value less than 0.05 for all variables,
indicating statistically significant differences between the
means of Groups 1 and 2.

As shown in Figure 5, the Pod redis in Group 1 achieved
the average latency of less than 1 second in three variables
and 7.5 seconds in the PING variable, considering a cycle of
30 experiment repetitions. While Group 2 achieved approx-
imately 5 to 17.5 seconds of average latency in the same test
cycle. It is worth noting that the WGET variable in Group 1
exhibited outlier values during the experiment.

According to Table 3, related to the Pod redis, only the
Apt and Wget variables exhibited outlier values and non-
normal distribution (p < 0.05). After excluding outliers, a
normal distribution was obtained, without the need to per-
form a logarithmic transformation. In Levene’s test, the Apt,
Ping, and Wget variables showed homogeneous distribution,
so they were submitted to the t-test. The Curl variable did not
have a homogeneous distribution, requiring the application
of the t-test with Welch correction. The results of the exper-
iments indicated that the p-value was lower for all variables.
All the results showed statistically significant differences (p
< 0.05).

As shown in Figure 6, the Pod result in Group 1 achieved
the average latency of less than 1 second in three variables
and 7 seconds in the PING variable, considering a cycle of
30 experiment repetitions. While Group 2 achieved approx-
imately 7 to 21.5 seconds of average latency in the same test
cycle. It is worth noting that the CURL and WGET variables
in Group 1 and the APT variable in Group 2 exhibited outlier
values during the experiment.

According to Table 3, related to the Pod result, the vari-
ables Apt, Curl, and Wget exhibited outlier values and non-
normal distribution (p < 0.05). After excluding the outlier
values, the distribution was normalized. It was not necessary
to perform a logarithmic transformation. In Levene’s test, the
variables Apt, Curl, and Ping had homogeneous distribution,
so they were submitted to the t-test. However, the variable

Figure 6: Comparison of mean values between Groups 1 and 2
with 95% confidence intervals in the Pod result.

Wget did not have a homogeneous distribution, which re-
quired the application of the t-test with Welch correction.
The results of the experiments indicated that the p-value
was lower for all variables. All results showed statistically
significant differences (p < 0.05).

As shown in Figure 7, the Pod vote in Group 1 achieved
the average latency below 1 second in three variables and 7.5
seconds in the PING variable, considering a cycle of 30 ex-
periment repetitions. While Group 2 achieved approximately
an average latency of approximately 5 to 17.5 seconds in the
same test cycle. It is worth noting that the WGET variable
in Group 1 exhibited outlier values during the experiment.

Figure 7: Comparison of mean values between Groups 1 and 2
with 95% confidence intervals in the Pod vote.

According to Table 3, related to the Pod vote, the vari-
ables Curl and Wget exhibited outlier values and non-normal
distribution (p < 0.05). After excluding outliers, a normal
distribution was obtained, without the need to perform a log-
arithmic transformation. In Levene’s test, the Ping variable
had a homogeneous distribution, so they were submitted to
the t-test. The variables Apt, Curl, and Wget did not have a
homogeneous distribution, requiring the application of the
t-test with Welch correction. The results of the experiments
indicated that the p-value was lower for all variables. All the
results showed statistically significant differences (p < 0.05).

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 12 of 21

Table 4
Comparison of Statistical Tests in Pods

Comparison of Statistical Tests for Response Rate Metrics in the Pod db
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt*** p < 0.05 YES p < 0.05* NO YES p < 0.05
curl*** p < 0.05 YES p < 0.05* NO YES p < 0.05
ping*** p < 0.05 YES p < 0.05* NO YES p < 0.05
wget*** p < 0.05** YES p < 0.05* NO YES p < 0.05

Comparison of Statistical Tests for Response Rate Metrics in the Pod redis
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt*** p < 0.05 YES p < 0.05* NO YES p < 0.05
curl*** p < 0.05 YES p < 0.05* NO YES p < 0.05
ping*** p < 0.05 YES p < 0.05* NO YES p < 0.05
wget*** p < 0.05 YES p < 0.05* NO YES p < 0.05

Comparison of Statistical Tests for Response Rate Metrics in the Pod result
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt*** p < 0.05 YES p < 0.05* NO YES p < 0.05
curl*** p < 0.05 YES p < 0.05* NO YES p < 0.05
ping*** p < 0.05 YES p < 0.05* NO YES p < 0.05
wget*** p < 0.05 YES p < 0.05* NO YES p < 0.05

Comparison of Statistical Tests for Response Rate Metrics in the Pod vote
Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
apt*** p < 0.05 YES p < 0.05* NO YES p < 0.05
curl*** p < 0.05 YES p < 0.05* NO YES p < 0.05
ping*** p < 0.05 YES p < 0.05* NO YES p < 0.05
wget*** p < 0.05 YES p < 0.05* NO YES p < 0.05

* The Levene test is significant, suggesting a violation of the assumption of homogeneity of variances. ** Significant normality
test indicates a violation of the normality assumption. *** An outlier was excluded to correct the normality in the distribution of
the data.

5.2. Response rate metric
Just like latency, the response rate is an key metric in

the study of distributed systems and computer networks’
performance, as it represents the system’s ability to respond
to requests efficiently. In this analysis, we measured the re-
sponse rate using DATE tool for each Pod of the application.
We used DATE command to obtain and register the start
timestamp before initiating the command executed in the
Pod. Then, the DATE command is executed in the Pod to
send a test request and receive the response. After the DATE
command, we record the current time again to obtain the end
timestamp. Thus, the response time is the difference between
the start and end timestamps. By examining the obtained
results, we can evaluate the server’s processing capacity, and
the quality of the network connection, and identify possible
bottlenecks that may affect the response rate. It is important
to note that the use of regular expressions is applied to filter
the relevant data from the DATE response field, as observed
in the response rate metric3.

As Figure 8 illustrates, the db Pod in Group 1 achieved
an average response time of less than 2 seconds for the
variables – apt, curl, ping, and wget - considering a cycle
of 30 experiment repetitions. While Group 2 recorded an
average response time of approximately 350 seconds for the
apt variable, and an average of 50 seconds for the other

3Script response rate metric: https://github.com/jonathamgg/

variables in the same test cycle. It is worth noting that the
wget variable in Group 1 presented outliers, and in Group 2,
the apt, ping, and wget variables showed outliers during the
experiment.

Figure 8: Comparison of mean values between Groups 1 and 2
with 95% confidence intervals in the Pod db in response rate
metric.

As Figure 9 illustrates, the redis Pod in Group 1 achieved
an average response time of less than 5 seconds for the
variables – apt, curl, and wget - and 24 seconds for the ping
variable, considering a cycle of 30 experiment repetitions.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 13 of 21

https://github.com/jonathamgg/sarik_validation_graphics/tree/master/validacao/taxa_resposta

While Group 2 recorded an average response time of approx-
imately 29 seconds for the ping variable, and an average of 9
to 19 seconds for the other variables in the same test cycle. It
is worth noting that all variables in both Group 1 and Group
2 presented outliers during the experiment.

Figure 9: Comparison of mean values between Groups 1 and
2 with 95% confidence intervals in the Pod redis in response
rate metric.

As Figure 10 illustrates, the result Pod in Group 1
achieved an average response time of less than 1 second
for the variables – apt, curl, and wget - and 25 seconds
for the ping variable, considering a cycle of 30 experiment
repetitions. While Group 2 recorded an average response
time of approximately 65 seconds for the variables – curl,
ping, and wget - and 340 seconds for apt in the same test
cycle. It is worth noting that the variables apt and curl in
Group 1 did not have outliers during the experiment, while
the other variables presented outliers.

Figure 10: Comparison of mean values between Groups 1 and
2 with 95% confidence intervals in the Pod result in response
rate metric.

As Figure 11 illustrates, the vote Pod in Group 1 achieved
the average response time ranging from 2 to 11 seconds for
the variables - apt, curl, ping, and wget - considering a cycle
of 30 experiment repetitions. While Group 2 recorded an
average response time of approximately 9 to 41 seconds for
the variables - apt, curl, and wget - and 58 seconds for ping

in the same test cycle. It is worth noting that all variables
presented outliers during the experiment.

Figure 11: Comparison of mean values between Groups 1 and
2 with 95% confidence intervals in the Pod vote in response
rate metric.

According to Table 4, related to the db, redis, result, and
vote Pods, all variables presented outliers and non-normal
distribution (p < 0.05). Thus, it was necessary to perform
logarithmic transformations. In the Levene test, the variables
did not have homogeneous distribution, which required the
application of the t-test with Welch correction. The results of
the experiments indicated that the p-value was less than 0.05
for all variables in all Pods. All results showed statistically
significant differences (p < 0.05).
5.3. Transmission rate metric

The transmission rate is another key metric for evaluat-
ing the data transfer speed between devices in a network.
In the context of this study, the iperf3 tool was used in the
cluster and application Pod’s to measure this rate. When
performing the transmission test, the “time” command is
used to record the start and end times of the test, which
allows the calculation of the time difference between them.
This difference provides us with the necessary information to
determine the transmission rate. The analysis of the results,
obtained through regular expressions applied to the iperf3
output, is essential for a precise and detailed understanding
of the system’s transmission rate.

The results presented in Table 5 indicate that the as-
sumption of normality for the Pod redis was violated (p <
0.05), therefore, a logarithmic transformation was applied.
Levene’s test indicated heterogeneity of variances for all
variable, requiring the application of the t-test with Welch’s
correction. All the results showed statistically significant
differences (p < 0.05).

Figure 12 shows that the Pods in Group 1 achieved the
average transmission time of around 10 seconds, with a
transmission rate of 10 Gbps in a cycle of 30 repetitions.
While Group 2 achieved the average transmission time of
approximately 30 seconds in the same test cycle, maintaining
a transmission rate of 10 Gbps. It is important to note that
the redis Pod in Group 1 presented outliers, preventing the
execution of the t-test for this specific Pod.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 14 of 21

Table 5
Comparison of Statistical Tests for Transmission Rate Metrics in Pod

Variables Shapiro-Wilk test Transformation (LOG) Levene test Student’s t-test Welch’s t-test p-value.
db p ≥ 0.05 NO p < 0.05* NO YES p < 0.05
redis p < 0.05 YES p < 0.05* NO YES p < 0.05
result p ≥ 0.05 NO p < 0.05* NO YES p < 0.05
vote p ≥ 0.05 NO p < 0.05* NO YES p < 0.05

* The Levene test is significant, suggesting a violation of the assumption of homogeneity of variances. ** Significant normality
test indicates a violation of the normality assumption. *** An outlier was excluded to correct the normality in the distribution of
the data.

Figure 12: Comparison of mean values between Groups 1 and
2 with 95% confidence intervals in the Pods

In the context of this study, it was observed that the use
of network policies led to statistical disparities in the ana-
lyzed metrics. The policies influence the data flow, affecting
latency, response rate, and transmission rate. However, the
graphs consistently demonstrated that the network policies
effectively restricted unwanted traffic. Despite the statistical
differences, a clear distinction can be observed between
the groups with and without network policies, highlighting
the ability of these policies to control and direct traffic
efficiently. This analysis of the graphs reinforces the impor-
tance of network policies in ensuring security and quality
of service in distributed environments, even if some metrics
may exhibit disparate values.

6. Discussions and Implications
This section covers the discussion of the results obtained

in this research, presenting the limitations encountered, the
strengths identified, as well as the future challenges that
arose during the study. Additionally, the main results of the
performance evaluation of the analyzed metrics are summa-
rized. The objective of this section is to conduct a critical
analysis of the impact of security rules in low-workload
environments, as well as in high-demand environments.
To support the discussions and gain meaningful insights,
monitoring tools such as Grafana and Prometheus were used.
These tools provided valuable data that contributed to the
understanding of the results obtained in the experiment.

The default configuration of Minikube disables all “ad-
dons,” making it challenging to analyze data through tools
like Grafana and Prometheus. To ensure more accurate anal-
ysis and discussions, it was necessary to enable the metrics-
server and pod-security-policy addons using the commands
“minikube addons enable metrics-server” and “minikube
addons enable pod-security-policy.” These traffic monitor-
ing tools allow monitoring of CPU, memory, and network
consumption in the cluster.

A namespace called “monitoring” was created to host
two essential Pods for the experiment monitoring: Grafana
and Prometheus, as observed in Algorithm 6. The Prometheus
Pod is responsible for collecting data from the cluster, while
the Grafana Pod displays the results. A sample dashboard
was developed to visualize this data appropriately, as seen
in Figure 13.
Algorithm 6 : Prometheus and grafana
j o n a t h a n @ j on a t h a n −HP : ~ / m o n i t o r i n g $ min ikube s e r v i c e l i s t
−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NAMESPACE	NAME	TARGET PORT	URL
−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d e f a u l t	k u b e r n e t e s	No node p o r t	
kube−sys tem	kube−dns	No node p o r t	
kube−sys tem	kube− s t a t e −m e t r i c s	No node p o r t	
kube−sys tem	m e t r i c s − s e r v e r	No node p o r t	
m o n i t o r i n g	g r a f a n a	3000	h t t p : / / 1 9 2 . 1 6 8 . 3 9 . 1 3 1 : 3 2 0 0 0
m o n i t o r i n g	prometheus − s e r v i c e	8080	h t t p : / / 1 9 2 . 1 6 8 . 3 9 . 1 3 1 : 3 0 0 0 0
v o t e	db	No node p o r t	
v o t e	r e d i s	No node p o r t	
v o t e	r e s u l t	r e s u l t − s e r v i c e /5001	h t t p : / / 1 9 2 . 1 6 8 . 3 9 . 1 3 1 : 3 1 0 0 1
v o t e	v o t e	vo te − s e r v i c e /5000	h t t p : / / 1 9 2 . 1 6 8 . 3 9 . 1 3 1 : 3 1 0 0 0
−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−−	−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

It is important to highlight that a new test cycle was
conducted with the addition of these add-ons and the mon-
itoring of cluster resources. This approach allowed for a
more comprehensive and accurate analysis of the system’s
performance.

In this work, the curl and wget commands were used
to retrieve data from the internet, encompassing the latency
and response rate metrics. In order to determine the number
of hops required to reach the target domain with these
commands, the traceroute command was used to obtain
information about the hops made in the network. However,
it is important to note that the db and result Pods were not
evaluated due to the inability to install either of these tools,
“traceroute” or “mtr” (My TraceRoute), in these Pods as they
use the Debian operating system. Only the redis and vote
Pods, which operate with the Alpine operating system, were
evaluated.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 15 of 21

Figure 13: Dashboard grafana

The obtained results presented a sequence of hops, rep-
resenting the path taken by the data packets, as illustrated
in Algorithm 7 and 8. Initially, the packets were sent to IP
addresses in the local Kubernetes network, possibly indi-
cating internal nodes. They then went through local routers
and default gateways of the local network. However, some
hops did not receive a response, which could be attributed to
specific router or firewall configurations. After these hops,
the packets proceed to a service provider network or an
internet service provider, traversing multiple intermediate
routers. Subsequently, more hops were observed through
routers and intermediate nodes until they reached the servers
of the internet providers. In one of the hops, there was again
no response from the packet. Finally, the packet reached the
desired destination, the domain www.google.com.

Based on the collected information, it was determined
that the total number of hops to the destination was 12 and
13, respectively. These results demonstrate that the latency
and response rate metrics showed an average time variation
of less than 1 second, considering a network connection of
400 Mbps download and 200 Mbps upload for this cluster.
During the execution of the experiment, it was observed
through Grafana that the CPU and memory usage in the
two evaluated Pods remained stable. These insights provided
valuable information about the network infrastructure used
to establish the connection to the destination domain, as well
as highlighting the elapsed time between the source and the
destination.

Considering the same scenario with blocked ports and
protocols and the same number of hops to the destination

for the two described metrics, a time variation of less than 5
seconds was evidenced, considering a network connection of
400 Mbps download and 200 Mbps upload for this cluster.
The 4-second delay compared to the first scenario can be
attributed to the TCP protocol, which is connection-oriented.
Even if there is a blocking rule in the packet’s path, the TCP
protocol will retransmit the packet or wait for a determined
time until the request is completed or discarded. Therefore,
during the execution of the experiment with blocked ports
and protocols, it was observed through Grafana that the
CPU and memory usage in the two evaluated Pods remained
stable.

Iperf3 was used to evaluate the throughput metric in
the context of communication between Kubernetes cluster
devices. The results in Figure 12 revealed significant differ-
ences between groups 1 (unsecured) and 2 (secured) in the
cluster. In group 1, where blocking rules were not active,
we recorded a constant throughput of 10 Gbps, with an
average of 10 seconds to complete the tests, suggesting a
potential vulnerability to unauthorized traffic. On the other
hand, in group 2, where blocking rules were in effect, the
throughput remained stable but with longer transmission
times, averaging 30 seconds, due to packet retransmission
until a timeout occurred, highlighting the effectiveness of
network policies in containing unwanted traffic. These re-
sults emphasize the critical importance of network security
policies in the Kubernetes environment, not only influencing
throughput but also ensuring safer communication among
cluster devices.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 16 of 21

Algorithm 7 : Traceroute in Pod redis
t r a c e r o u t e t o www. goo g l e . com

(1 4 2 . 2 5 1 . 1 2 9 . 1 0 0) , 30 hops max , 46
b y t e p a c k e t s

[1] 192 −168 −39 −131. k u b e r n e t e s . d e f a u l t . svc .
c l u s t e r . l o c a l (1 9 2 . 1 6 8 . 3 9 . 1 3 1)

0 .010 ms 0 .009 ms 0 .008 ms
[2] j o n a t h a n −HP . l o c a l (1 9 2 . 1 6 8 . 1 2 2 . 1)

0 .301 ms 0 .124 ms 0 .115 ms
[3] _gateway (1 9 2 . 1 6 8 . 1 0 0 . 1) 0 .747 ms

0 .599 ms 0 .555 ms
[4] ∗ ∗ ∗
[5] 1 0 0 . 1 2 0 . 6 8 . 1 0 8 (1 0 0 . 1 2 0 . 6 8 . 1 0 8) 5 .053

ms 1 0 0 . 1 2 0 . 6 7 . 1 8 0 (1 0 0 . 1 2 0 . 6 7 . 1 8 0)
5 .047 ms 5 .150 ms
[6] 1 0 0 . 1 2 0 . 2 1 . 8 5 (1 0 0 . 1 2 0 . 2 1 . 8 5) 4 .897 ms

1 0 0 . 1 2 0 . 2 1 . 7 9 (1 0 0 . 1 2 0 . 2 1 . 7 9)
7 .757 ms 1 0 0 . 1 2 0 . 2 1 . 8 5 (1 0 0 . 1 2 0 . 2 1 . 8 5)

4 .863 ms
[7] 1 0 0 . 1 2 0 . 2 3 . 6 9 (1 0 0 . 1 2 0 . 2 3 . 6 9) 27 .228

ms 1 0 0 . 1 2 0 . 2 6 . 6 7 (1 0 0 . 1 2 0 . 2 6 . 6 7)
20 .607 ms 1 0 0 . 1 2 0 . 3 1 . 1 5 7 (1 0 0 . 1 2 0 . 3 1 . 1 5 7)

24 .641 ms
[8] 1 0 0 . 1 2 0 . 2 0 . 1 8 2 (1 0 0 . 1 2 0 . 2 0 . 1 8 2) 28 .057

ms 1 0 0 . 1 2 0 . 2 6 . 1 9 0 (1 0 0 . 1 2 0 . 2 6 . 1 9 0)
24 .244 ms 1 0 0 . 1 2 0 . 3 1 . 1 3 4 (1 0 0 . 1 2 0 . 3 1 . 1 3 4)

20 .532 ms
[9] 7 2 . 1 4 . 1 9 8 . 1 5 2 (7 2 . 1 4 . 1 9 8 . 1 5 2) 24 .869

ms 2 0 1 . 1 0 . 2 4 2 . 2 4 7 (2 0 1 . 1 0 . 2 4 2 . 2 4 7)
25 .122 ms 24 .872 ms
[1 0] ∗ 7 4 . 1 2 5 . 2 4 3 . 6 5 (7 4 . 1 2 5 . 2 4 3 . 6 5)

26 .657 ms 28 .055 ms
[1 1] 2 0 9 . 8 5 . 1 4 3 . 2 0 5 (2 0 9 . 8 5 . 1 4 3 . 2 0 5)

21 .479 ms 24 .758 ms
2 1 6 . 2 3 9 . 4 6 . 4 9 (2 1 6 . 2 3 9 . 4 6 . 4 9) 21 .913 ms
[1 2] gru14s30 −in −f4 . 1 e100 . n e t

(1 4 2 . 2 5 1 . 1 2 9 . 1 0 0) 21 .440 ms 21 .772 ms
2 1 6 . 2 3 9 . 4 6 . 4 9 (2 1 6 . 2 3 9 . 4 6 . 4 9) 21 .682 ms

Due to the distinct characteristics of the Alpine Linux
distributions used for the implementation of the system
tested in the “redis” and “vote” Pods and the Debian distribu-
tion in the “db” and “result” Pods, potential limitations such
as kernel configurations, drivers, compilation optimizations,
software versions, network settings, system load, resource
management, security policies, and the balance between
lightweight and resource-intensive approaches may have
caused disparities in execution times. These distortions can
be attributed to the diverse nature of the distributions, each
adopting its own approach to lightweights, optimization,
network configurations, security policies, and resource al-
location.

This demonstrates the influence of the choice of dis-
tribution on the performance of applications and processes
in a Kubernetes environment, highlighting the importance
of carefully considering the characteristics of the operating
system during the planning and optimization of container
deployments. In the proposed scenario, Group 1 involved
commands (apt, ping, curl, and wget) that were executed
without interference. The scripts in this group can suc-
cessfully interact with the resources of the “Alpine” and
“Debian” operating systems. The execution times of these
commands can be influenced by various factors, such as
script efficiency and network speed, among other aspects.

Algorithm 8 : Traceroute in Pod vote
t r a c e r o u t e t o www. goo g l e . com

(1 4 2 . 2 5 0 . 2 1 9 . 4) , 30 hops max , 46 b y t e
p a c k e t s

[1] 192 −168 −39 −131. k u b e r n e t e s . d e f a u l t . svc .
c l u s t e r . l o c a l (1 9 2 . 1 6 8 . 3 9 . 1 3 1)

0 .006 ms 0 .006 ms 0 .005 ms
[2] j o n a t h a n −HP . l o c a l (1 9 2 . 1 6 8 . 1 2 2 . 1)

0 .156 ms 0 .202 ms 0 .142 ms
[3] _gateway (1 9 2 . 1 6 8 . 1 0 0 . 1) 0 .654 ms

0 .837 ms 1 .696 ms
[4] ∗ ∗ ∗
[5] 1 0 0 . 1 2 0 . 6 8 . 1 0 8 (1 0 0 . 1 2 0 . 6 8 . 1 0 8) 4 .830

ms 1 0 0 . 1 2 0 . 6 8 . 1 0 6 (1 0 0 . 1 2 0 . 6 8 . 1 0 6)
5 .977 ms 1 0 0 . 1 2 0 . 7 1 . 1 5 4 (1 0 0 . 1 2 0 . 7 1 . 1 5 4)

3 .693 ms
[6] 1 0 0 . 1 2 0 . 1 8 . 1 9 9 (1 0 0 . 1 2 0 . 1 8 . 1 9 9) 5 .485

ms 1 7 7 . 2 . 2 1 0 . 5 3 (1 7 7 . 2 . 2 1 0 . 5 3)
21 .800 ms 1 0 0 . 1 2 0 . 1 8 . 2 0 1 (1 0 0 . 1 2 0 . 1 8 . 2 0 1)

4 .522 ms
[7] 1 0 0 . 1 2 0 . 2 3 . 6 7 (1 0 0 . 1 2 0 . 2 3 . 6 7) 19 .498

ms 1 0 0 . 1 2 0 . 2 3 . 6 9 (1 0 0 . 1 2 0 . 2 3 . 6 9)
20 .107 ms 1 0 0 . 1 2 0 . 2 2 . 2 0 6 (1 0 0 . 1 2 0 . 2 2 . 2 0 6)

25 .430 ms
[8] 1 0 0 . 1 2 0 . 2 5 . 6 4 (1 0 0 . 1 2 0 . 2 5 . 6 4) 28 .710

ms 1 0 0 . 1 2 0 . 2 0 . 2 4 0 (1 0 0 . 1 2 0 . 2 0 . 2 4 0)
42 .026 ms 1 0 0 . 1 2 0 . 2 5 . 6 2 (1 0 0 . 1 2 0 . 2 5 . 6 2)

28 .727 ms
[9] 7 2 . 1 4 . 1 9 8 . 1 5 2 (7 2 . 1 4 . 1 9 8 . 1 5 2) 24 .475

ms 20 .694 ms 2 0 1 . 1 0 . 2 4 2 . 2 4 7
(2 0 1 . 1 0 . 2 4 2 . 2 4 7) 30 .837 ms
[1 0] 7 4 . 1 2 5 . 2 4 3 . 6 5 (7 4 . 1 2 5 . 2 4 3 . 6 5) 25 .074

ms 7 4 . 1 2 5 . 2 4 3 . 1 (7 4 . 1 2 5 . 2 4 3 . 1)
27 .314 ms 26 .561 ms
[1 1] 2 0 9 . 8 5 . 2 5 1 . 5 (2 0 9 . 8 5 . 2 5 1 . 5) 29 .130 ms

2 0 9 . 8 5 . 2 5 0 . 2 4 3 (2 0 9 . 8 5 . 2 5 0 . 2 4 3)
28 .443 ms 2 1 6 . 2 3 9 . 5 6 . 4 6 (2 1 6 . 2 3 9 . 5 6 . 4 6)

34 .628 ms
[1 2] 2 0 9 . 8 5 . 2 5 1 . 5 (2 0 9 . 8 5 . 2 5 1 . 5) 28 .446 ms

1 0 8 . 1 7 0 . 2 4 5 . 1 4 1 (1 0 8 . 1 7 0 . 2 4 5 . 1 4 1)
28 .963 ms 2 0 9 . 8 5 . 2 5 1 . 5 (2 0 9 . 8 5 . 2 5 1 . 5)

28 .735 ms
[1 3] gru14s27 −in −f4 . 1 e100 . n e t

(1 4 2 . 2 5 0 . 2 1 9 . 4) 24 .919 ms
1 4 2 . 2 5 0 . 2 2 7 . 2 3 1

(1 4 2 . 2 5 0 . 2 2 7 . 2 3 1) 25 .498 ms 2 1 6 . 2 3 9 . 5 4 . 1 4 3
(2 1 6 . 2 3 9 . 5 4 . 1 4 3) 25 .919 ms

In contrast, the same commands in Group 2 are subject to
restrictions that increase the execution time. The blocking
of these commands in Group 2 is due to security policy
configurations implemented in kube-proxy that affect the
“Alpine” and “Debian” distributions. This approach proves
to be intriguing when simulating the functionalities of the
SARIK framework, providing a deeper understanding of
how this framework can impact response times in each
command.

The distribution of the “Alpine” operating system also
plays a significant role in the observed disparity in execution
times between the groups. Minimalistic distributions like
Alpine Linux are known for being lightweight and efficient.
However, the absence of certain resources or libraries can
impact the performance of specific commands, leading to
variations in execution times.

Regarding the Debian operating system distribution, it is
more comprehensive and includes more features compared

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 17 of 21

to Alpine Linux. This can result in different execution times
for commands, as Debian is a more complete distribution,
potentially heavier. Additional libraries and dependencies on
Debian can also influence command execution times.

The analysis of the results obtained in this study re-
veals important discussions and implications related to the
implementation of firewall rules in the Kubernetes cluster
and their impact on system performance and security. When
introducing new rules into iptables to control network traffic
and strengthen security, it is crucial to consider the side
effects that these changes may have.

A relevant discussion is the impact on cluster resource
consumption, such as CPU and memory. Adding firewall
rules can increase the processing load required to inspect
and filter network traffic. This can result in higher CPU us-
age, affecting the overall system performance. Additionally,
firewall rules may require additional memory allocation to
store state information and connection contexts. Therefore, it
is crucial to conduct careful testing and tuning to ensure that
firewall rules are efficient in terms of resource consumption.

Another important implication is the potential latency
that firewall rules can introduce into the processing of net-
work requests. As network traffic is inspected and filtered
based on the defined rules, there can be a slight additional
latency. While this delay may be negligible in some cases,
in time-sensitive environments such as real-time systems or
low-latency communication, it can significantly impact per-
formance and user experience. Therefore, a careful balance
is required between the security provided by firewall rules
and the acceptable latency for the specific application.

Furthermore, it’s essential to consider the scalability and
maintenance of firewall rules. As the Kubernetes cluster
grows in size and complexity, with a higher number of Pods
and nodes, managing firewall rules can become a challenge.
Adding or removing rules in a large-scale environment re-
quires a proper approach to avoid conflicts, inconsistencies,
and to ensure compliance with security policies. The use of
automated tools and the adoption of best practices in firewall
management are crucial for maintaining the security and
integrity of the cluster in the long term.

Therefore, it is crucial to acknowledge the presence of
various security risks that can affect Pods if not properly
planned and managed. These risks encompass a wide range
of considerations, from the careful choice of the operating
system to the use of compromised container images, the
implementation of individual namespaces, and the possibil-
ity of privilege escalation within the cluster, among other
potential threats.

According to the authors Shamim et al. [35], whose
systematic review emphasized the best security practices in
Kubernetes environments, it is of paramount importance to
incorporate these practices from the beginning to the com-
pletion of any Kubernetes implementation. This proactive
approach not only helps to prevent security breaches, but
also significantly contributes to risk mitigation in distributed
environments. Careful consideration of these best practices

is essential to ensure the ongoing robustness and security of
Kubernetes-based systems.
6.1. Practical guidelines for implementing

Network Policies in Kubernetes
Effectively implementing network policies in Kuber-

netes environments is a complex task that requires a clear
understanding of the processes and challenges involved. In
this subsection, we detail a step-by-step guide, inspired by
best practices and the experience gained from developing the
SARIK framework:

Understanding Network Policies in Kubernetes: It’s fun-
damental to start by comprehending the concept of network
policies in Kubernetes, which are rules defining the commu-
nication between Pods and other network endpoints, applied
at the namespace level.

Checking System Prerequisites: Ensure that your Kuber-
netes cluster is operational and that a Container Network
Interface (CNI) compatible network plugin, such as Calico
or Cilium, is available.

Selecting and Configuring the CNI Plugin: Choose a
CNI plugin that meets the specific needs of your environ-
ment and configure it according to its documentation.

Developing a Network Policy Plan: Create a detailed
plan for the network policies, identifying the communication
requirements between the Pods and defining the policies in
YAML object format.

Implementing and Applying Network Policies: Use the
kubectl tool to apply the network policies to your cluster.
This step is crucial and should be done carefully to avoid
disrupting existing services.

Testing and Validating Implemented Policies: After ap-
plying the policies, it’s vital to test them to ensure they
are functioning as expected. Adjust them based on the test
results and feedback.

Ongoing Maintenance and Policy Review: Network poli-
cies should be regularly reviewed and updated to ensure they
continue to be effective and aligned with changes in the
environment and security needs.

This guide provides a framework to assist system admin-
istrators and developers in implementing network policies in
Kubernetes effectively and securely, taking into account the
complexity and variability of modern IT environments.
6.2. Challenges in Implementing Network Policies

and Solutions Proposed by SARIK
Effective implementation of network policies in Kuber-

netes involves several complex challenges, which the SARIK
framework seeks to solve:

Complexity and Scalability: In Kubernetes environ-
ments, especially in large-scale clusters, managing network
policies can become a complex task. SARIK simplifies this
process by introducing an intuitive interface and automation
mechanisms that facilitate the configuration and manage-
ment of policies. This approach significantly reduces the
margin for error and enables system administrators to cope
with the inherent complexity of large infrastructures.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 18 of 21

Continuous Monitoring and Maintenance: Constant mon-
itoring of network policies is crucial for system security.
SARIK incorporates advanced real-time monitoring fea-
tures, allowing administrators to track and respond quickly
to changes in the environment. These monitoring tools assist
in identifying and addressing security issues, ensuring that
policies remain effective and up-to-date.

Container Security and Network Isolation: Proper secu-
rity and isolation of containers are fundamental in protecting
Kubernetes environments from external and internal threats.
SARIK strengthens network isolation by implementing se-
curity rules that rigorously control access and communica-
tion between containers. This approach minimizes the attack
surface and reduces the likelihood of system compromise.

Implementation and Testing Challenges: Applying net-
work policies can be complex, especially in production
environments where errors can have serious consequences.
SARIK provides a safe and controlled environment for
the implementation and testing of policies, ensuring that
changes can be safely and effectively applied before being
rolled out to the production environment.

Adaptation to Different Operational Scenarios: Each Ku-
bernetes environment has its own specific needs and chal-
lenges. SARIK offers the necessary flexibility to adapt to a
variety of operational scenarios, allowing administrators and
developers to configure policies that meet the specific needs
of their environments.
6.3. Practical and theoretical implications of

policy-based network controls in Kubernetes
and IoT security

This subsection delves into the practical and theoretical
implications of implementing policy-based network controls
in Kubernetes environments, focusing on enhanced security
for IoT devices.

Enhancing Kubernetes security: The implementation of
detailed network policies, as facilitated by SARIK, signifi-
cantly improves security in Kubernetes environments. This
approach not only allows for stricter network segmentation,
crucial in mitigating targeted attacks and ensuring service in-
tegrity but also emphasizes automation as a force multiplier.
Automation in the creation and application of network poli-
cies provides an efficient mechanism to maintain security in
dynamic environments, essential in scenarios with frequent
changes in applications and network configurations.

Relevance to IoT device security: The increasing integra-
tion of IoT devices into Kubernetes infrastructures highlights
the need for robust network policies. Implementing these
policies ensures that IoT devices operate in a secure envi-
ronment, protecting them from intrusions and unauthorized
access. Furthermore, the evolving nature of the IoT ecosys-
tem demands a solution that can adapt and respond swiftly
to changes, a key aspect of SARIK’s design. This ensures
effective protection against emerging threats and maintains
the security of IoT devices.

Final considerations: The use of automated policy-based
network controls, particularly in the context of Kubernetes,

brings significant implications for IoT device security. Solu-
tions like SARIK enable achieving a balance between robust
security and operational flexibility. This not only enhances
the protection of Kubernetes environments but also sets new
security standards for IoT ecosystems, characterized by their
diversity and constant evolution. This integrated approach is
essential for ensuring a more secure and resilient future for
IT infrastructures encompassing both Kubernetes and IoT.

7. Conclusion and Future Work
In this work, we used and evaluated SARIK, a framework

developed for the automatic configuration of network poli-
cies in Kubernetes clusters. The main goal of SARIK was to
ensure the protection of Pods within the Kubernetes cluster
by applying blocking rules to each Pod. These rules were
implemented to block undesired communication through the
outbound interface of the Pods, ensuring the security and
integrity of the Pods in the Kubernetes environment. During
the conducted experiments and analyses, the importance
of performance metrics such as latency, response rate, and
transmission rate became evident in the evaluation and op-
timization of distributed systems and computer networks. A
precise measurements and analysis of these metrics provided
valuable insights into the system’s behavior and the effec-
tiveness of the network policies implemented by SARIK.

It is important to note that statistical discrepancies in
the metrics may occur due to the influence of network poli-
cies on the system’s performance. However, the consistent
graphs and results obtained demonstrated that the network
policies implemented by SARIK were effective in restricting
unwanted traffic, highlighting the importance of their imple-
mentation to ensure security and service quality. In future
work, the need to implement and analyze network policies
for the inbound interface of Pods is emphasized. In the scope
of this work, we focused on blocking the outbound interface,
so it is crucial to explore rules that can prevent denial-of-
service attacks and further improve the system’s protection
and performance in Kubernetes environments. Finally, rec-
ognizing the importance of deepening our understanding and
evaluation, we intend to expand our experimental setup to
analyze the SARIK in greater detail, adding new metrics to
the scenario analyzed.

Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability
Please see the link:

https://github.com/jonathamgg/sarik_validation_graphics

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 19 of 21

https://github.com/jonathamgg/sarik_validation_graphics

References
[1] Andreas Bardoutsos, Gabriel Filios, Ioannis Katsidimas, Thomas

Krousarlis, Sotiris Nikoletseas, and Pantelis Tzamalis. A multidi-
mensional human-centric framework for environmental intelligence:
Air pollution and noise in smart cities. In 2020 16th International
Conference on Distributed Computing in Sensor Systems (DCOSS),
pages 155–164. IEEE, 2020.

[2] Muntaha Alawneh and Imad M Abbadi. Expanding devsecops
practices and clarifying the concepts within kubernetes ecosystem.
In 2022 Ninth International Conference on Software Defined Systems
(SDS), pages 1–7. IEEE, 2022.

[3] Shazibul Islam Shamim. Mitigating security attacks in kubernetes
manifests for security best practices violation. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
pages 1689–1690, 2021.

[4] Hui Zhu and Christian Gehrmann. Kub-sec, an automatic kuber-
netes cluster apparmor profile generation engine. In 2022 14th
International Conference on COMmunication Systems & NETworkS
(COMSNETS), pages 129–137. IEEE, 2022.

[5] The Kernel security. Apparmor. https://www.kernel.org/doc/html/

latest/admin-guide/LSM/apparmor.html. Access Date March, 2023.
[Online].

[6] Sysdig secure. https://docs.sysdig.com/en/docs/sysdig-secure. Ac-
cess Date March, 2023. [Online].

[7] Ruriko Kudo, Hirokuni Kitahara, Kugamoorthy Gajananan, and Yuji
Watanabe. Integrity protection for kubernetes resource based on
digital signature. In 2021 IEEE 14th International Conference on
Cloud Computing (CLOUD), pages 288–296. IEEE, 2021.

[8] Jonathan GP dos Santos, Geraldo P Rocha Filho, and Vinícius P
Goncalves. Sarik-framework para automatizar a segurança em am-
bientes de orquestracao kubernetes. In Anais Estendidos do XL Sim-
pósio Brasileiro de Redes de Computadores e Sistemas Distribuídos,
pages 57–64. SBC, 2022.

[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer,
and John Wilkes. Borg, omega, and kubernetes: Lessons learned
from three container-management systems over a decade. Queue,
14(1):70–93, 2016.

[10] Víctor Medel, Omer Rana, José Ángel Bañares, and Unai Ar-
ronategui. Modelling performance & resource management in kuber-
netes. In Proceedings of the 9th International Conference on Utility
and Cloud Computing, pages 257–262, 2016.

[11] Chia-Chen Chang, Shun-Ren Yang, En-Hau Yeh, Phone Lin, and Jeu-
Yih Jeng. A kubernetes-based monitoring platform for dynamic cloud
resource provisioning. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1–6. IEEE, 2017.

[12] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and
Ferhat Khendek. Deploying microservice based applications with
kubernetes: Experiments and lessons learned. In 2018 IEEE 11th
international conference on cloud computing (CLOUD), pages 970–
973. IEEE, 2018.

[13] Shapna Muralidharan, Gyuwon Song, and Heedong Ko. Monitoring
and managing iot applications in smart cities using kubernetes. Cloud
Computing, 11, 2019.

[14] Zhang Wei-guo, Ma Xi-lin, and Zhang Jin-zhong. Research on
kubernetes’ resource scheduling scheme. In Proceedings of the 8th
International Conference on Communication and Network Security,
pages 144–148, 2018.

[15] Felipe Balabanian and Marco Henriques. Tocker: framework para
a segurança de containers docker. In Anais Estendidos do XIX
Simpósio Brasileiro de Segurança da Informação e de Sistemas
Computacionais, pages 145–154. SBC, 2019.

[16] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yeg-
neswaran, and Seungwon Shin. {BASTION}: A security enforcement
network stack for container networks. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 81–95, 2020.

[17] RGKP Kulathunga. Dynamic security model for container orchestra-
tion platform. PhD thesis, 2021.

[18] Savio Levy Rocha, Fabio Lucio Lopes de Mendonca, Ricardo Stacia-
rini Puttini, Rafael Rabelo Nunes, and Georges Daniel Amvame Nze.
Dcids—distributed container ids. Applied Sciences, 13(16):9301,
2023.

[19] Daniele Bringhenti, Riccardo Sisto, and Fulvio Valenza. Security au-
tomation for multi-cluster orchestration in kubernetes. In 2023 IEEE
9th International Conference on Network Softwarization (NetSoft),
pages 480–485. IEEE, 2023.

[20] Yifan Li, Xiaohe Hu, Chengjun Jia, Kai Wang, and Jun Li. Kano:
Efficient cloud native network policy verification. IEEE Transactions
on Network and Service Management, 2022.

[21] Seungsoo Lee and Jaehyun Nam. Kunerva: Automated network
policy discovery framework for containers. IEEE Access, 2023.

[22] Gerald Budigiri, Christoph Baumann, Jan Tobias Mühlberg, Eddy
Truyen, and Wouter Joosen. Network policies in kubernetes: Perfor-
mance evaluation and security analysis. In 2021 Joint European Con-
ference on Networks and Communications & 6G Summit (EuCNC/6G
Summit), pages 407–412. IEEE, 2021.

[23] Liz Rice. Container security: Fundamental technology concepts that
protect containerized applications. " O’Reilly Media, Inc.", 2020.

[24] Minikube - network policy. https://minikube.sigs.k8s.io/docs/

handbook/network_policy/. Access Date March, 2023. [Online].
[25] Shixiong Qi, Sameer G Kulkarni, and KK Ramakrishnan. Under-

standing container network interface plugins: design considerations
and performance. In 2020 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN, pages 1–6. IEEE, 2020.

[26] Flannel - network plugin. https://github.com/flannel-io/flannel.
Access Date March, 2023. [Online].

[27] Weave - network plugin. https://github.com/weaveworks/weave. Ac-
cess Date March, 2023. [Online].

[28] Cilium - network plugin. https://github.com/cilium/cilium. Access
Date March, 2023. [Online].

[29] Calico - network plugin. https://github.com/projectcalico/calico.
Access Date March, 2023. [Online].

[30] David Soldani, Petrit Nahi, Hami Bour, Saber Jafarizadeh, Mo-
hammed Soliman, Leonardo Di Giovanna, Francesco Monaco,
Giuseppe Ognibene, and Fulvio Risso. ebpf: A new approach to
cloud-native observability, networking and security for current (5g)
and future mobile networks (6g and beyond). IEEE Access, 2023.

[31] Timothy D Zavarella. A methodology for using eBPF to efficiently
monitor network behavior in Linux Kubernetes clusters. PhD thesis,
Massachusetts Institute of Technology, 2022.

[32] J.F.N. Vitalino. Descomplicando o Kubernetes [Online]. LINUXtips,
2020.

[33] Joseph F Hair, William C Black, Barry J Babin, Rolph E Anderson,
and Ronald L Tatham. Análise multivariada de dados. Bookman
editora, 2009.

[34] Jamovi open statistical software for the desktop and cloud. https:

//www.jamovi.org/. Access Date March, 2023. [Online].
[35] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond

Rahman. Xi commandments of kubernetes security: A systematiza-
tion of knowledge related to kubernetes security practices. 2020 IEEE
Secure Development (SecDev), pages 58–64, 2020.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 20 of 21

https://www.kernel.org/doc/html/latest/admin-guide/LSM/apparmor.html
https://www.kernel.org/doc/html/latest/admin-guide/LSM/apparmor.html
https://docs.sysdig.com/en/docs/sysdig-secure
https://minikube.sigs.k8s.io/docs/handbook/network_policy/
https://minikube.sigs.k8s.io/docs/handbook/network_policy/
https://github.com/flannel-io/flannel
https://github.com/weaveworks/weave
https://github.com/cilium/cilium
https://github.com/projectcalico/calico
https://www.jamovi.org/
https://www.jamovi.org/

Jonathan Santos (https://orcid.org/0000-0003-
1830-0055) Currently, a master’s student in the
Professional Postgraduate Program in Electrical
Engineering - PPEE at the University of Brasília.
Possess a Postgraduate degree in Information
Security Management from the University of
Brasília, an MBA in IT Governance from UNIESP,
and an undergraduate degree in Computer Network
Technology from FAJESU. Currently working
as an Information Technology Technician at the
University of Brasília. Interests: Internet of things,
networks, cybersecurity, micro-services with con-
tainer.

Geraldo P. Rocha Filho (https://orcid.org/0000-
0001-6795-2768) is a Professor at the Department
of Exact and Technological Sciences at the State
University of Southwest Bahia (UESB). He was
an effective Professor (2019-2022) at the computer
science department at the University of Brasília
(UnB). He was Researcher at the Institute of Com-
puting at UNICAMP through the Post-Doctorate
funded by FAPESP. He obtained the title of Doc-
tor and Master in Computer Science and Com-
putational Mathematics from ICMC-USP with a
FAPESP scholarship. In the last five years, he has
obtained 24+ publications in international journals
and 32+ publications in conferences. His research
interests are wireless sensor networks, vehicular
networks, smart grids, smart home, and machine
learning.

Rodolfo I. Meneguette (https://orcid.org/0000-
0003-2982-4006) is a professor at University of
São Paulo (USP). He received his Bachelor’s de-
gree in Computer Science from the Paulista Uni-
versity (UNIP), Brazil, in 2006. He received his
master’s degree in 2009 from the Federal Univer-
sity of São Carlos (UFSCar). He received his doc-
torate from the University of Campinas (Unicamp),
Brazil, in 2013. In 2017 he did his post-doctorate in
the PARADISE Research Laboratory, University
of Ottawa, Canada. His research interest are in
the areas of vehicular networks, resources manage-
ment, flow of mobility, and vehicular clouds.

Rodrigo Bonacin (https://orcid.org/0000-0003-
3441-0887) holds a Ph.D. in Computer Science
from UNICAMP, Brazil, and did postdoctoral at
the Luxembourg Institute of Science and Tech-
nology. He is a Senior Researcher and the Head
of Computing Methodologies Division at Renato
Archer Information Technology Center, Brazil,
and professor at UNIFACCAMP, Brazil. His re-
search interests include Human-Computer Inter-
action, Semantic Web, Artificial Intelligence, Or-
ganizational Semiotics, Informatics in Education,
and Medical Informatics.

Gustavo Pessin got his D.Sc. in Computer Science
at the University of Sao Paulo as a member of
the Mobile Robotics Lab. During his D.Sc. Pessin
carried out research within the Robotics Lab, at
the Heriot-Watt University, Edinburgh, UK and the
Communication and Distributed Systems Group, at
the Universität Bern, Switzerland. In 2015, Pessin
had a Visiting Scholar position within the Media
Lab at the Massachusetts Institute of Technology.
Currently, Pessin is an Full Researcher within the
Robotics Lab, at the Vale Institute of Technology.
The bulk of his research is related to intelligent
systems and mobile robots.

Vinícius P. Gonçalves (https://orcid.org/0000-
0002-3771-2605) has a Ph.D. in Computer Science
and Computational Mathematics (2016) from the
University of São Paulo (USP). He was also a
research fellow at the University of Arizona (USA)
before joining the University of Brasília (UnB).
Dr. Gonçalves was a Postdoctoral Researcher at
the USP Medical School, with a CAPES Fellow-
ship. Currently, he is an Assistant Professor in
the Electrical Engineering Department (ENE) at
UnB, Brasília, Brazil, where he is a member of
the Graduate Programs in Electrical Engineering
(PPGEE and PPEE). Dr. Gonçalves is a researcher
and member of the AQUARELA Group; his main
research interests include Human–Computer Inter-
action, Internet of Things, Cybersecurity, Mobile
Health, Image Processing and Machine Learning.

Jonathan G. P. dos Santos: Preprint submitted to Elsevier Page 21 of 21

