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The rise of IoT networks has presented fresh challenges in terms of scalability and security for distributed
Network Intrusion Detection Systems (NIDS) due to privacy concerns. While some progress has been made
in addressing these challenges, there are still unanswered questions regarding how to achieve a balance
between performance and robustness to ensure privacy in a distributed manner. Additionally, there is a
need to develop a reliable and scalable architecture for distributed NIDS that can be effectively deployed
in various IoT scenarios. These questions about robustness relied mainly on choosing privacy-secured and
distributed Machine Learning techniques. In this work, we propose the F-NIDS, an intrusion detector that
utilizes federated artificial intelligence and asynchronous communication techniques between system entities
to provide horizontal scalability, along with differential privacy techniques to address data confidentiality
concerns. The architecture of F-NIDS is designed to be adaptable for usage in IoT networks, suited to be used
in cloud or fog-based environments. Results from our experiments have shown that the confidential detection
model employed in F-NIDS - considering multi-class accuracy, binary accuracy, precision, and recall metrics
— was capable of predicting and determining the nature of attacks when they occur. In order to determine
optimal parameters that strike a balance between data privacy and classification performance, three strategies
were employed, each evaluated for its corresponding robustness performance. Firstly, models were trained
with varying Gaussian noise values, and subjected to membership inference black box rule-based attacks.
Secondly, regular membership inference black box attacks were performed, utilizing different stolen samples
with varying sizes to determine the maximum amount of data that could be securely stored on the detection
agents for training tasks. Lastly, the robustness of the trained models was evaluated against a model inversion
attack, and the results were compared through graphical comparisons. Based on these evaluations, Gaussian
noise level and sample size values of 21 were obtained for each detection agent in the system, with sample
sizes ranging from 10K to 25K.

1. Introduction or malicious on the network [7]. By the other hand, conventional
NIDS techniques may be less effective in the IoT context, due to their
dynamism [8].

A NIDS is built to provide continuous monitoring and detection
during the life cycle of computer networks [9]. However, due to the

dynamic nature of an IoT environment, whose resources are often lim-

In the past decade, we have seen a considerable increase in the
interconnection between humans, machines, and services. This has
resulted in the communication paradigm of the IoT — Internet of
Things [1,2]. Concerns, such as scalability, latency, and information
privacy, have been raised within the context of IoT [3,4]. Decentralized

architectures may bring some solutions to these issues, offering higher
availability and superior scalability [5,6]. On the security front, the
most popular strategies used in IoT networks comprise the use of NIDS
(Network Intrusion Detection Systems). These systems are responsible
for determining and alerting whether a particular activity is normal
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ited and may contain heterogeneous devices of very high connectivity,
more common NIDS techniques may be less effective for intrusion
detection systems [8]. Therefore, NIDS works under more challeng-
ing and restrictive circumstances when used in this environment. On
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the occasion of the excellent results, researchers have adopted the
ML approach (Machine Learning) for NIDS development to improve
cyberattack detection [7]. On the other hand, the authors discussed
in [10] the issue of privacy in ML models still remains a challenge,
especially in decentralized architectures. This is still a promising field
for the development of alternatives that increase the security and
confidentiality of the training data and models while maintaining the
scalability and resilience that decentralized architectures can offer.

Although there is a vast amount of work on the issue of privacy
in the context of ML, there are still few applications in a real-life
scenario of use [11,12]. In the aspect of decentralization, FL (Federated
Learning) is a recently proposed paradigm to enable the distribution of
ML tasks with greater privacy preservation of training data and this
technique has demonstrated a wide range of applications, especially
where confidentiality is an important aspect [13,14]. Despite FL being
used for distributing ML training tasks, another important question is
about distributing the detection services across multiple agents over the
network. The Asynchronous communication approach comes to give
such capability to the systems.

The asynchronous communication approach is based on message
queuing, callbacks, event-driven architecture, and publish/subscribe
model techniques. In [15] a relevant overview of messaging patterns
and architectures is provided, including asynchronous communication,
message queuing, and event-driven systems. Additionally, [15] offers
a collection of patterns for designing asynchronous messaging systems,
covering concepts such as message queues, publish/subscribe models,
and event-driven architectures. The benefits of asynchronous commu-
nication in distributed systems are discussed in [16], highlighting the
advantages of decoupled, event-driven architectures. However, this
approach has some limitations and trade-offs, such as the complexity
of implementing and handling errors. The latency times also can be
increased [17].

The goal of this work is to propose the F-NIDS, a distributed
intrusion detection system in order to overcome the mentioned privacy
limitations in such distributed scenarios by evaluating the classifica-
tion performance and robustness in terms of accuracy, precision, and
recall metrics. A distributed architecture is presented to provide dis-
tributed intrusion detection and horizontal scalability over distributed
IoT scenarios. The system is based on FL and aims to offer a dis-
tributed architecture without the need to exchange client data, as it
dispenses with the transmission of individual client information. And,
to ensure model protection, it uses DP techniques, enabling a more
confidential transmission of models between clients. F-NIDS contains
the following main features: (i) presents a high accuracy of data traffic
classification in a distributed IoT scenario; (ii) endowed with a decen-
tralized architecture that allows it to scale quickly; and (iii) guarantees
higher confidentiality of both training data and trained models. F-NIDS
was evaluated and compared with three different approaches, and it
presents similar results and the proposed solution is able to predict and
determine the nature of attacks.

The remainder of the article is organized as follows. Section 2
presents the related articles. Section 3 describes the F-NIDS. Section 4
presents the results through performance evaluation. Section 5 con-
cludes the paper with the conclusion and future work.

2. Federated learning

Federated Learning (FL) is a machine learning technique that allows
collaborative learning on distributed data while maintaining some
levels of data privacy. Introduced in 2016, FL enables multiple devices
to collectively train a shared model by performing local training on
their data without sharing it centrally [18]. This is possible by ex-
changing a model weight between the training device and the model
aggregator, which transforms multiple models into one global model.
This decentralized training paradigm mitigates privacy concerns and
communication overhead [19].
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The process involves initializing a global model on a central server,
selecting devices to participate, performing local training on each de-
vice’s data, aggregating the updated models on the central server, and
iterating these steps until convergence or desired model performance
is achieved [18-21]. By keeping data local and avoiding data sharing,
federated learning addresses privacy concerns while reducing commu-
nication costs [19], making it suitable for scenarios with distributed
data sources and many devices [22].

FL offers a scalable approach for distributing model training tasks.
In this decentralized learning paradigm, the training process occurs on
local devices or agents, allowing for parallelization and efficient train-
ing. This distributed model training process reduces communication
overhead and enhances scalability. The scalability of federated learning
has been highlighted in various studies, including [23], demonstrat-
ing its ability to handle large-scale distributed learning tasks. How-
ever, [23] states that one of the main challenges is striking the right
balance between privacy preservation and model accuracy, as introduc-
ing noise for privacy protection can impact the utility of the trained
model. Besides effectively managing the privacy budget, quantifying
the amount of privacy protection provided is another challenge in
federated learning with differential privacy. Overhead, synchroniza-
tion, and resource management to accommodate training with a large
number of federated members is another important challenge to be
addressed [19,23].

FL also enables integration with DP (Differential Privacy) mech-
anisms, mitigating some of the limitations of NIDS. While keeping
isolated training data on clients may, in theory, increase confidentiality,
the risk remains from the inference of information from the trained
models [24]. DP ensures that any version of a statistical dataset re-
mains equally credible regardless of whether it contains a particular
item [25], minimizing the possibility of inference of sensitive individual
information but maintaining the statistical properties of the dataset.

3. Related works

Centralized NIDS solutions have been recently developed aiming
to extend the level of accuracy and performance of intrusion detec-
tions [26-28]. Specifically, in [29] they propose the use of convo-
lutional neural networks (ConvNet) in intrusion detection systems.
In [30], a deep neural network is defined with the stacking of asym-
metric autoencoders, combined with an output layer in SVM — Support
Vector Machines to achieve better levels of accuracy in attack classi-
fications, a technique called (S-NDAE). However, besides the lack of
mechanisms to guarantee the confidentiality of the resulting models,
the cited works have limitations regarding their scalability to serve
highly distributed networks, as explored in this research [7].

In the context of distributed NIDS’s, different solutions have been
proposed [31,32]. These solutions address the use of multi-agents with
machine learning and focus mainly on performance and scalability
issues. The use of FL has also been evaluated for building intrusion de-
tectors [20], however, they are limited to analyzing data coming from
conventional networks, without the focus on the specific characteristics
of IoT networks and the confidentiality of the models. However, besides
the lack of mechanisms to guarantee the confidentiality of the result-
ing models, the cited works have limitations mainly to serve highly
distributed networks, as explored on [7].

Other decentralized NIDS solutions, which explore the issue of data
privacy and reliability with more emphasis, have been investigated
in [33,34] proposes SP-CIDS, an ML solution for distributed NIDS aimed
at serving autonomous vehicle networks, by applying DP techniques to
the training data. [34] develops a distributed NIDS for healthcare sys-
tems. This proposal uses generative neural networks and auto-encoders
to protect the confidentiality of the models. For model aggregation and
transmission [33] adopt DMS (Distributed Machine Learning) in model
aggregation. Although these are architectures aimed at protecting train-
ing data, both solutions admit a central point of vulnerability, allowing
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Fig. 1. General F-NIDS architecture.

the transfer of raw data between a central agent, and are therefore
ineffective for privacy protection [33,35]. Furthermore, both works
use the assumption that generative neural networks inherently produce
more confidential models for storage and transmission, however as
demonstrated in [36], such ML techniques can also be vulnerable to
confidentiality violations, specifically inference attacks on the training
data.

In [37], a federated NIDS is proposed that privileges confidentiality,
using DP techniques. This is the solution that most closely resembles
F-NIDS. The authors adopted the Fed+ model aggregation algorithm.
This algorithm is said to provide greater accuracy of the overall model,
reducing the effects of noise caused by DP, and mitigating the losses
caused by the aggregation itself. Although it proposes a decentral-
ized NIDS, the scenario only addresses a subset of IoT applications
(i.e., industrial applications), and does not evaluate its generalization
to other IoT applications, such as, for example, autonomous cars, smart
cities, and in datacenters in general. Furthermore, some limitations of
the clustering algorithm are raised, regarding the issue of the agents’
customization capability and also in the robustness of the generated
models [38]. It is worth noting that [37] used, in the evaluation of
the results, a too small amount of clients, which may have impacted
the numbers obtained, being a strategy that may be inadequate to
test a real federated learning scenario, in which a few tens or even
millions of clients are predicted. A more robust study with larger
numbers of clients can be performed to validate NIDS using federated
learning [23].

Some works have already been made proposing systems that use
pub/sub mechanisms to provide communication between system enti-
ties. Thus, validating the scalability and availability provided by such
a technique. In [39] was proposed a framework, using this technique,
which was capable of improving the processing speed of large-capacity
data ensuring more stability and resilience over adverse conditions such
as restricted bandwidth on IoT cloud platforms. On the other hand, [40]
proposed a communication solution that applies pub/sub technique in
conjunction with NDN (Named Data Networking) and leverages the
availability and scalability of the data exchange between entities. The
evaluations performed in [41] reached the conclusion that exists open-
source tools for pub/sub, on both IoT and cloud environments, which

are error-tolerant and support live-stream processing operations, while
can operate well in a cluster. Thus, maintaining fault tolerance, and
supporting heavy workloads, have proven to be scalable solutions.

Table 1 provides a comparison between some of the other recent
IDS works in terms of advantages and limitations. In this table, the dif-
ferences between recent NIDS works are highlighted, such as the kind,
in terms of architecture and used techniques; number of agents used
in system training and performance evaluation; the age of the work;
the system performance in terms of accuracy, and also advantages and
limitations of each studied IDS. Its possible to notice that, different of
other works, F-NIDS was tested in with a significant number of agents,
and will able to provide balanced model with robustness indicators,
with relatively low performance cost.

The evaluation of these works allowed us to conclude that there
are still open problems in this field. Among these problems is the
absence of a distributed architectural proposal capable of meeting
various workloads. The other problem, and no less important, concerns
the confidentiality of information, so there is room for a proposal that
addresses with greater emphasis the issue of data privacy, in addition to
collaboratively trained models. In this sense, F-NIDS was proposed aim-
ing to deliver solutions for the scalability and availability issues, on IoT
and cloud contexts, by using multiple distributed detection instances
exchanging data via FL. mechanism and communicating with the clients
through pub/sub mechanism. The problem of privacy vulnerability
coming from hypothetical data leakage in the detection agents is solved
by spreading less data across a higher number of detection agents and
transmitting just the trained weights, using federated learning. In the
case of privacy vulnerability, coming from a hypothetical model theft
on a given instance can be reduced by adopting differential privacy
mechanisms during the training step performed by the detection agents.

4. F-NIDS — federated network intrusion detection system

This section presents the F-NIDS, a federated intrusion detection
system coupled with DP, to allow detection service horizontal scala-
bility. The system uses FL to distribute the training tasks, orchestrate
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Table 1
Comparative study.
System Authors Year Kind Agents  Performance Advantages Limitations
FELIDS Friha et al. 2022  Distributed FL 15 90.05% accuracy  Many classifiers evaluation Lack of privacy preserving
non-DP mechanism; low amount of clients
Fed+ IDS  Ruzafa-Alcaza 2021  Distributed FL + 5 89% accuracy Many DP techniques evaluation Low amount of clients; no
et al. DP robustness evaluation
MS CNN Jing et al. 2022  Centralized CNN 1 95.7% accuracy High performance metrics Single point of failure
F-NIDS Oliveira et al. 2023  Distributed FL + 100 88% accuracy Robustness analysis; Balanced accuracy and

DP

robustness; Detection architecture design

the data exchange between entities via federated rounds, and aggre-
gate the local models via FedAvg (Federated Averaging) algorithm. In
addition, the DP technique is used by F-NIDS to deliver an additional
security layer by protecting the confidentiality of the model’s data.
This technique applies the DP-SGD (Differentially Private-Stochastic
Gradient Descent) algorithm to train local models by applying noise
on the model’s local weights during the gradient descent algorithm
execution at the agent’s side. Then the local models can be stored and
exchanged between agents in a secure way. The distributed detection
service is implemented via publish/subscribe mechanism.

4.1. Overview

The F-NIDS architecture is illustrated in Fig. 1. In the figure, the
central agent (label CA) generates the initial global weights (label
G), propagating them to the other system members. The CA has the
function of aggregating weights and producing a global model using a
local weight aggregation technique and also performs the orchestration,
propagating the weights obtained in this aggregation. The detection
tasks, reception of the global weights, and training of a local model
are done by the Detection Agents (label DA). Newer DAs can be added
to this system, scaling the training tasks. Besides training a local model
using an individual dataset, this mechanism allows splitting small train-
ing tasks between heterogeneous DAs with lower network bandwidth
consumption making it suitable for IoT-distributed scenarios.

The MB handles asynchronous tasks using the pub/sub model and
managing queues. It queues clients’ detection message requests and the
DA'’s responses into the appropriate queues. In addition, both clients
and detection agents have a pub/sub driver to listen for events, publish
messages, and subscribe to the MB. Communication between these
agents occurs through MQTT (Message Queuing Telemetry Transport),
a lightweight protocol enabling the handling of asynchronous events
and the decoupling of agents. Three types of queues are utilized: the
detection request queue, the notification queue (one for each client),
and the alerts queue. The detection request queue receives messages
from clients that are subscribed to by all detection agents, while
notification queues ensure specific clients receive relevant notifications
published by the detection agents. The alerts queue, subscribed to by all
clients, allows for the publication of alerts by the DAs. It will allow the
system to scale horizontally, be fault-tolerant, and be more available.

Clients send detection requests through this mechanism, publishing
them in internal MB queues, thus allowing scalability and reliability
gains. To this end, the packet capture task is done by the clients them-
selves individually. To provide greater robustness against inference
attacks on the models, each DA comes equipped with an additional
security layer using DP. Thus, the GA produces a global model that in-
herits some DP properties from the other local models. This architecture
is based on three mechanisms: (i) decentralized training mechanism
using FL; (ii) training mechanism with DP and (iii) decentralized and
distributed detection mechanism.

Another important aspect important to emphasize is that F-NIDS
only transacts the synaptic weights of the models. This is to minimize
the transfer of data that may be vulnerable to confidentiality violations
and compromise the available bandwidth. To provide greater robust-
ness against inference attacks on the models, during the process of

Table 2
List of hyperparameters used in model training.

Hyperparameter Default value
Neurons in the hidden layer 160
Learning rate 0.02
Epochs 10
Rounds 10
Minibatch size 1000
Validation set 20%
DP-SGD - Norm L, 1.5
DP-SGD - Noise ¢ 0.5
FL — Minimum fraction of training DA’s 0.1.
FL - Minimum fraction of assessment DA’s 0.1
FL — Minimum training DA’s 10
FL — Minimum available DA’s 75

obtaining the local weights by the DAs, an additional security layer
was included using DP, aimed at protecting the privacy of the obtained
models. Thus, each DA trains its own classifier with a certain degree of
noise in order to minimize vulnerability to inference attacks. In aggre-
gation, the CA produces a global model that inherits some differential
privacy properties from the other agents.

F-NIDS was designed to be deployed in the cloud, with the clients
performing intrusion detection requests through the internet. In a cloud
deployment, all the DAs and the MB will be located geographically
apart from the clients. However, it can be also deployed in a fog, as
well. In that case, the system architecture supports detection agents
being deployed locally, closer to the clients. Just the central agent is
kept over the internet, just for the model’s aggregation purposes. As
the model has security measures to prevent malicious exploitation, due
to the DP mechanism, such an approach stays secure to be used. The
distributed characteristics allow fast horizontal scaling, which makes it
suited for IoT scenarios.

4.2. Privacy federated learning mechanism

Although F-NIDS is distributed, the central agent generates the
initial model with random parameters and performs the orchestra-
tion of model training and transmission of these parameters. This
orchestration is performed through variables called federated hyper-
parameters. These hyperparameters (arranged in Table 2) define the
settings used in the trained classifiers. When all the conditions defined
in the hyperparameters are met, a federated round is started in which
the weight aggregation via FedAvg algorithm. The federated round
concludes when the propagation of the federated model parameters to
the detection agents is finished.

In the FedAvg [18] the agent k, € K (with n, = |P;|, where P,
is the indices of the dataset contained in agent k, considering C =
1 as the complete dataset, and 5 is the learning rate) computes the
gradient vector g, = VF,(w,) corresponding to the local training of
model w,. Then, the agents themselves are assigned the task of updating
the weights locally by k, « k, — nvF,(k,) several times before the
aggregation step, which is still performed by the CA. In this strategy,
the computational cost is controlled by three hyperparameters: C, the
fraction of agents performing the computations in each round; E the
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number of epochs of each agent in its local dataset; and B the size in
the minibatch used by each client. Thus the FedAvg has the value of
B = oo (minibatch size equal to local dataset size) and E = 1. The CA
aggregates these gradients and applies the w,,; < w, —nv f(w,), where
—_vK m ok

VW) =Xt S8

Algorithm 1 describes this process of training the F-NIDS classifi-
cation models. It consists of two steps, the global step (from lines 1
to 9) and the local step (from lines 10 to 16). In row 1 a vector of
global weights is initialized. In the next line, it iterates over each round
and internally calculates the number of clients that will participate in
training for a given round. The fifth line iterates over the DAs registered
in F-NIDS, passing as an argument the weights of the global model
and updating the vector of local weights with the new weight values
returned from the DA (line 6). In line 8 the actual aggregation of all the
weights of the locally trained models, for each DA, is done. Then the
global weights are updated to be used in the next round. The local stage
starts on line 10 and onwards, with the training of the local models
on the agents. The step starts with local training data being split into
a B set of mini-batches. In lines 11 and 12, it iterates over each of
the i epochs of the agents. For each of these epochs, all the b € B
mini-batches are used as arguments to compute the local weights of
the current agent (line 13), in addition to the global weights and the
learning rate of the agent in question. The local step ends when a set of
local weights w of the model are obtained and passed on to the central
agent.

Algorithm 1 FederatedAveraging. K agents are indexed by k; B
is the size of the local minibatch, E is the number of local epochs, and
n is the learning rate.
CentralAgent()
: initialize wy
: for eachround t =1, 2, ... do
m «<max(C - K, 1)
S, «(random set of m clients)
for each client k € S, in parallel do
w:‘+1 «DetectionAgentUpdates(k, w,)
end for
Wiyl < Z/f:l "7"’”::1
: end for

> //Run on central agent

© ® NI AW

DetectionAgentUpdates(k, w): > //Run on detection agent k
10: B « ( split P, into batches of size B)
11: for each local epoch i from 1 to E do
12: for batch b € B do

13: w <« w —nvt(w; b)
14: end for
15: end for

16: return w to central agent

4.3. Classifier’s differential privacy mechanism

To ensure the highest confidentiality of the trained models, F-
NIDS implements the algorithm DP-SGD. This technique is imple-
mented locally in each DA during the gradient descent algorithm
execution. Before the weights are updated, the gradients are clipped,
and Gaussian noise is added to it, producing a secure model to be
stored or his weights exchanged over the network by the FL algo-
rithm. When AC receives this secure model, the FedAvg algorithm
can perform the aggregation tasks normally, but the global model
will inherit the privacy properties of local models. This approach is
the classic SGD model optimization algorithm version but includes
DP. This algorithm limits the sensitivity of each gradient [42]. Let
clip, : g(x;) € R — g (x;)/max(1,"%%)2) e Rp the clipping function
applied over the input values such that the result has the maximum ¢,
norm of C. Thus, the update step by the DP-SGD algorithm is given by:
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WD = w® =y (2 ¥y, elip (9, LGw;, X)) +6) and § ~ N(0,62C2T)
is the random variable corresponding to Gaussian DP and o2 the noise’s
standard deviation [43].

The complete pseudocode of DP-SGD is presented in Algorithm 2.
Line 1 contains the list of hyperparameters used in training which are
the training examples (i.e., learning rate, ¢ noise scale, L size, and
the norm bound C). In line 2 a set of initial weights are initialized
randomly. From line 3 the algorithm iterates over each epoch. In line
4, at each epoch, a sample L, is selected and for each subset i of L, it
computes the gradient vector g,(x;). In line 8 the clipping of the obtained
gradient vector is done, then adding the Gaussian noise in line 9 and
finally adjusting the synaptic weights of the model as a function of the
obtained gradient and the learning rate.

Algorithm 2 DP-SGD. Differentially private SGD

1: Input: Samples {x,,...,xy}, loss function L(w) = %Zi L(w, x;).
Parameters: learning rate 7, noise o, minibatch size L, gradient
norm bound C and T is the epoch quantity.

2: Random initialization w,

3: fort € [T] do

4: Take a subsample L, with probability distribution %

5: forielL,do > //Gets gradient
6: 8:1(x;) « vy L(wr, X;)

7: end for

8 &(x) < clip.(g(x;) > //Clip gradient
9§ < 7 X(&(x)+N(©,6>C?I) > //Gradient noise step
100wy < W —ng > //Adjust weights
11: end for

12: Return wy.

4.4. Detection mechanism

F-NIDS splits the intrusion detection process into three steps: Cap-
ture, classification, and countermeasures. Capture is done directly by
clients, using an internal capture mechanism. To meet the cases that
can be impracticable for the client’s capture and send packages to be
detected, one kind of special agent can be deployed in the system to
capture packages via network probing and send them to the detection
agents. In this case, this special agent will act like an IPS (Intrusion
Prevention System). Detection is performed by the DA’s, by publishing
and subscribing to MB queues. Countermeasures can be performed
jointly by the agents and the devices based on their own rules, allowing
each of the system members to implement its individual repudiation
policy against malicious agents.

The proposed F-NIDS interaction between a client, interested in
detecting a particular packet, and DA is illustrated in Fig. 2. The client
starts the process by capturing a packet and checking whether the
sender is on the repudiation list. If the sender is not previously blocked,
the client sends a classification request to the DA. It is important to
point out that the client does not know which DA will be responsible for
detecting the intrusion, nor its location because the MB decouples the
parties. However, the MB guarantees that the communication will have
an asynchronous response, through the publish/subscribe mechanism.
The classifier, upon predicting it as benign, notifies the interested
client. If the packet is categorized as malicious, the F-NIDS will notify
the initial client and issue an alert to all other clients that subscribed to
the MB’s alert queue. This notification contains the probability of the
classification made, which class of attack was detected, and the source
that issued the packet. The client, upon receiving attack notifications
or an alert, includes the source in the repudiation list and terminates
any connections to the sender of the malicious packet.

Fig. 3 illustrates the communication model between all available
DAs and the clients interested in detection intrusion. For the detection
of an intrusion, a client ¢ publishes a message m, formatted from a
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Fig. 3. F-NIDS communication model.

captured packet, by invoking the operation pub(m). Upon performing
benign classification of a message, the interested client is notified
with a reply message r, via a noti fy(c,r) operation. Besides detecting
an intrusion, the agent publishes an alert message addressed to the
interested client and also to all other clients, via the alert(r, t) operation,
where 7 is both the classification result and the alert type. A client
subscribes to the alert results via the sub(¢) operation, ¢ its optional,
so if 7 is entered, the client subscribes only to the alert type entered,
otherwise it will subscribe to alerts of all types. In the middle, a message
broker cluster handles the messages, ensuring that only one of the
detection agents obtains and processes it. In case of one instance of a
broker get unavailable, the communication continues to flow normally,
because the cluster is capable to handle such event properly. It is
important to note that the repudiation list is maintained individually
by each client and this configuration is thought to allow each of these
agents to implement their individual policy against malicious agents.
Each alert a or notification message m issued by the devices fol-
lows the IDEA (Intrusion Detection Extensible Alert) message format
standard formulated by [44], a communication format that uses JSON
(Javascript Object Notation) notation and which is based on the IDMEF
(Intrusion Detection Message Exchange Format) proposed by [45]. In
this standard, all messages sent by detection agents need to have only
one classification and be provided with a set of attributes with their
respective types that identify the source, recipient and time tracking
of a packet. The fundamental attributes are: AnalyzerID, which is the
identifier of the agent that made the alert; CreateTime is the date the
message was generated by the sender of the packet; DetectTime and
AnalyzerTime are the times relative to the date the packet was sent for

analysis and the time it was analyzed by one of the detection agents,
respectively. The sender IP addresses and the target of the packet are
represented by the Source and Target attributes.

The main challenge of this system is to strike a balance between
privacy and robustness. FL and DP algorithms come with a classification
performance cost, and establishing the right balance to keep the helpful
model and confidential to be distributed across hundreds of clients is a
very challenging task. However, other kinds of challenges are worth
mentioning. The first concerns keeping a distributed system easy to
deploy and maintain. Besides, it is necessary to take into consideration
that can be too much complex the task of installing some software
layer on the clients to handle the package capture and sending that
to the DAs via the MQTT protocol can be complex, especially for large
networks. Besides, debugging a distributed environment can impose a
considerable challenge due to the number of agents communicating
with each other.

5. Methodology and results

In this section, the performance evaluation of F-NIDS is presented.
F-NIDS is evaluated by comparing the performance metrics of multi-
class and binary prediction performances in terms of accuracy, pre-
cision and recall. Each of these F-NIDS performance indicators was
compared with the other three methods commonly used in other NIDS
works. The accuracy metric aims to verify which round the F-NIDS
convergence occurs in comparison with other methods.

The performance of the methods was evaluated using in addition
to accuracy, precision, and recall. Precision (P,) is described in Eq. (1)
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and is the measure of the proportion of true positive predictions (T'P,)
out of all predictions made for a given class ¢, where (T'P,) is the
examples correctly classified as being ¢ and (FP,) are the examples
incorrectly classified as being of class c¢. Recall R, is the proportion of
true positive predictions out of all actual positive instances for a given
class described in Eq. (2), where FN, are the examples incorrectly
classified as being of class other than class c¢. Both metrics are computed
on a class-by-class basis.

TP,

P=—"C_ 1

¢ TP, +FP, m
TP

R < (2)

¢~ TP, +FN,

To compare F-NIDS with other existing ML methods, already studied
in other works, the classifier training methods evaluated are the cen-
tralized method named ANN; the centralized with DP named (ANN-DP);
the training method applying only the federated algorithm (FED) and
the federated method with DP (F-NIDS). Ten individual models were
trained for each method, each evaluated on a random fraction of 10%
of the test dataset. To obtain the overall multi-class and binary perfor-
mance across the four methods, the average accuracy will be analyzed
over the training rounds in Section 5.1. This strategy aims to observe
at which round each method reaches relative levels of convergence.
The Section 5.2 deals with the evaluation of the obtained accuracy and
recall results, aiming to verify the classification performance in each of
the classes individually, the classes are listed in 5.2. To the evaluations
performed on Section 5.4, 5.5, and 5.6, nine instances of the F-NIDS
were trained, and each of these instances was submitted to ten different
adversarial attacks. The average attack’s accuracy, precision, and recall
were used to compare each of the results get from each model.

The dataset used is based on the NF-ToN-IoT-v2.! This data was
produced from the .pcap files of the ToN-IoT dataset and then pro-
cessed to generate data in the standard NetFlow tool? [46], [where the
produced database has 43 relevant features. For this work,
IPV4_SRC_ADDR and IPV4_DST_ADDR] - representing the sender
and receiver IP addresses information — has been removed. The research
used just 41 of the remaining features. The resulting dataset is unbal-
anced and has 2.5 x 10% examples extracted randomly from the original
data, which is approximately 14.75% of the volume of data contained
in NF-ToN-IoT-v2. Considering these data, 80% was separated for the
training set and 20% was allocated to the test set. The experiment
uses the libraries Tensorflow® for neural network training, TF Privacy*
for differential privacy, and Flower® for federated learning. The table
presents the list of hyperparameters used in the training model. The
hyperparameters of the multilayer perceptron were obtained using
the hyperparameter tuning method, and the size of the minibatch was
the largest supported by the GPU used (NVIDIA V100 with 16 GB
of GDDR5). The hyperparameters related to federated learning were
chosen taking into account the available CPU and RAM memory (8
cores and 24 GB RAM). Other values of hyperparameters were tested
but with a lower classifier performance in terms of accuracy and
convergence.

5.1. F-NIDS accuracy results

Fig. 4 presents the accuracy results obtained in the four methods
under study (ANN, ANN-DP, FED, and F-NIDS), as a function of the
training rounds. Comparing the results in Fig. 4a, the ANN method

1 https://staff.itee.uq.edu.au/marius/NIDS_datasets/.

2 https://www.cisco.com/c/pt_br/tech/quality-of-service-qos/netflow/
index.html.

3 https://www.tensorflow.org.

4 https://www.tensorflow.org/responsible_ai/privacy/guide.

5 https://flower.dev/.
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has on average 7.7% more accuracy than the F-NIDS method. When
comparing the accuracy of the ANN method and the others, the differ-
ences were 0.06% over FED and 3.0% over ANN-DP, respectively. Such
results are within expectations since the FedAvg algorithm requires an
additional cost in terms of classifier accuracy since it needs to aggre-
gate the weights obtained by local models trained with a significantly
reduced number of examples. The model also has to consider the effect
of the DP-SGD algorithm, which significantly impacts the accuracy of
the classifier by including noises in the model. Based on the figures
presented, it is possible to conclude that the multi-class performance
differences are small between the F-NIDS method and all other methods
studied.

Fig. 4b presents the binary accuracy results of the classifier during
the ten training rounds. These results are obtained by grouping the
attack classes into a single class. In this case, it can be seen that the
detection accuracy between normal and malicious traffic shows even
smaller differences. The impact on the accuracy of F-NIDS, relative
to other methods, can be measured by the difference between the
accuracies of the other methods and the accuracy of F-NIDS. In this
case, it was found that the impact on the average binary accuracy of
the ANN, ANN-DP, and FED methods, relative to the F-NIDS method
is only 1.2%, 1.1%, and 1.3%, respectively. Therefore, no relevant
performance changes between the four methods were observed within
this context. These results allow us to conclude that the losses in
binary accuracy, arising from the application of FedAvg and DP-SGD
algorithms together, result in minor impacts of binary accuracy of the
resulting model.

5.2. F-NIDS performance per class evaluation

In Fig. 5, the accuracy and recall obtained on each class using
the F-NIDS classification method is presented and compared to the
ANN, ANN-DP, and FED methods. Fig. 5a presents the accuracy, or
proportion of hits among the predictions made, demonstrating the
ability of the model to correctly classify a class. Fig. 5b presents the
recall of each class, separated by the four methods under study. This
metric is the proportion of hits among the actual classes. The accuracy
of Benign, Backdoor, Scanning, and DDOS predictions show no significant
differences of F-NIDS with the other methods. In the other classes
(XSS, Password, Ransomware, Injection, DOS, and MITM), noticeable
and significant differences can be observed. It is worth noting the
low accuracy obtained in the classification of Ransomware and MITMT.
Apparently, this behavior is associated with the number of examples,
which is less than the size of the mini-batch chosen as parameter L for
the DP-SGD Algorithm. In the F-NIDS method, the DOS and Injection
classes performed significantly below the other methods, although they
had a number of training examples comparatively close to those of
classes with better accuracy. These results allow us to conclude that
the application of the FedAvg algorithm, in conjunction with DP-SGD,
presented a small impact on overall accuracy and multi-class recall.

5.3. F-NIDS binary efficiency

Evaluating the results by class allows us to register the efficiency
of the classifiers in detecting each class individually, but predicting
whether a given packet is likely to be correctly classified as benign or
malicious is a primary attribute for F-NIDS. Thus, the attack classes
were grouped into just one class, named Attack, resulting in two possi-
ble classifications (i.e. benign; attack).

Fig. 6 presents the confusion matrices for each of the methods,
showing the intersection between the examples classified as benign
or attack and their corresponding actual values. The F-NIDS method
(Fig. 6d) obtained a similar result to the others in the correct detection
of benign traffic, which also contributed to maintaining a reduced
amount of false positives. In the detection of attacks, F-NIDS showed
an amount of detection only slightly lower than the other methods,
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Table 3
Evaluation of the methods’ binary classification metrics. Each result is followed by its

+ standard deviation.

Method Precision Recall Accuracy
ANN 0.975 + 0.005 0.955 + 0.005 0.974 + 0
ANN-DP 0.971 + 0.002 0.954 + 0.003 0.973 + 0.001
FED 0.981 + 0 0.980 + 0 0.974 + 0
F-NIDS 0.885 + 0.28 0.970 + 0.264 0.962 + 0

represented by Fig. 6a, b and c. Furthermore, true attacks incorrectly
classified as benign by the F-NIDS method had a small difference over
the other methods. Such results demonstrate that the F-NIDS method
is almost as efficient as the ANN (Fig. 6a), ANN-DP (Fig. 6b) and FED
(Fig. 6¢) methods to detect benign packets and almost as efficient to
correctly detect attacks as the other mentioned approaches. Table 3
numerically presents the results of the obtained metrics. It contains the
averages of the ten observations and the errors represented by their
standard deviation.

When comparing the effects of the DP-SGD algorithm on attack
classification performance, by comparing the ANN method (Fig. 6a)
with ANN-DP (Fig. 6b), it can be seen that this algorithm slightly

influences the ability to detect true attacks. Considering all possibilities,
it can be concluded that the DP-SGD algorithm, with the training
hyperparameters, results in negligible penalties on the binary effective-
ness of the classifier. Similar behavior was verified when evaluating
the effect of the FedAvg algorithm on the classifier by comparing the
ANN (Fig. 6a) and FED (Fig. 6¢) methods. In these cases, centralized
methods were found to have an advantage over federated methods only
in identifying true attacks.

The experimental results are consistent with the established hy-
potheses, indicating that higher performance metrics could potentially
be achieved by reducing the level of Gaussian noise or decreasing the
number of DAs used. However, it is important to note that the imple-
mentation of these reductions may compromise the system’s robustness
against membership inference or model inversion attacks. Lower noise
levels may weaken the system’s resistance to hypothetical scenarios of
agent model theft, while reducing the number of detection agents may
make it vulnerable to sample theft, compromising system privacy by
inferring the training dataset.

In addition, maintaining a useful classification model for accurate
predictions is essential. Therefore, striking a balance between perfor-
mance and robustness is crucial, with the organization’s needs as the
primary consideration when using F-NIDS as an intrusion detection
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tool. For example, in medical applications where privacy has high
importance and predictions are expected to be reviewed by trained
professionals, lower levels of accuracy may be acceptable. On the other
hand, in non privacy-critical applications, where high accuracy rate
maybe not crucial, such facial recognition for instance, data privacy
may not be a main concern. In this case, lower levels of noise may
be applicable to achieve higher accuracy. Thus, the system/application
designer should carefully evaluate the specific needs and priorities of
the organization and the intended application when determining the
optimal trade-off between performance and robustness for F-NIDS. In
the following sections, a vulnerability assessment was conducted with
real adversarial attacks to verify which F-NIDS setting can be more
robust against confidentiality threads.

5.4. Robustness against rule-based membership inference attacks

Rule-based member inference attacks involve inferring an individ-
ual’s membership in a sensitive dataset using external knowledge or
rules. Adversaries use background information to create rules that
predict membership [47]. By applying these rules to an individual’s
attributes, attackers determine membership, even without direct access
to the dataset [48]. Such attacks pose privacy risks when protecting
dataset membership [24]. Since the FL technique involves spread-
ing models weights across multiple locations or devices, each spe-
cific model itself can be a source of knowledge to be used by one
hypothetical malicious agent.

Training the model using the DP-SGD algorithm using a Gaussian
noise hyperparameter can make the system robust against such attacks.
However, it comes with classification performance costs. Therefore,
balancing robustness and performance is mandatory to verify the model
behavior. Keeping this in mind, nine F-NIDS instances groups con-
taining different values for the ¢ noise were trained, aiming to select
which performs better in the attack, producing as useful classification
performance as possible. Each of these detectors was then subjected to
rule-based membership inference attacks. The group that presents bet-
ter robustness against the attack at the lower classification performance
cost will have the related noise selected. However, it is necessary to
establish a criterion based on performance and robustness.

Based on these considerations, accuracy is the performance metric
used in the model classification and robustness. The attack’s precision
and recall were also considered because it is also an important measure
to determine the attack’s prediction rate between members and not
members. Therefore, we define the best F-NIDS Gaussian hyperpa-
rameter being the instance that held the following indicators: binary
accuracy greater than 80% and multi-class accuracy greater than 60%;
attacks accuracy against real member inference attacks less than 65%
and non-member inference attacks less than 40%, yielding an attacks
performance baseline of less than 60%.

In this test, the module MembershipInferenceRuleBase of
the library ART (Adversarial Robustness Toolbox®) was used. To pro-
duce the results, 20 test cycles were performed. In each of these cycles,
the nine models were tested with a set containing a 5% fraction of
the original training data examples (members) and 25000 non-member
examples.

Fig. 7a presents the accuracy results of a membership inference
attack, along with the accuracy of the model used. In this figure, it
is possible to observe three main behaviors. The first is that the higher
the value of the Gaussian noise, the lower the obtained attack baseline
and the likelihood of success in the inference of non-members. Second,
there is an increase in the ability to detect non-members as the value
of ¢ increases, but it does not exceed 50% accuracy. The last notable
behavior concerns the model’s detection accuracy. However, it remains
significantly greater then attack’s accuracy baseline values, specially

6 https://adversarial-robustness-toolbox.org/.
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Table 4

Performance of the rule-based adversarial attack.
c Atk baseline acc M. Atk acc Bin. acc. Adv. F1 Scr.
0,1 0.72 = 0.0010 0.86 + 0.0010 0.97 + 0.0010 0.83 + 0.0007
1 0.69 + 0.0008 0.82 + 0.0011 0.96 + 0.0014 0.81 + 0.0006
21 0.60 + 0.0013 0.66 + 0.0015 0.82 + 0.0029 0.72 = 0.0012
55 0.55 + 0.0016 0.58 + 0.0016 0.75 + 0.0030 0.71 + 0.0012
89 0.53 + 0.0016 0.56 + 0.0015 0.73 + 0.0030 0.66 + 0.0013

for the binary classification utility, it still maintains balanced utility
between prediction and robustness levels as well. Based on the results,
the chosen noise value for F-NIDS is ¢ = 21, as it can achieve the
established criteria of robustness against member inference, yet still
be able to maintain intrusion detection accuracy above 80%. Table 4
presents some relevant results from the test performed such as attack
baseline, attack membership accuracy, binary classification accuracy,
and the F1 Score obtained by the attack.

Another important indicator is presented in Fig. 7b, which contains
the precision over the obtained recall of the attack’s results. Note
that the precision of the attack’s output is not significantly affected
by increasing the level of noise. However, the recall has presented a
decrease as the level of noise increased. The results show that, while
the probability of a non-member being considered a member is not
significantly affected by o, the probability of an actual member being
considered a non-member has a rather considerable increase as the
level of noise is increased.

5.5. Robustness against attacks using an adversarial model

This of attack scenario is a kind of membership inference, but it
can be done using just some dataset sample and previous knowledge
about model architecture. A new kind of model can be trained and
then turned into an adversarial model, called ShadowModel, capable
of working as a membership predictor of entire dataset members,
distributed across the other members, then compromising the entire
dataset’s privacy.

Although the classifier used by F-NIDS is protected with differential
privacy, if a large sample is distributed over a few DAs, it can still rep-
resent a risk to be considered. This issue happens because, depending
on its size, a sample may contain statistical properties similar to those
of the original dataset. Federated learning, used in F-NIDS, plays an
essential role by allowing the split of massive amounts of data into
smaller samples as possible, and distributing it across larger quantities
of agents, allowing smaller fractions of confidential data to be stored.
However, it is still necessary to investigate a maximum number of
training examples that can be stored in the DAs, to reduce as much as
possible the risk of the stored sample being used to train an accurate
and precise ShadowModel.

For this investigation, six samples from the training dataset, of
distinct sizes, were selected and used in an adversarial attack of
Membership Inference Black Box, contained in the ART library as well.
In this attack, six classifiers were trained, each with its respective
sample, and the performance of the member and non-member inference
accuracy metrics were evaluated, as well as the precision and recall
obtained in the attacks. Each of the mentioned samples has a size N
of member examples used for training the ShadowModel. This process
was repeated in 20 independent cycles and the results are shown in
the Table 5. Each cycle was run with 100K member examples and 25K
non-member examples.

Fig. 8a presents the effectiveness of the attacks obtained by clas-
sifiers trained with different values of N. The vertical axis shows the
percentage of attack success and horizontally the obtained results. It
can be seen that the effectiveness in detecting members and non-
members decreases as the value of N decreases. When this value of
N = 100 is reached, it coincides with the lowest value recorded for
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the baseline of the attack accuracy, as both the detection accuracy
values for members and non-members remained below 40%. However,
a classifier trained with so low example size would probably not be of
much useful for intrusion detection. Therefore, a number of training
examples 10K < N < 25K reach the reasonably acceptable level for
the three indicators present in the figure, where both indicators have
values close to 50% attack efficiency. Table 5 presents the obtained
indicators, including the baseline, membership inference accuracy, and
the F1 Score of the attack.

In Fig. 8b the precision and recall, obtained in the attack results,
were compared. Through the graph, it is possible to conclude that
the precision has a significant increase as the number of training
examples is increased. This indicates that the greater the number of
examples captured by a malicious agent the greater the chance of
building a model capable of inferring members. However, the recall did
not show great sensitivity to a number of examples used in training
the adversarial model, which influences the ability of this model to
categorize non-members correctly.

10

Table 5
Attack’s performance indicators using ShadowModels.
N Baseline Member F1 Score adversarial
100000 0.68 + 0.00 0.99 + 0.002 0,81 + 0.001
50000 0.60 + 0.03 0.87 + 0.12 0,72 + 0.06
25000 0.52 + 0.1 0.74 £ 0.2 0,58 + 0.11
10000 0.51 + 0.13 0.52 + 0.16 0,33 + 0.07
1000 0.49 + 0.21 0.61 + 0.1 0,08 + 0.03
100 0.39 + 0.19 0.72 £ 0.1 0,010 + 0.003

5.6. Robustness against generative attacks using model inversion

The last robustness test performed on the F-NIDS classifier is the MI
(Model Inversion). MI attacks are privacy attacks where an adversary
tries to reconstruct sensitive information about individuals by exploit-
ing the outputs of a machine learning model. In these attacks, the
adversary uses queries to the model along with background knowledge
to infer private attributes or data points that were used to generate
the model’s predictions [49]. By strategically querying the model and
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Fig. 9. Reduced dimensions to two components of the original and adversarial datasets.

analyzing its responses, the attacker can reverse-engineer sensitive
information about individuals, potentially violating their privacy [50].
Model inversion attacks highlight the importance of protecting sensi-
tive information and considering privacy-preserving techniques when
developing and deploying machine learning models [51].

In a practical scenario, a DA needs to be hacked and its model
unauthorized extracted. The malicious agent then uses the statistical
properties that exist in the gradients to generate samples that may con-
tain original examples of other DA’s, thus violating their confidentiality.
Through this test it was possible to obtain a major difference in the
generated data as the level of noise in the original classification model
is increased. The MI algorithm used was MIFace [49], available in the
ART library.

To validate the test, 100 examples were extracted from models,
trained with different levels of noise. The models used in this test are
the same ones used in the membership inference test, already discussed
in the 5.4 sections. For each of the generated datasets, an original set
containing the same amount of examples and a similar class distribution
was randomly selected. Both of these datasets had their dimensionality
reduced to two principal components, using PCA (Principal Component
Analysis) technique, aiming to obtain a graphical representation of the
effect of the Gaussian noise on the datasets.

Fig. 9 graphically presents the results of the original and adversarial
datasets, generated by the six models trained using different noise
levels, with their dimensionality reduced to two principal components.
It can be seen in Fig. 9a with no DP algorithm used on the target model,
the MI-generated dataset shows a relatively similar pattern to the orig-
inal, where the points are located in two well-defined sets, with similar

11

distribution. Another important aspect is that it is possible to draw the
same decision boundary to distinguish two regions for both datasets. As
the level of noise increases, it can be seen that the generated examples
show an increasingly distinct pattern from the original dataset. Thus,
the recreated examples begin to show a very distinct dispersion pattern
from the original, especially when ¢ = 89, according to Fig. 9f. Leading
to the conclusion that in a dataset produced from a ShadowModel,
with a higher level of noise, it becomes, for example, more complex
for some classification algorithm to draw a decision boundary that fits
both datasets. Another issue to note is that with ¢ > 5 present in
Fig. 9c, it is no longer possible to draw the same decision region that
can linearly separate both training and adversarial datasets into two
decision boundaries with similar distribution. It leads to conclude that
both training and adversarial datasets become too much distinguished
from each other when Gaussian noise is increased to five or above on
the target model. Therefore, the adversarial data becomes inappropriate
for training an adversarial model that is capable of inferring properly
unknown samples from the original dataset.

6. Conclusion and future research

This research showed that one of the main challenges for IoT
is decentralized and scalable intrusion detection in these networks.
Despite attempts to achieve accurate detections in an IoT environment,
there were still directions for improvement in terms of scalability,
confidentiality, and reliability. The results showed that, with lower
Gaussian noise values, F-NIDS has similar accuracy, precision, and re-
call metrics as traditional strategies that use only centralized learning.
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F-NIDS was designed to execute as a SaaS (Software as a Service)
solution. Besides, the solution is to be industry agnostic, being able
to work in multiple IoT networks. However, we strongly recommend
using the system in privacy-critical environments, such as medical and
financial domains, as it can significantly enhance data privacy while
still offering acceptable classification performance.

Furthermore, the results allow us to define good settings to two
hyperparameters which are very important to guarantee confidentiality
while keeping the classification performance. These hyperparameters
are the Gaussian noise ¢ and the detection agent’s training sample
size N. The tests showed that ¢ = 21 protects against membership
inference black-box rule-based attacks and model inversion attacks.
Keeping sample size, stored on detection agents, between N = 10K and
N = 25K helps to protect the detection agents’ confidentiality, in case
of conventional membership inference black-box attacks, for instance,
if some agent has their confidentiality compromised, other detection
agents can keep their own training data privacy ensured.

Although being the metrics used, in the F-NIDS’s results, pretty
similar to other related works to verify classification performance, in
future works, other kinds of metrics will go to be investigated such as
entropy, and avalanche effect. The system scalability and availability
will also be investigated with appropriate metrics, such as load and
stress indicators, response times, and error rate as well. Although
confidentiality is a very important pillar of information security, data
integrity, and availability are equally important factors to be reckoned
with as well. Therefore F-NIDS needs to have metrics that approach
these other pillars too. Keeping this in mind, this kind of scenario will
be addressed in future works, other adversarial machine learning tests
can be performed on classification models, to measure their robustness
against other adversarial ML attack types. The other adversarial threats
that can compromise the system classification model are evasion and
poisoning. These attacks are related to the other mentioned security
pillars and performing measurements, thus, they can help to improve
the F-NIDS robustness not only in confidentiality but also in data
integrity and availability.
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