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RESUMO

O uso crescente de Living Off The Land Binaries (LOLBins) por grupos de Advanced Persistent Threat
(APT) apresenta desafios significativos aos mecanismos de detecção tradicionais, pois essas técnicas ex-
ploram binários legítimos do sistema para executar atividades maliciosas. Este estudo avança o campo
explorando a classificação de LOLBins, tanto em suas formas simples quanto ofuscadas, usando técnicas
de aprendizado de máquina (ML) e processamento de linguagem natural (NLP). Com base em trabalhos
anteriores, esta pesquisa incorpora métodos de normalização aprimorados e expande o conjunto de dados
com comandos ofuscados, permitindo uma avaliação mais abrangente.

Por meio de experimentação sistemática, combinações de modelos de ML, incluindo Random Forest,
Redes Neurais e Árvores de Decisão, foram testadas juntamente com métodos de NLP, como Bag-of-Words
(BoW), TF-IDF e Doc2Vec. Algoritmos de balanceamento, incluindo Random Oversampling (ROS) e
SMOTE, foram empregados para lidar com o desequilíbrio do conjunto de dados. Os resultados indi-
cam que o Doc2Vec, emparelhado com técnicas de balanceamento robustas e modelos de ML otimizados,
apresentou o melhor desempenho, alcançando alta precisão e pontuações de Coeficiente de Correlação de
Matthews (MCC).

O estudo também se aprofunda nos desafios de detectar LOLBins ofuscados. Ao incorporar várias
técnicas de ofuscação no conjunto de dados e empregar novas funções de normalização para desofuscar
comandos, a pesquisa avalia o impacto das estratégias de pré-processamento na precisão da detecção.
Embora a adição de dados ofuscados tenha expandido o conjunto de dados significativamente, também
destacou as compensações entre a viabilidade computacional e o desempenho da classificação.

Este trabalho contribui para o campo da inteligência cibernética ao apresentar uma estrutura de detec-
ção que aborda as táticas em evolução dos adversários. Ele ressalta a importância de combinar técnicas
avançadas de PNL, pré-processamento eficaz e conjuntos de dados balanceados para melhorar as capacida-
des de detecção. As descobertas preparam o cenário para pesquisas futuras sobre métodos de normalização
mais sofisticados e soluções escaláveis para lidar com o cenário dinâmico de ameaças à segurança ciber-
nética.

Palavras-chave: LOLBins, Comandos Ofuscados, NLP, ML, Doc2Vec, TF-IDF, BoW, Segurança Ci-
bernética, Inteligência Cibernética
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ABSTRACT

The increasing use of Living Off The Land Binaries (LOLBins) by Advanced Persistent Threat (APT)
groups presents significant challenges to traditional detection mechanisms, as these techniques exploit
legitimate system binaries to execute malicious activities. This study advances the field by exploring the
classification of LOLBins, both in their plain and obfuscated forms, using machine learning (ML) and
natural language processing (NLP) techniques. Building upon previous work, this research incorporates
enhanced normalization methods and expands the dataset with obfuscated commands, enabling a more
comprehensive evaluation.

Through systematic experimentation, combinations of ML models, including Random Forest, Neural
Networks, and Decision Trees, were tested alongside NLP methods such as Bag-of-Words (BoW), TF-
IDF, and Doc2Vec. Balancing algorithms, including Random Oversampling (ROS) and SMOTE, were
employed to address dataset imbalance, Results indicate that Doc2Vec, paired with robust balancing tech-
niques and optimized ML models, delivered the best performance, achieving high accuracy and Matthews
Correlation Coefficient (MCC) scores.

The study also delves into the challenges of detecting obfuscated LOLBins. By incorporating vari-
ous obfuscation techniques into the dataset and employing new normalization functions to deobfuscate
commands, the research evaluates the impact of preprocessing strategies on detection accuracy. While
the addition of obfuscated data expanded the dataset significantly, it also highlighted trade-offs between
computational feasibility and classification performance.

This work contributes to the field of cyber intelligence by presenting a detection framework that ad-
dresses the evolving tactics of adversaries. It underscores the importance of combining advanced NLP
techniques, effective preprocessing, and balanced datasets to improve detection capabilities. The findings
set the stage for future research into more sophisticated normalization methods and scalable solutions to
tackle the dynamic landscape of cybersecurity threats.

Keywords: LOLBins, Obfuscated Commands, NLP, ML, Doc2Vec, TF-IDF, BoW, Cybersecurity,
Cyber Intelligence
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1 INTRODUCTION

In recent years, the use of Living Off The Land Binaries (LOLBins) has become a prevalent technique
among Advanced Persistent Threat (APT) groups to evade detection (1). LOLBins (Living Off The Land
Binaries and Scripts) (2) is a technique in which legitimate operating system binaries can be exploited by
malicious individuals to subvert misconfigured systems (3). This technique, as elucidated by Ding et al.
(4), is a furtive method used by attackers to harder their detection and is been increasingly seen as part of
the APT’s (Advanced Persistent Threats) Tactics, Techniques and Procedures (TTP) (5).

The use of legitimate tools stored within the system makes the detection of LOLBins attacks parti-
cularly challenging. Traditional security mechanisms, such as antivirus software and intrusion detection
systems, typically rely on signature-based detection methods that can struggle to identify malicious acti-
ons carried out through benign, native binaries. Consequently, the detection of LOLBins requires active
monitoring of system tools and command line activity, alongside advanced analytical techniques capable
of discerning subtle deviations from normal behavior.

Barr-Smith et al. (6) conducted an investigation on 31,805,549 malware samples across multiple da-
tasets, revealing an average prevalence of 9.41% for LOLBins techniques. When focusing on Advanced
Persistent Threat (APT) usage, this figure increased significantly to 26.26%, with groups such as APT3,
APT29, and APT33 relying heavily on these techniques.

In 2023, a relevant vulnerability was identified and exploited in Barracuda Email Security Gateway
(ESG) (7) (8). This security failure consists in sending a malicious .tar file as an email attachment. When
processed by the ESG system, the .tar file exploited a flaw in the validation and sanitization of file names
within the system.

This security breach openned a vector to Remote Code Execution (RCE), which was abused using
Living Off The Land Binaries (LOLBins) techniques. Analysing the Indicators Of Compromise (IOC) it
was observed that the attackers used the code 1.1 to execute commands in the target through a reverse shell.
With this purpose, the attackers used the openssl command to establish this reverse connection and mkfifo
to create a named pipe to redirect the sh commands and its results between the target and the attacker’s
Command and Control (C2).

1 setsid sh -c "mkfifo /tmp/p;sh -i </tmp/p 2>&1| openssl s_client -quiet -connect

107.148.149[.]156:8080 >/tmp/p 2>/dev/null;rm /tmp/p"

Code 1.1: Bash Script used in Barracuda exploit

In 2024, the government agency CISA (Cybersecurity and Infrastructure Security Agency), in co-
authorship with other American agencies, published a report (9) that warns about the activities of the
persistent group (APT) known as Volt Typhoon. An APT is an extremely organized group of cyber attac-
kers, with the most diverse objectives, who choose to use low profile codes with a low noise rate to remain
hidden, thus prolonging their presence on the target for as long as possible (10).

1



Volt Typhoon, specifically, focuses on entities related to its adversaries’ critical infrastructures, such
as the communications, energy, transportation and water sectors. In another report (11), from 2023, CISA
shared some of the command lines used by the Volt Thyphoon group.

According to Code 1.2, these commands serve various purposes, such as redirecting traffic and enume-
rating the system, with the goal of finding credentials, all while utilizing native operating system binaries.
For example, the group used the netsh command to redirect traffic from a specific port on all IP addresses
(0.0.0.0) to another port on an internal IP address, using the TCP protocol. The reg command was used to
query the Windows Registry for potential passwords and other valuable information.

1 # PortProxy

2 cmd.exe /c "netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=

9999 connectaddress=<rfc1918 internal ip address> connectport=8443 protocol=tcp

"

3 cmd.exe /c "netsh interface portproxy add v4tov4 listenport=50100 listenaddress=0.

0.0.0 connectport=1433 connectaddress=<rfc1918 internal ip address>"

4

5 # Registry enumeration

6 reg query hklm\software\OpenSSH

7 reg query hklm\software\OpenSSH\Agent

8 reg save hklm\sam ss.dat

9 reg save hklm\system sy.dat

Code 1.2: Exemplos de LOLBINS usados pelo Volt Thyphoon

Based on the widespread use of this technique by APT’s, CISA also published a guide on the identifica-
tion and mitigation of LOLBINS (12). In this guide, the agency references as a source of further informa-
tion the GTFOBins (2) repository, for Linux, and its variables LOLBAS, LOLDRIVES and LOLBINS, for
Windows, Windows Drivers and MacOS respectively. These repositories contain lists of commands native
to the respective systems used for exploitation, most of which are used to escalate privileges on systems.

1.1 OBJECTIVES

The central goal of this study is to perform a binary classification of Obfuscated Linux commands, with
the specific aim of identifying tactics associated with the use of LOLBins. To achieve this, combinations
of several Machine Learning models will be employed, including Random Forest, Neural Networks and
Decision Trees, concomitantly with the use of Natural Language Processing (NLP) techniques, such as
Bag of Words, TF-IDF and Doc2Vec. Furthermore, to overcome the challenge of data imbalance, artificial
database balancing algorithms will be implemented.

For this purpose, Thuy Ngan’s master’s thesis (13) was used as a basis, which carried out the binary
classification and risk levels of Linux commands. To achieve his objective, Ngan set up a database with
Linux commands extracted from GitHub, which he considered benign, and commands obtained through
two honeypots, which he classified as malignant.

2



Thus, the analysis focused on commands originating from the Linux operating system, with a signifi-
cant portion of the data originating from records in the file “.bash_history", the same way portion used by
Ngan (13) in his work, and the list of commands from the GTFOBins website (2). This restricted the in-
formation available to command text only. Given this contextual limitation, the solution proposed by Ngan
(13) was used, which involved analyzing a window of N previous commands to provide more context to
the lack of detailed data about each command.

As highlighted by Kotsiantis et al. (14), the challenge of unbalanced data is increasingly common, es-
pecially in practical situations that involve the detection of rare but relevant events. This scenario is similar
to the context of identifying malicious commands or malwares. Due to the limited and relatively small list
of LOLBins, it was necessary to employ artificial dataset balancing techniques given that these commands
represented only 1,601% of the total. To mitigate this disparity, several techniques were explored, inclu-
ding Random Undersampling, Random Oversampling and Near Miss, aiming to balance data distribution
and improve the effectiveness of detection models.

However, for a better analysis of LOLBins, it was necessary to consider not only Machine Learning
models and Artificial Balancing algorithms, but also the Natural Language Processing (NLP) algorithms
used to represent the command’s strings. This interaction between different approaches directly influenced
the final metrics of each test.

Then the research aimed to enhance the detection capabilities by addressing the challenge of command
obfuscation. Obfuscation techniques are commonly employed by attackers to disguise their activities,
making it harder for security tools to recognize malicious commands. With this in mind, the model that
demonstrated the best performance in earlier tests was fine-tuned using the Cross Validation technique.

Following this fine-tuning process, the LOLBins commands were subjected to various obfuscation
techniques, automating the creation of a new database, before being submitted to the model. Firstly, the
commands were pre-processed using the methods developed in the previous study and once again with
a minor change in only one function. Subsequently, a new pre-processing function was introduced to
specifically identify and decode the obfuscated commands.

1.2 CONTRIBUTIONS OF THIS WORK

The primary contributions of this work are summarized as follows:

• Increasing of an Existing Dataset: As a base point for the beginning of this work, the benign
portion of Ngan’s (13) database was used in conjunction with the database from the GTFOBins
(2) repository, meaning that the old dataset was then increased with new portions. Then research
expanded the existing dataset by introducing obfuscation techniques into the LOLBins commands.

• Enhanced Machine Learning Models: By comparing and optimizing various machine learning
models—such as Random Forest, Decision Trees, and Neural Networks—across different Natural
Language Processing (NLP) techniques, this work identifies the most effective approaches for de-
tecting LOLBins. For this purpose it was implemented, as well, various artificial data balancing
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techniques, such as Random Oversampling, SMOTE, and Near Miss, to address the issue of im-
balanced datasets. Finally, the use of cross-validation and fine-tuning ensured that the models are
robust and well-suited for practical application.

• Comprehensive Detection Framework: Significant improvements were made to the preprocessing
of command-line data, proposed by Ngan(13), particularly in handling file paths, environmental va-
riables, and other text representations. Additionally, specialized functions were developed to decode
obfuscated commands, thereby enhancing the detection capabilities of the models.

1.3 STRUCTURE OF THE THESIS

After the Chapter 1 - Introduction, this thesis is organized into four main chapters. Firstly, In Chapter
2 - Concepts and Related Work, it’ll be discussed the theoretical framework that underpins the research,
including a review of relevant literature for contextualizing the problem and covering the concepts around
the research.

Then, In Chapter 3 - Methodology, the methods and techniques used to conduct the study will be
detailed, covering everything from data collection to the analytical procedures employed.

As for the Chapter 4 - Data Analysis and Results, on it will be presented and discussed the results
obtained, interpreting the findings in light of the established hypotheses and objectives. Finally, in Chapter
5 - Conclusion, a summary of the main conclusions of the study and suggested directions for future work
will be presented.
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2 CONCEPTS AND RELATED WORK

In this chapter, we explore the key concepts and existing literature that form the foundation of this
research. Understanding the current state of art of of the field is crucial for contextualizing the contributions
of this work and highlighting the gaps that our approach seeks to address. The chapter is structured to first
explain the theoretical concepts guiding this research, followed by a review of the related work in the area
of malware and code detection, mainly using machine learning.

2.1 THEORETICAL CONCEPTS

This section introduces the key theoretical concepts that underpin this research, including machine
learning (ML) models, natural language processing (NLP), artificial data balancing techniques, evaluation
metrics, and model fine-tuning. By anchoring the study in these concepts, we establish a solid foundation
for understanding the role of machine learning in detecting malicious code.

We focus on three critical pillars for effective ML training: selecting the appropriate ML model, ap-
plying NLP techniques, and ensuring proper dataset balancing. The selection of the right model depends
on identifying the most relevant metrics for the task. Once these pillars are established, the model must be
fine-tuned to optimize its performance and achieve the best possible results.

2.1.1 Machine Learning Algorithms

As first explained by Arthur Samuel in 1959 (15), Machine Learning (ML) is a field that enables com-
puters to learn without being explicitly programmed. Broadly speaking, ML algorithms can be categorized
into two primary types: supervised and unsupervised learning, as outlined by Kong et al. (16).

Usually, we classify machine learning into two main categories, i.e. supervised learning and unsupervised lear-
ning. The supervised learning as the name suggested, is that during the training of the algorithm, we know the
correct label, which means we know the answers of the problem, this prior information will be used in the trai-
ning. Within the supervised learning, depending on the nature of the output, we can divide the algorithms into
classification and regression. For example, if we are asked to design an algorithm to recognize apple and oranges,
and we know which object is apple or orange, then this problem is the classification problem, since the output
will be categorical data, either orange or apple. The different objects are usually called classes. [ ... ]. The other
category of the algorithms are unsupervised learning, which means we don’t have the luxury of the labels. [ ... ].
Then this will be a clustering problem, which you need to use some of the hidden characteristics of the objects
to group them together. Dimensionality reduction is a group of algorithms within the category of unsupervised
learning to reduce the higher dimension problems into lower dimension ones. (16)

This distinction is based on whether the data is labeled or unlabeled, as well as the intended use of the
final model. In this work, we focus on Supervised Learning, as our dataset is labeled, with the primary ob-
jective being to classify the inputs. Specifically, our dataset consists of legitimate commands and malicious
LOLBins commands, with the main goal being to accurately differentiate between the two.

Classification can be further subdivided into binary and multi-class classification (17). In our approach,
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we chose binary classification, where commands are categorized as either malicious or benign. However,
in Ngan’s work (13), a multi-class classification was employed, as the objective was to categorize malicious
commands in a honeypot according to different risk levels, which will be discussed in more detail later.

To achieve optimal results, we applied several machine learning algorithms: k-Nearest Neighbors
(KNN), Decision Tree (DT), Random Forest (RF), Linear Regression (LR), Support Vector Machine (SVC)
and Neural Networks (NN). Each algorithm processes data differently due to its unique implementation,
which can lead to variations in performance, resulting in better or worse outcomes depending on the data
characteristics.

2.1.1.1 k-Nearest Neighbors

Conway (18) defined KNN as the simplest algorithm that was covered in his book.

It’s arguably the most intuitive of all the machine learning algorithms that we present in this book. Indeed, the
simplest form of k-nearest neighbors is the sort of algorithm most people would spontaneously invent if asked
to make recommendations using similarity data: they’d recommend the song that’s closest to the songs a user
already likes, but not yet in that list. That intuition is essentially a 1-nearest neighbor algorithm. The full k-nearest
neighbor algorithm amounts to a generalization of this intuition where you draw on more than one data point
before making a recommendation. (18)

The KNN algorithm plots all elements on a graph based on their features. For each new, unknown item,
it calculates the distances to the nearest points, identifying the closest items to determine the classification.
K is the number of the closest neighbors chosen for this measurement.

As explained in the book Practical Statistics for Data Scientists (19), the distance—also referred to as
similarity or proximity—between records is mathematically calculated. One of the most common methods
for measuring the distance between two vectors is the Euclidean distance. The Euclidean distance between
two points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in an n-dimensional space is given by:

dEuclidean(x, y) =

√√√√ n∑
i=1

(xi − yi)2

While the Euclidean distance represents the straight-line distance between two points, the Manhattan
distance, also known as the L1 distance or taxicab, calculates the distance by summing the absolute dif-
ferences of their coordinates. Unlike Euclidean distance, which measures the shortest path, Manhattan
measures the distance between two points based on total horizontal and vertical displacements (20):

dManhattan(x, y) =
n∑

i=1

|xi − yi|

The Minkowski distance is another method for calculating distances and is commonly used in facial
measurements for Computer Vision applications (21). This distance metric generalizes both the Euclidean
and Manhattan distances by introducing a parameter p, allowing it to adapt to various measurement needs.
When p = 2, it corresponds to the Euclidean distance; when p = 1, it becomes the Manhattan (or taxicab)
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distance; and for p = ∞, it is equivalent to the Chebyshev distance (22):

dMinkowski(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

The final distance metric used by KNN is the Weighted KNN. In this approach, the distance between
points is weighted, typically inversely proportional to their distance. As explained by Bicego and Loog
(23), closer neighbors have a greater influence on the classification result. The weight for each neighbor is
calculated using the formula wi =

1
d(x,y) , where d(x, y) can be any of the previously mentioned distance

metrics, with the choice of distance metric directly impacting the final result. For example, using Euclidean
distance with weights, where k is the number of nearest neighbors:

dWeighted(x, y) =
k∑

i=1

1

dEuclidean(x, yi)

Since these distances are mathematically calculated, it’s essential to ensure that all features are in
numerical form. There are two primary methods for this: One-Hot Encoding and Label Encoding. In One-
Hot Encoding, each categorical variable in a feature is represented as a new column with binary values
(24). Label Encoding, on the other hand, assigns a unique numerical value to each category (25).

Not only must the features be numerical, but they also need to be on a comparable scale. For example,
consider a dataset with features such as a person’s height, birth year, and salary. These values are measured
on different scales—e.g., a height of 1.70 meters, birth year 1991, and salary of 15,000.00. If these features
are not scaled proportionally, the feature with the largest range (in this case, salary) will likely dominate
and have a greater influence on the model’s results.

To scale features, one can apply either standardization or normalization techniques (26). While both
are often referred to as normalization, Z-score normalization is specifically known as standardization.
Standardization transforms data to have a mean of 0 and a standard deviation of 1, following the Z-score
formula:

z =
x− µ

σ

where: - x is the data point, - µ is the mean of the dataset, - σ is the standard deviation of the dataset.

There are several ways to normalize a feature. For instance, Akilli and Atil (27) studied eight normali-
zation techniques, including Z-Score, Min-Max, D-Min-Max, Median, Sigmoid, Decimal Scaling, Median
and MAD, and Tanh-Estimators. The most commonly used method is Min-Max Normalization, which
scales data to a specified range, typically between 0 and 1. For a data point x, with xmin and xmax as the
minimum and maximum values in the dataset, Min-Max Normalization is defined as:

xscaled =
x− xmin

xmax − xmin
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Other normalization techniques include Mean Normalization, Decimal Scaling Normalization, and
Max Absolute Scaling (28). Mean Normalization centers data around 0 by subtracting the mean µ and
scaling by the range:

xnormalized =
x− µ

xmax − xmin

Decimal Scaling Normalization, in turn, adjusts data by shifting the decimal point so that the largest
absolute value in the dataset is less than 1. This is achieved by scaling values by a power of 10, where j is
the smallest integer such that |xscaled| < 1 for all values:

xscaled =
x

10j

This normalization technique is particularly useful when the relative magnitude of values is more sig-
nificant than their exact scale. For example, Sinsomboonthong found that "the normalization efficiency of
decimal scaling for k-nearest neighbor was higher than that of Z-score, median, and min-max for k-nearest
neighbor, Naïve Bayes, and artificial neural networks using classification accuracy on six datasets" (29).
Thus, the choice of normalization technique can directly impact the model’s performance.

Finally, selecting an appropriate k value is crucial to optimizing KNN model performance. Research,
such as that by Romero-del-Castillo et al. (30), has focused on finding the optimal k value, demonstrating
its importance in achieving accurate results.

2.1.1.2 Decision Tree & Random Forest

At a high level, a Decision Tree (DT) is a conjunction of rules arranged in a hierarchical order (31).
In other words, it can be thought of as a series of if-then-else rules, which makes the algorithm, as Li et
al. (32) describe, "easy to implement, highly interpretable, fully compatible with human intuitive thinking,
and capable of handling large-scale data."

To gain a better understanding of Decision Trees (DT), it’s essential to become familiar with some key
terminologies. First, there is the root node, which serves as the starting point of the tree. From the root
node, branches extend to represent condition checks, following a series of if-else statements as previously
mentioned. These branches may lead to additional condition checks or to leaf nodes, which are the final
decision points where classification or regression outcomes are determined. This structure is illustrated by
Gollapudi in Figure 2.1.
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Figure 2.1: Diagram of a decision tree.

Source: Adapted from Gollapudi (31).

The algorithm uses specific metrics to determine the path taken at each decision point. As explained
by Kirk (33), the three most commonly used metrics for this purpose are Information Gain, Gini Impurity,
and Variance Reduction:

• Information Gain (IG) measures the reduction in entropy, which quantifies the impurity or disorder
in a dataset, after the dataset is split based on a particular attribute. It is defined as:

IG(S,A) = H(S)−
∑

v∈Values(A)

|Sv|
|S|

H(Sv)

where H(S) = −
∑n

i=1 pi log2(pi) represents the entropy of the original dataset S (34). In this
formula, Sv denotes the subset of S for which the attribute A has a specific value v, and |Sv| and |S|
are the sizes of the subsets Sv and S, respectively.

• Gini Impurity (G), which differs from GINI coefficient (33), measures the probability of incorrectly
classifying a randomly chosen element from the dataset if it were randomly labeled according to the
distribution of labels in the dataset (35). The impurity function iGini is calculated as:

iGini(u) =

d∑
i=1

ui
∥u∥1

(
1− ui

∥u∥1

)

For a given vector u = (u1, u2, . . . , ud), ∥u∥1 is the L1 norm of vector u, which is the sum of its
components.

• Variance Reduction (VR) is mainly applied in continuous decision trees, where the objective is
to reduce the dispersion within data splits to produce more predictable, consistent outputs (33).
Variance reduction does not apply to classification tasks but is relevant for continuous outputs. For a
given split on attribute A, VR is calculated as:
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ξ = E(X1j)− E(X2j) = µ1 − µ2

where E(X1j) and E(X2j) are the expected values (means) for subsets formed by the split.

As explained by Garreta and Moncecchi (36), one of the limitations of decision trees (DTs) is that,
once trained, they cannot generate new condition checks dynamically. To address this limitation, Random
Forest (RF) was introduced by Breiman (37). This algorithm uses ensemble methods to combine multiple
decision trees into a "forest,"thereby improving the model’s overall robustness and reducing the likelihood
of overfitting.

2.1.1.3 Logistic Regression

According to Isoni (38), Linear Regression is one of the simplest algorithms within the Generalized
Linear Models (GLM) framework.

Linear regression is the simplest algorithm and is based on the model:

hθ

(
x(i)

)
= θ0 + θ1x

(i)
1 + θ2x

(i)
2 + · · · =

M−1∑
j=0

θjx
(i)
j , ∀i ∈ {0, . . . , N − 1}

The cost function and update rule are:

J =
1

2

N−1∑
i=0

(
yi − hθ

(
x(i)

))2

→ ∂J

∂θj
=

(
yi − hθ

(
x(i)

))
x
(i)
j , ∀j ∈ {0, . . . ,M − 1}

(38)

GLMs attempt to establish a linear relationship between the target variable and input features, which
can be expressed as:

yi =

M−1∑
j=0

θjx
(i)
j + ϵi = hθ

(
x(i)
)
+ ϵi ∀i ∈ {0, . . . , N − 1}

In this formula, yi represents the target variable, θj are the model parameters, x(i)j denote the feature
values for the i-th instance, and ϵi is the error term (38). Linear Regression is suitable for regression
tasks where the goal is to predict continuous values. However, for classification tasks, particularly binary
classification, Logistic Regression (LR) is used (39).

As described by Schober and Vetter (40), Logistic Regression builds upon Linear Regression by esta-
blishing a relationship between an independent variable X and the probability of a binary outcome. This is
accomplished by constraining predicted probabilities within the range of 0 to 1, using a linear relationship
with the logit (log-odds) of the outcome. The logistic regression model is defined as:
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ln

(
p

1− p

)
= b0 + b1X

where b0 is the intercept and b1 represents the slope. Solving this equation for probability p results in
a sigmoidal relationship with X , ensuring that the probabilities are limited between 0 and 1.

2.1.1.4 Support Vector Machine

In Support Vector Machines (SVM), each feature is represented as a coordinate in an n-dimensional
space, where n is the number of features. The algorithm’s objective is to find the optimal hyperplane (or
line, in the case of two dimensions) that best separates the classes by maximizing the margin between data
points of different classes, thereby establishing a clear decision boundary (41).

SVM can use either linear boundaries or apply various kernel functions to capture more complex relati-
onships between features. When the dataset is linearly separable, multiple hyperplanes may exist, but SVM
identifies the one that maximizes the geometric margin between classes, ensuring the greatest separation
(42), as shown in Figure 2.2.

Figure 2.2: Support Vector Machine principles.

Source: Adapted from Guo and Li’s article (42).

While SVM is fundamentally a binary classifier, it can handle multiclass classification problems by
employing strategies like One-vs-All and One-vs-One (43). For each binary classification, the goal is to
find the optimal hyperplane that best separates the two classes, labeled +1 and −1. As discussed in "Large
Scale Machine Learning with Python" (44), this is achieved by minimizing a cost function that balances
two components: a regularization term, which controls model complexity, and a loss term, which handles
classification errors.
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• Regularization Term: λ
2∥w∥

2, where w is the weight vector defining the hyperplane, and λ is a
non-negative regularization parameter. This term penalizes large values of w, promoting a simpler
model that avoids overfitting by controlling the width of the margin.

• Loss Term (Slack Variable):

1

n

n∑
i=1

max(0, 1− yi(w ·Xi + b))

where yi represents the true class label (+1 or −1) for each data point Xi, and b is the bias or offset.
This term measures the classification error, applying a margin constraint of 1− yi(w ·Xi + b). If a
point is on the correct side of the margin, this term contributes 0 to the cost. Otherwise, it contributes
an amount proportional to the distance of the point from the margin boundary.

By minimizing this cost function, SVM achieves a balance between maximizing the margin (controlled
by ∥w∥) and minimizing misclassification errors (managed through the loss term).

2.1.1.5 Neural Network

Neural Networks (NN) were developed to simulate the functioning of biological neurons. The concept
of an artificial neuron, known as the perceptron, was first introduced in 1943 by McCulloch and Pitts (45)
and was implemented by Frank Rosenblatt in 1958.

Figure 2.3: Biological vs. Artificial Neuron.

Source: Adapted from Swamynathan’s book (45).

Figure 2.3 illustrates a comparison between a human neuron and a perceptron. In a perceptron, each
input xi is assigned a weight wi, with an additional intercept term, or bias, w0. The perceptron computes a
weighted sum of the inputs and passes it through an activation function f to produce the output y:
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y = f

(
n∑

i=1

wixi + w0

)

where y is the output, f is the activation function, wi represents the weight for each input xi, and w0 is
the bias term. The activation function f introduces non-linearity into the model, allowing it to solve more
complex problems than simple linear models. The output y is typically binary, with y = 1 if the weighted
sum exceeds a specified threshold and y = 0 otherwise. Although multiple activation functions exist, the
four most commonly used are Sigmoid, Hyperbolic Tangent, Hard Limiting Threshold, and Linear. Table
2.1, as presented in "Neural Network Programming with Java"(46), shows these four functions along with
their corresponding equations and charts.

Function Equation Chart

Sigmoid f(x) = 1
1+e−x

Hyperbolic tangent f(x) = 1−e−x

1+e−x

Hard limiting threshold f(x) =

{
0 if x < 0

1 if x ≥ 1

Linear f(x) = x

Table 2.1: Activation Functions and Their Graphs

However, a single perceptron has limitations as it only works well for linearly separable classes. To
address this limitation, multilayer perceptrons (MLPs) were developed, allowing the network to handle
more complex, non-linear classifications by including multiple hidden layers (47), as seen in Figure 2.4.
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Figure 2.4: Multilayer Perceptron Representation.

Source: Adapted from Swamynathan’s book (45).

As explained by Swamynathan (45), the formula for an MLP with a single hidden layer is given by:

y = f

 M∑
j=0

w
(2)
j g

(
n∑

i=0

w
(1)
ij xi + w

(1)
0

)
+ w

(2)
0



In this formula, w(1)
ij represents the weight of the connection from input xi to the j-th node in the

hidden layer, while w
(2)
j is the weight of the connection from the j-th hidden node to the output layer.

There are two bias terms here: w(1)
0 for the hidden layer and w

(2)
0 for the output layer. M and n denote the

number of hidden nodes and input features, respectively.

According to Bilski et al. (48), each neural network can be trained to perform a specific task using two
main processes: feedforward and backpropagation. In a feedforward neural network (FNN), data flows in
one direction, from the input layer through the hidden layers to the output layer. Backpropagation, on the
other hand, is a process in which the model calculates the error after each training iteration and adjusts the
weights starting from the output layer back to the input layer (49).

As outlined by Soares and Souza (46), backpropagation utilizes gradient descent to update weights in
a neural network with hidden layers. For a given weight wij , the adjustment is determined by:

∆wij = −η
∂E

∂wij
= −ηδixj

where E is the error, η is the learning rate, and xj is the input to the neuron.

The backpropagation error δi for a neuron i differs depending on whether it is in the output layer or a
hidden layer. For an output layer neuron, δi is calculated as:
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δi = (oi − ti)f
′(hi)

having oi as the actual output, ti as the target output, f ′(hi) as the derivative of the activation function,
and hi as the weighted sum of inputs. On the other hand, for a hidden layer neuron, δi is computed as:

δi =
∑
l

δlwlif
′(hi)

where l indexes neurons in the next layer, and wli is the weight connecting neuron i in the hidden layer
to neuron l in the following layer. This adjustment enables the neural network to learn by minimizing the
overall error across layers.

2.1.2 Natural Language Processing

As discussed in the KNN section, computers do not inherently understand words, instead they process
information in numerical form. To address this limitation, Natural Language Processing (NLP) algorithms
were developed (50). NLP allows ML algorithms to recognize and analyze patterns in text, enabling them
to interpret and process human language (51). In this work, for example, NLP was used to recognize
command-line inputs as an example of structured text. Various NLP algorithms are available, and in this
work, three were utilized: Bag of Words (BOW) , Term Frequency-Inverse Document Frequency (TF-IDF),
and Doc2Vec.

In the BOW model the documents are represented by vectors in which each dimension corresponds to a word or
group of words, generating vectors with a very high dimensionality. It is an exclusively lexical representation that
relies on metrics based on frequency to determine the values associated with each dimension of the vector. (52)

In other words, BOW is one of the simplest NLP algorithms. It represents text as a set, or "bag,"of
tokens, discarding any information about word order, as all words are treated as separate, unordered items.
As explained by Brink et al. in their book, the best way to understand BOW is by dividing it into two
stages: tokenization and vectorization (39).
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Figure 2.5: The initial steps in the bag-of-words extraction algorithm.

Source: Adapted from Brink’s book (39).

As shown in Figure 2.5, the process of tokenization involves dividing the text into individual units,
or list of terms, known as tokens (53). In the Figure 2.5, the text is split by spaces. Using single words
as tokens is referred to as unigrams, though in some cases, performance can improve by using bigrams,
trigrams, or n-grams. As detailed in the Methodology section, this work tests both unigram and trigram
representations to capture patterns in command lines.

Figure 2.6: The vectorization process in BOW implementation.

Source: Adapted from Brink’s book (39).

After tokenization, the next step is vectorization, where features are generated based on the dictionary
of tokens. As elucidated by Khomsah et al. (54), a significant challenge with the BOW approach arises
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when applied to a large corpus, as it can result in an enormous and sparse matrix that becomes computati-
onally intensive to manage.

As mentioned earlier, with BOW, all tokens are combined into a "bag,"losing any information about
their order or structure. To address this limitation, one commonly used algorithm is TF-IDF. This algorithm
assigns weights to measure the importance of each token within a document by calculating the product of
the term frequency (TF) and the inverse document frequency (IDF) (39).

The main idea of TF-IDF is that, if a word appears frequently in a document, but less frequently in other do-
cuments, the word has a greater effect for distinguishing the document and expressing the core content of the
document, and therefore has a higher weight (55)

The term frequency (TF) reflects how often a token appears within a single document, while the inverse
document frequency (IDF) considers the entire corpus, assigning lower weights to commonly occurring
words. Mathematically, given a corpus with D documents, TF-IDF can be defined as follows (56):

WTF*IDF(ti,dj) = tfti,dj ×
(
1 + log

D

df(ti)

)

The last NLP algorithm utilized in this work is Doc2Vec, developed by Le and Mikolov in 2014 as an
extension of the Word2Vec model (57). To better understand Doc2Vec, it’s important to first understand
Word2Vec, that is an algorithm that generates vector representations of words by considering the context
in which a word appears, in other words, the meaning of a word is characterized by its surrounding words
(58).

A more modern alternative to the bag-of-words model is word2vec, an algorithm that Google released in 2013 (T.
Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representations in Vector Space. arXiv
preprint arXiv:1301.3781, 2013). The word2vec algorithm is an unsupervised learning algorithm based on neural
networks that attempts to automatically learn the relationship between words. The idea behind word2vec is to put
words that have similar meanings into similar clusters; via clever vector-spacing, the model can reproduce certain
words using simple vector math, for example, king – man + woman = queen. (59)

Word2Vec comes with two types of implementation: Continuous Bag of Words (CBOW) and Skip-
Gram (60). As illustrated in Figure 2.7, adapted from Mikolov et al., CBOW uses the surrounding context
to predict a target word, on the other hand Skip-Gram takes a target word and predicts its surrounding
context.
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Figure 2.7: CBOW and Skip Gram.

Source: Adapted from Mikolov’s article (61).

Mikolov et al. (61) defined the goal of Skip-Gram training as maximizing the average log probability
in the following formula, where k is the size of the training window and T represents the total number of
words in the training corpus:

1

T

T∑
t=1

 k∑
j=−k

log p(wt+j | wt)


And the probability of successfully predicting a word, given a vocabulary of size V , as:

p(wi | wj) =
exp(u⊤wi

vwj )∑V
l=1 exp(u

⊤
l vwj )

As said before, Doc2Vec, introduced in the article Distributed Representations of Sentences and Do-
cuments (62), extends Word2Vec by incorporating the concept of a Paragraph Vector. It follows a similar
methodology to Word2Vec, with the key addition of a unique vector representing each document or para-
graph, as illustrated in Figure 2.8.
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Figure 2.8: Illustration of the Doc2Vec architecture.

Source: Adapted from Le and Mikolov’s article (62).

2.1.3 Artificial Balancing Algorithms

A ML model’s effectiveness heavily depends on the quality of the data used for training. When dealing
with highly imbalanced datasets, the model can become biased towards the class with more occurrences.
This issue is particularly prevalent, as highlighted by Zheng et al. (63). In binary classification scenarios,
such as the one addressed in this project, the class with a higher number of occurrences is referred to as the
majority class, while the class with fewer occurrences is known as the minority class.

In this work, five algorithms for handling imbalanced data were evaluated: Random Undersampling
(RUS), Random Oversampling (ROS), Near Miss, One-Sided Selection, and SMOTE. Each of these methods
has its own advantages and limitations.

Starting with the simplest approaches, RUS and ROS, these methods are essentially opposites. RUS,
as the name suggests, randomly removes samples from the majority class. This reduction in the dataset
size decreases training time but risks losing valuable information. On the other hand, ROS increases the
dataset size by randomly duplicating samples from the minority class. While this approach ensures better
representation of the minority class, it increases the training time and may lead to overfitting (64).

The Synthetic Minority Over-sampling Technique (SMOTE), introduced by Chawla et al. in 2002
(65), offers another approach to addressing imbalanced datasets. Rather than duplicating existing minority
samples, it generates synthetic data points by interpolating between a sample from the minority class and
one of its k- nearest neighbors. By increasing the diversity of the minority class without simply duplicating
them, SMOTE reduces the risk of overfitting when compared to ROS.

SMOTE and ROS belong to the group of algorithms that focus on altering the minority class. Differen-
tly, algorithms like RUS, Near Miss, and One-Side Selection (OSS) target the majority class. OSS works
by removing samples from the majority class that are farthest from the minority class, effectively reducing
noise and imbalance (66). A notable hybrid approach was proposed by Jiang et al. (67), where OSS was
first used to reduce the majority class, followed by SMOTE to generate synthetic samples for the minority
class, as illustrated in Figure 2.9.
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Figure 2.9: Hybrid sampling process combining OSS and SMOTE.

Source: Adapted from Jiang et al. (67).

Lastly, Near Miss, like OSS, uses distances to remove samples from the majority class. However, it uses
different strategies to balance the dataset. Near-Miss-1 selects majority class samples that are closest to
minority class instances. Near-Miss-2 removes majority class samples that are farthest from other majority
class samples but still near the minority class. Finally, Near-Miss-3 selects a fixed number of majority class
samples closest to each minority class instance (68).

2.1.4 Metrics

A Confusion Matrix (CM) serves as a fundamental tool for evaluating the performance of a machine
learning model (69). As shown in Table 2.2, the CM is composed of four elements: True Positives (TP ),
True Negatives (TN ), False Positives (FP ), and False Negatives (FN ).

Predicted Positive Predicted Negative
Actual Positive True Positive (TP ) False Negative (FN )
Actual Negative False Positive (FP ) True Negative (TN )

Table 2.2: Confusion Matrix with True Positives, True Negatives, False Positives, and False Negatives.

Harrison (70), in his book, outlines several performance metrics implemented in Python’s sklearn.metrics
module. Among these metrics are Accuracy, Precision, Recall, and F-1 Score. Harrison defines Accuracy
as the percentage of correct classifications, computed using the formula:

Accuracy =
TP + TN

TP + TN + FP + FN

To compute the F-1 Score, Precision and Recall must first be defined. As explained by Cook (71) and
Harrison (70), Precision represents the proportion of true positives among all predicted positives and is
given by:
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Precision =
TP

TP + FP

Recall, also known as Sensitivity, quantifies the proportion of actual positives correctly identified by
the model and is calculated as:

Recall =
TP

TP + FN

The F-1 Score (70) is calculated as the harmonic mean of Precision and Recall, providing a balanced
metric that considers both false positives and false negatives, being defined as:

F1 = 2 · Precision · Recall
Precision + Recall

Finally, in this work Matthews Correlation Coefficient (MCC) was used as well. MCC is a balanced
evaluation metric that takes into account true and false positives, as well as true and false negatives, making
it suitable even for imbalanced datasets (72):

MCC =
(TP · TN)− (FP · FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

MCC - It is essentially a correlation coefficient between the true and predicted classes and achieves a high value
only if the classifier obtains good results in all entries of the confusion matrix. The Matthews correlation coeffi-
cient is bounded to [-1, +1], where a value of 1 represents a perfect prediction, 0 random guessing, and -1 total
disagreement between prediction and observation. (73)

Chicco and Jurman (74) (75) emphasized a significant limitation in using accuracy as an evaluation
metric for machine learning models in binary classification tasks involving imbalanced datasets. In such
scenarios, a model that consistently predicts the majority class can achieve a high accuracy rate, even
though it fails to effectively distinguish between classes. Metrics like the MCC and F1-Score offer more
robust alternatives. While MCC accounts for all entries in the confusion matrix, providing a comprehensive
measure of model performance, the F1-Score remains one of the most widely used metrics in machine
learning, applicable to both binary and multi-class classification tasks.

2.1.5 Grid Search

All ML models have hyperparameters, and their optimal performance can only be achieved after being
tuned properly (76). One of the simplest and most commonly used methods for identifying the best hy-
perparameter configuration is Grid Search (77). Grid Search systematically evaluates a list of predefined
hyperparameter values, testing every possible combination, and returns the configuration that achieves the
best performance, this could be achieved using Python’s scikit-learn package (78).

As this technique exhaustively evaluates all possible combinations of hyperparameters, it can be com-

21



putationally intensive and time-consuming. Moreover, since the user must define the range and list of
hyperparameters to test, there is a risk of overlooking potential optimal values outside the specified list.

2.2 RELATED WORK

The vast majority of machine learning work in the cybersecurity field is focused on the area of malware
detection. For example, Chumachenko (79) explored several Machine Learning algorithms for the purpose
of detecting and classifying malware. His research concluded that, with his dataset, the most accurate
algorithms were Random Forest, followed by J48. However, Chumachenko struggled with a huge number
of features, 70518 in total, estimating that it’ll take around 23 hours just to load the dataset. So some
filtering was implemented to achieve the amount of 306 features, for this all features were ranked and then
merged into new subsets to be selected again.

Furthermore, Rathore (80) compared the results between the use of Machine Learning and Deep Lear-
ning in malware detection, concluding that Random Forest outperformed Deep Neural Networks. In both
studies, Random Forest proved to be a promising option for threat detection.

Finder et al. (81) developed a framework called time-interval-based active learning, which leverages
time intervals to detect emerging malware trends. Several machine learning classifiers were evaluated, with
the Support Vector Machine (SVM) showing the best performance in this particular study.

As Rathore (80), Ding (4) implemented Deep Learning techniques for detecting LOLBins, achieving an
the accuracy of 99.45%. In terms of feature extraction, Ding explored several text vectorization methods,
including BOW, TF-IDF, Word2Vec, Doc2Vec, and WV-TI (Word2Vec combined with TF-IDF). Ulti-
mately, Word2Vec was selected as the most effective technique. In addition to text vectorization, Ding
introduced additional features based on the presence of network commands, binary files, the -c"option, and
installation commands. This approach was named LOLWTC, which stands for "LotL Attack Detection
Method Based on Word2Vec and TextCNN".

Ding cited the work of Boros (82), who also developed labels for binaries, paths, parameters, networ-
king, and other recurring patterns in the LOLBins context. Boros identified specific strings frequently
appearing in LOLBins scenarios and created regular expression (regex) patterns to detect and replace them.

Using a list of known LOLBins malicious looking commands we build a series of regexes where purpose is
to identify LOLBins components in commands. For example, let’s take the following command:

python-c'import sys,socket,os,pty;s=socket.socket();s.connect ((os.getenv
(""RHOST""),int(os.getenv (""RPORT"")))); [os.dup2 (s.fileno(),fd)for fd in
(0,1,2)]; pty.spawn(""/bin/sh"")'

There are a couple of pieces of information we can extract using regex. We can detect the use of the pty library
r’python.*c.*pty’ or we can detect the socket library r’python.*c.*socket’, the connection itself
r’python.*c.*ċonnect’ or the shell invocation itself r’python.*c. *pty.*sh’. The regexes can
be more or less permissive but the scope is to generate as much context as possible. (82)

However, rather than generating new features based on these labels, Boros used the regex replacements
directly in the machine learning model, aiming to enhance the training process by improving the model’s
ability to recognize and handle these common patterns.
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For the command in the last example, the feature extraction phase would generate tags as: PATH_/BIN/SH,
COMMAND_PYTHON,COMMAND_FOR,KEYWORD_-C,KEYWORD_SOCKET,KEYWORD_OS,KEYWORD _PTY
,KEYWORD_PTY.SPAWN,python_socket,python_shell,import_pty.

Most of the works that aimed at detecting LOLBins in general, in which was included other systems
such as Windows, for example, addressed this interaction between different ways of representing texts
originating from command lines. An example of this was Ogun (83) who implemented a way of assigning
features that he called cmd2vec. In his work, Ongun (83) submitted the tokens for each command to the
Doc2Vec or FastText algorithm for vectorization, as seen in Figure 2.10. No Code was shared by Ongun,
however, based on the description of the paper a PoC (Proof of Concept) was created.

Figure 2.10: Cmd2Vec - Proposed by Ongun

Source: Adapted from Ongun’s work (83)

Firstly, Ongun created a "Contextual Embedding Model". In this phase, each input is splitted in tokens,
where I choose, as seen in Code 2.1, to simply split by spaces. Then, these tokens are converted to vectors
by a NLP algorithm, in this case or Word2Vec or FastText.

1 lista = []

2 for i in Dados:

3 print(i.split())

4 lista.append(i.split())

5 from gensim.models import Word2Vec, FastText
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6 word2vec_model = Word2Vec(sentences=lista, vector_size=100, window=5, min_count=1,

sg=0)

7 fasttext_model = FastText(sentences=lista, vector_size=100, window=5, min_count=1,

sg=0)

8 vector_w2v = word2vec_model.wv['git']

9 vector_ft = fasttext_model.wv['git']

Code 2.1: Contextual Embedding Model

Secondly, a score is created for each token, because Ongun believed that malicious commands tend to
rare words or parameters than the usual common commands. To explore this, he trained his first database
using the Random Forest algorithm and calculates the average probability that each token appears on a leaf
of the tree with a final label representing the LOLBins commands.

In Code 2.2, I replicate Ongun’s approach by combining Word2Vec embeddings and a Random Forest
classifier to evaluate the importance of tokens in a binary classification task. After training, the model
associated each token with the leaf nodes it reaches in the Random Forest. For tokens labeled as 1, the
probabilities of belonging to this positive class are aggregated and normalized based on the number of
samples in each leaf. The result is the average probability of each token being classified as 1, which
provides insight into how significant each token is for the classification task based on its path through the
model’s decision trees.

1 from sklearn.ensemble import RandomForestClassifier

2 from gensim.models import Word2Vec

3 import numpy as np

4 labels = [1, 0, 1, 0, 1]

5 word_vectors = word2vec_model.wv

6 entry_vectors = []

7 entry_labels = []

8 for i, tokens in enumerate(lista_de_tokens):

9 for token in tokens:

10 if token in word_vectors:

11 entry_vectors.append(word_vectors[token])

12 entry_labels.append(labels[i])

13 random_forest_model = RandomForestClassifier(n_estimators=100, random_state=42)

14 random_forest_model.fit(entry_vectors, entry_labels)

15 num_samples_per_leaf = random_forest_model.apply(entry_vectors)

16 token_leaf_probabilities_sum = {}

17 for i, tokens in enumerate(lista_de_tokens):

18 if labels[i] == 1:

19 for j, token in enumerate(tokens):

20 if token not in token_leaf_probabilities_sum:

21 token_leaf_probabilities_sum[token] = []

22 token_leaf_probabilities_sum[token].append(random_forest_model.predict_proba([

entry_vectors[i]])[0][1] / num_samples_per_leaf[i, j])

23 mean_leaf_probabilities_label_1_normalized = {token: np.mean(probs) for token,

probs in token_leaf_probabilities_sum.items()}

Code 2.2: Token Score Generation
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Finally, Ongun developed a new dataset creation process through a function called "CMD2VEC"during
the phase called "Feature Vector Generation". This step generates a new dataset by calculating various sta-
tistical measures from the word vectors and the probabilities gathered in previous steps. For each entry, the
function extracts the top three minimum, maximum, and average values from the word vectors associated
with each token. Additionally, it captures the top three leaf scores derived from the Random Forest trai-
ning to reflect the importance of specific tokens for classification. Finally, he also included a count of the
entry tokens and the rarest ones, as he noticed that in his database the binaries used in attacks sometimes
appeared only a few times. Each processed entry results in a feature vector that contains these statistical
metrics, along with a label for supervised learning.

1 for i, tokens in enumerate(lista_de_tokens):

2 word_vecs = [word_vectors[token] for token in tokens if token in word_vectors.

key_to_index]

3 if len(word_vecs) > 0:

4 word_vecs = np.array(word_vecs)

5 if len(word_vecs) >= 3:

6 min_values = np.min(word_vecs, axis=0)[:3]

7 max_values = np.max(word_vecs, axis=0)[:3]

8 avg_values = np.mean(word_vecs, axis=0)[:3]

9 else:

10 min_values = np.zeros(3)

11 max_values = np.zeros(3)

12 avg_values = np.zeros(3)

13 token_scores = [mean_leaf_probabilities_label_1_normalized[token] for

token in tokens if token in mean_leaf_probabilities_label_1_normalized]

14 token_scores.sort(reverse=True)

15 max_scores = token_scores[:3]

16 num_tokens = len(tokens)

17 rare_count = sum(1 for token in tokens if token not in word_vectors.

key_to_index or word_vectors.get_vecattr(token, 'count') <= 1)

18 label = labels[i]

19 entry_data = np.array((min_values[0] if len(min_values) > 0 else 0,

min_values[1] if len(min_values) > 1 else 0, min_values[2] if len(

min_values) > 2 else 0,

20 max_values[0] if len(max_values) > 0 else 0,

max_values[1] if len(max_values) > 1 else 0,

max_values[2] if len(max_values) > 2 else 0,

21 avg_values[0] if len(avg_values) > 0 else 0,

avg_values[1] if len(avg_values) > 1 else 0,

avg_values[2] if len(avg_values) > 2 else 0,

22 max_scores[0] if len(max_scores) > 0 else 0,

max_scores[1] if len(max_scores) > 1 else 0,

max_scores[2] if len(max_scores) > 2 else 0,

23 num_tokens, rare_count, label),

24 dtype=[('min_val_0', np.float64),('min_val_1', np.

float64),('min_val_2', np.float64),

25 ('max_val_0', np.float64),

26 ('max_val_1', np.float64),

27 ('max_val_2', np.float64),
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28 ('avg_val_0', np.float64),

29 ('avg_val_1', np.float64),

30 ('avg_val_2', np.float64),

31 ('max_score_0', np.float64),

32 ('max_score_1', np.float64),

33 ('max_score_2', np.float64),

34 ('num_tokens', np.int64),

35 ('rare_count', np.int64),

36 ('label', np.int64)])

37 new_dataset.append(entry_data)

38 new_dataset = np.array(new_dataset)

Code 2.3: Feature Vector Generation

This structured data enables the model to better differentiate between command sequences, especially
focusing on detecting obfuscated or malicious patterns based on their token-level attributes and their tra-
versal paths through the decision trees. With this approach, Ongun managed to achieve the F1 Score of
0.96 using FastText and 0.94 with Doc2Vec.

Unfortunately, Ongun did not provide the dataset used in the tests to evaluate the PoC created.

Still in the field of LOLBins detection, Alaa AbuShqeir (1) applied a binary classification approach
using a dataset composed of 350 legitimate and 300 malicious commands, primarily targeting Windows
machines. The malicious LOLBins dataset was sourced from the LOLBAS project, similar to the GTFO-
Bins repository (2) but focused only on Windows binaries. AbuShqeir enhanced the preprocessing phase
by creating specialized regex patterns to tokenize the commands more effectively. This approach replaced
most of the original data with newly generated tokens. At the end, according to the author, the efficiency
in detecting malicious input had a detection rate of up to 98.8% and false-positive at 4.9%.

Demmer (84) also utilized the LOLBAS project, but focused on detecting LOLBins using the SIGMA
rule framework (85). The SIGMA project provides a flexible and platform-agnostic format for creating
detection rules that can be converted into queries compatible with various Security Information and Event
Management (SIEM) systems. Demmer developed and tested multiple custom SIGMA rules to identify
specific LOLBins functions executed by common Windows binaries.

Although some works did not specifically focus on detecting LOLBins, they provided valuable insights
into Machine Learning and Natural Language Processing (NLP) techniques. This was the case with the
work of Hendler et al. (86), which concentrated on detecting malicious PowerShell commands. The
paper utilized a dataset comprising 66,388 PowerShell commands, of which 6,290 were malicious. An
additional set of 471 commands, provided by Microsoft Security Experts, was used for evaluation. One of
the challenges identified was that PowerShell commands are often heavily obfuscated, making detection
more difficult. However, the study demonstrated that deep learning approaches, particularly character-level
Convolutional Neural Networks (CNNs), are highly effective in detecting obfuscation techniques such as
base64 encoding and dynamically generated commands.

26



2.2.1 Classification of Linux Commands in SSH Session by Risk Levels

A significant challenge with previous works is the lack of publicly available datasets, which hinders
the ability to reproduce and extend the research. Additionally, the code used in these studies is often not
provided. However, in the case of Ongun (83), the methodology was reproducible. In a machine learning
context, though, the dataset remains the foundation of model training, making its availability crucial for
further advancements. For this purpose, the work of Thuy Ngan (13) based our project.

In Ngan (13) master’s thesis, it aimed to classify Unix commands based on risk levels. To achieve this,
it were collected 660 .bash_history files from GitHub and used logs from two honeypots obtained from
another study conducted at the same university.

The total corpus comprised 905,405 commands. In an initial analysis, Ngan performed a binary classi-
fication of the data, assuming that commands from GitHub were legitimate, while those from the honeypots
were considered malicious. In a second phase, central to the study’s goal, all data was processed using a
labeling function that categorized each command by risk level.

After training the machine learning algorithms, the predictions were evaluated using a confusion ma-
trix, where both false positives and false negatives were measured. False negatives were particularly criti-
cal, as misclassifying a malicious command could lead to significant impacts on a system.

The data, sourced from two different origins, needed to be cleaned and normalized before being pro-
cessed by text algorithms such as Bag of Words and Doc2Vec.

Before applying NLP text representation techniques, the data underwent a preprocessing phase. During
this stage, information like emails, URLs, IP addresses, file paths, and text were replaced with appropriate
textual representations. To perform this task, the Python library Textacy (87) was used, which provides
specialized functionalities for NLP. For additional preprocessing tasks, custom functions were created
using regular expressions to replace specific data with designated strings.

The .bash_history files were fragmented into records corresponding to each collected session. As a
result, it was necessary to read each file, with every command line being processed through a normalization
function. This function applied various text-cleaning operations, and finally, all commands containing &&
or ; were split into separate commands.

Similarly, the commands executed in the honeypots were stored in JSON files for each session, ac-
cessible via the cowrie_command_input key. These commands were extracted and subjected to the same
normalization functions, ensuring consistent treatment of the commands, as illustrated in the example in
Code 2.4.

1 git commit --am _STRING_

2 echo at http:_PATH_ my email is _EMAIL_

3 ping _IP_ && ping google.com

4 rm _PATH_ | rm _PATH_ & cp _PATH_ _PATH_

Code 2.4: Ngan’s Sample

Ngan (13) initially conducted a binary classification scenario, where commands from GitHub were
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labeled as legitimate, while those originating from honeypots were considered malicious.

In addition to this approach, the scenarios were segmented based on the presence or absence of context.
Given the lack of additional information about command execution in Linux history files, which only store
the commands themselves, the context of a command was defined as the two preceding commands, if
available.

The scenarios were further subdivided according to the NLP representation methods used, such as Bag
of Words, TF-IDF, and Doc2Vec. After training the scenarios with instance-based learning algorithms like
K-Nearest Neighbors (KNN) and Support Vector Machines (SVM), Ngan achieved the results shown in
Table 2.3:

Context Representation Classification Accuracy False Neg

1-Command 1-gram + BoW KNN 89.13% 28,878

3-Command
1-gram + TF-IDF

Linear SVC
98.13% 2,292

3-gram + TF-IDF 98.27% 2,066
3-gram + Doc2Vec 96.71% 1,499

Table 2.3: Results obtained by Ngan in the binary classification task

From the implementation using TF-IDF, Ngan introduced the concept of command context or com-
mand window. Due to the lack of additional data, since the .bash_history file only stores the commands
themselves — omitting information such as user, process, and execution time — the context of a command
was defined as the two preceding commands, if available. To achieve this, Ngan created a function that
traverses each command, appending the two preceding commands and saving the result in a new list, as
shown in Code 2.5. In addition to creating the 3-command window, this new list was processed using
TF-IDF in two ways: with Unigram and Trigram models. As explained by Jurafsky and Martin (88), an
N-gram is a sequence of N words, where the sequence is treated as a single token.

1 def create_n_command_by_sliding_window(session_cmds,

2 labels, window_size=3):

3 cmds_flat = []

4 labels_flat = []

5

6 for sess_idx, cmds in enumerate(session_cmds):

7 for i in range(len(cmds) + 1):

8 start_idx = max(0, i - window_size)

9 if start_idx == i:

10 continue

11 cmds_flat.append(" ".join(cmds[start_idx:i]))

12 labels_flat.append(labels[sess_idx])

13 return cmds_flat, labels_flat

Code 2.5: Ngan’s Window of Commands

Doc2Vec was developed by Le and Mikolov as a simple extension to Word2Vec. As explained by Lau
and Baldwin (57), the purpose of this extension was to create vector representations for entire documents
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rather than individual words. Ngan once again used the 3-command window for processing with Doc2Vec,
achieving an accuracy rate of 98.23% with only 707 false positives. This was the best scenario achieved
for the binary classification.

However, the core of Ngan’s project was to classify by risk levels the Linux commands submitted to
honeypots, allowing for improved management of permissions for agents interacting with the system. This
classification would enable a more precise evaluation of executed commands, giving the honeypots the
ability to appropriately manage the level of freedom granted to these agents during their interaction with
the system.

The manual labeling was unfeasible given the large number of entries, 905,045 commands. Therefore,
the Snorkel library was used to automate the labeling process. Snorkel allows the creation of datasets using
heuristic rules, as described on its development site (89). Functions were created to generate the new labels
and used to categorize the commands based on their usage type, such as those related to user information,
system, hardware, and processes. Additionally, manual functions were created to capture other charac-
teristics, such as command length, base64 content, packet manipulation, and service interactions, among
others, as demonstrated in the code 2.6, with the classes UNKNOWN and R [0-4].

1 labeling_functions = [

2 make_keyword_lf(f_name=f_name, keywords=keywords, label=label)

3 for f_name, (label, keywords) in keyword_labeling_func_config.items()

4 ]

5 labeling_functions += [ lf_long_cmd,

6 lf_base64,

7 lf_history,

8 lf_install,

9 lf_schedue,

10 lf_firewall,

11 lf_disable_services,

12 lf_sensitive_keywords,

13 lf_execute ]

Code 2.6: Ngan’s Window of Commands

The data were processed by Ngan using both Bag of Words and Doc2Vec, each with the Logistic
Regression algorithm. The Doc2Vec approach achieved an accuracy rate of 99.58%, as shown in Table 2.4

Representation Classification Accuracy

Count-Vector
Logistic Regression

95.05%
Doc2Vec 99.58%

Table 2.4: Risk Classification

With the exception of the BoW implementation using KNN, Ngan’s other implementations (13) achie-
ved good results in terms of accuracy and false negative counts. However, upon reviewing Ngan’s work, we
extended the study by implementing additional algorithms in the same scenarios. As a result, we obtained
higher accuracy across all scenarios using neural networks, as shown in Table 2.5.
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Algorithm NLP Accuracy Execution Time False Neg.

Neural Network BoW 93.13% 4 min 19.6 sec 5,288
Neural Network TF-IDF 99.49% 16 min 2.7 sec 775
Neural Network Doc2Vec 99.23% 197 min 37.4 sec 792

Table 2.5: Best Results Obtained with Neural Networks

The application of other machine learning algorithms to the same scenarios highlights the complexity
of selecting the right algorithm. For models designed to be implemented in intrusion detection systems,
the choice of algorithm must go beyond simply maximizing accuracy. It is essential to strike a balance
between accuracy, false negative counts, and the time required for training and prediction.

2.2.2 Command Obfuscation

LOLBins are inherently stealthy techniques; however, some commonly used LOLBins commands are
already recognized by antivirus solutions and can be flagged by detection systems.

To evade detection, adversaries often apply command obfuscation techniques, which transform com-
mands syntactically without changing their underlying behavior. These transformations hinder pattern
recognition by both signature-based and machine learning-based detection tools.

For the purpose of this work, we define:

• Plain commands: Legitimate commands executed without any alterations or obfuscation techni-
ques. These commands maintain their original syntax and are generally human-readable.

• Obfuscated commands: Commands that have been transformed using one or more obfuscation
techniques to evade detection, while still preserving their intended execution logic.

Tsai et al. (90) conducted a study focusing on the classification of malicious and obfuscated PowerShell
commands, demonstrating how these techniques significantly increase the complexity of detection.

Three categories of obfuscation are mentioned, compression, manipulation of string and enconding
schemes, along side the Helper Functions. Enconding schemes are methods of displaying data in a specific
format such as Base64, Hexadecimal, Unicode, among others. Helper Functions are defined as functions
that are created to be combined with other obfuscation methods, performing functions such as text splitting
and replacement, as well as Randomcase where each character is converted using a pattern randomly set.
All the methods studied by Tsai are defined in Table 2.6. As a solution to the problem of malicious
obfuscated PowerShell commands, Tsai created the framework which he named PowerDP (90), which
performs the deobfuscation and subsequent static classification of PowerShell commands.

The PowerDP framework operates in two phases: De-Obfuscating and Profiling PowerShell com-
mands. In the de-obfuscation phase, PowerDP uses multi-label classification to identify the various ob-
fuscation techniques present in the commands. This is essential because attackers often employ multiple
layers of obfuscation to evade detection. The classifier achieves an impressive obfuscation detection accu-
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Priority Obfuscation method Category

1 Tick String manipulation
2 Concatenation String manipulation
3 Reversing String manipulation
4 Reordering String manipulation
5 Replacement Helper function
6 Splitting Helper function
7 ASCII encoding Encoding scheme
8 Binary encoding Encoding scheme
9 Hexadecimal encoding Encoding scheme
10 Octal encoding Encoding scheme
11 Binary XOR encoding Encoding scheme
12 Compression Compression
13 SecureString encoding Encoding scheme
14 Base64 encoding Encoding scheme
15 Randomcase Helper function

Table 2.6: Obfuscation methods and their categories

racy of 99.82%.

Once the obfuscation techniques were identified, PowerDP applied a de-obfuscation process using
regular expressions and static replacements. This process successfully recovers the original command
content with an accuracy of 98.11% across 15 different obfuscation techniques. This concludes their first
phase.

In the second phase, after the PowerShell commands are de-obfuscated, the framework moved to beha-
vioral profiling, where it analyzes the intent behind the commands. This is accomplished by extracting fe-
atures from the abstract syntax tree (AST) of the commands. The framework then classifies the commands
into various behavioral categories, such as code injection, malware download, or system reconnaissance.
This behavioral profiling phase achieved an accuracy of 98.53% in identifying malicious activities.

Other works had focused on detecting obfuscated malicious anomalies, however most of them have
focused on detecting malware rather than command lines. Kolli et al. (91), for example, applied Artifi-
cial Neural Networks to classify 280 samples of metamorphic malware. These type viruses change their
structure during code execution, bypassing some detection software.

Kolli et al. (91) developed a neural network model designed to detect obfuscated malware by analyzing
underlying patterns using similarity-based techniques. The paper highlights the critical importance of
minimizing both false positives and false negatives, which are persistent challenges in malware detection.
Traditional methods often produce a high number of false alarms, overwhelming security analysts and
reducing system efficiency. The proposed neural network approach demonstrated a significant reduction
in false positive rates, decreasing to just 8% as the size of the training dataset increased, showcasing the
model’s effectiveness in improving detection accuracy.

Although false positives present a challenge, false negatives are far more critical, as they indicate that
the model failed to detect malicious code or malware. This could harm the system without raising any
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alarms.

Khan (92) tried to detect obfuscated malware using an Artificial Neural Network (ANN) and the CIC-
MalMem-2022 memory analysis dataset. Khan achieved a accuracy rate of 99.72%. Similar to Khan,
Hasan et al (93) proposed a cost-effective solution that leverages memory dump analysis combined with
various machine learning algorithms, such as decision trees, ensemble methods, and neural networks. Their
research was based on an dataset of 58,596 entries, with 55 features binary classified in malicous or not.
Their results demonstrated that the proposed framework was effective in detecting obfuscated malware
across multiple categories, including spyware, ransomware, and Trojan horses.

Hasan et al. (93) faced the challenge of working with a highly imbalanced dataset. To address this
issue, they employed two approaches: undersampling the majority class and oversampling the minority
class. For reducing the majority class, they used the Random Undersampling (RUS) and Near Miss al-
gorithms. Random Undersampling (RUS) reduces the size of the majority class by randomly discarding
samples, while Random Oversampling (ROS) increases the size of the minority class by randomly dupli-
cating samples. As noted by Weiss (94), these techniques have limitations: undersampling can result in the
loss of valuable information, while oversampling risks overfitting by duplicating data. Near Miss, on the
other hand, selectively removes samples from the majority class based on their proximity to the minority
class, aiming to retain more useful information. To increase the size of the minority class, Hasan et al.
employed ADASYN (Adaptive Synthetic Sampling), which outperformed other methods in balancing the
dataset.
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3 METHODOLOGY

This chapter outlines the methodology used in this thesis, divided into two main parts. The first part
focuses on the classification of plain LOLBins in Linux, detailing the process from dataset construction to
identifying the optimal combination of ML, NLP, and data balancing algorithms.

The second part addresses the classification of obfuscated LOLBins in Linux. Here, the previously
constructed dataset is increased with obfuscated versions of the commands. Subsequently, the optimal
model identified in the first part is fine-tuned to effectively classify the obfuscated commands.

Before proceeding, it is crucial to address the environment configuration, as it directly impacts perfor-
mance. A more powerful system can train models with more features and significantly reduce the time
required for training. The system configuration used in this work is detailed in Table 3.1.

Component Details
CPU Apple M2 Max
Memory (RAM) 96 GB
GPU Apple M2 Max with 38 Cores
Operating System macOS 15.1.1 (24B91)
Python Version 3.11.5 (Anaconda Distribution)

Key Python Libraries

scikit-learn (1.2.2)
TensorFlow (2.15.1)
PyTorch (2.0.1)
NumPy (1.24.3)
Pandas (2.1.1)
Matplotlib (3.7.2)

Table 3.1: System Environment for Experimentation

3.1 CLASSIFICATION OF PLAIN LOLBINS

The first phase of this study aims to identify the optimal combination of machine learning (ML) models,
natural language processing (NLP) techniques, and data balancing strategies, as shown in Figure 3.1.

This research builds directly on the work of Ngan (13), which provided both the dataset and the code
for the initial data normalization process. While Ngan’s work primarily focused on preprocessing and
preliminary classification, this study expands upon that foundation. It explores alternative normalization
strategies, refines feature engineering, and evaluates a wider range of ML models and balancing techniques
to enhance detection performance.
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Figure 3.1: Overview of the first test.

Source: Author

This section is structured into three parts: Data Normalization and Tokenization, Creation of the Data-
set, and Tests Order.

3.1.1 Data Normalization and Tokenization

Before delving into dataset creation, it is essential to address the data normalization process. Most
studies focused on detecting malicious command lines—regardless of the operating system—have sought
to improve the normalization of input text before it is transformed into features, as discussed in Section 2.2.
For example, Ongun et al. (83) developed a dedicated function to normalize text and generate feature
representations for their dataset.

Text preprocessing is crucial in natural language processing (NLP) pipelines. One of the key steps in
this phase is tokenization, which refers to segmenting a string of text into smaller, meaningful units called
tokens. These tokens can represent words, subwords, or characters, depending on the analysis granularity
required by the task (95).

Tokenization is not limited to simply splitting a string by whitespace; it often involves removing or
handling punctuation marks, memorable characters, and irrelevant elements, such as stopwords, to enhance
the quality and consistency of the textual data (38). For command-line analysis, tokenization may also need
to account for syntactic elements such as flags, paths, and variables, which carry semantic weight in this
context.

The preprocessing approach, in this work, followed a similar approach to Ngan’s. For instance, Ngan’s
preprocessing method indiscriminately suppressed complete paths in commands, transforming strings such
as “/bin/bash -p"into “_PATH_ -p". While this approach generalizes file paths, it could result in the loss of
critical information, such as the command being executed. Additionally, the frequent usage of environment
variables in LOLBins presented another challenge. Since variable names can vary, models might incorrec-
tly interpret different variable names as representing different actions, even though they signify the same
operation.
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1 def replace_file_path(text):

2 return re.sub(r"((?<= )[^ ]*/)([^/ ]*)", r"_PATH_/\2", text)

3 def replace_env_variables(text):

4 text = re.sub(r"\$([A-Za-z_][A-Za-z0-9_]*)", r"$_ENV", text)

5 text = re.sub(r"([A-Za-z_][A-Za-z0-9_]*)=", r"_ENV_=", text)

6 return text

Code 3.1: Python script for text manipulation

To address these issues, modifications were made to the preprocessing functions. Specifically, the
replace_file_path function was updated to replace only the directory portion of a path with the string
_PATH_, while retaining the file name at the end of the path. Similarly, the replace_env_variables function
was adjusted to normalize variable declarations by replacing variables declarations and uses with _ENV
and $_ENV, as seen in Code 3.1.

As will be showed further on, this revised approach provided a foundation for the first normalization
function constructed in this work, which builds upon Ngan’s normalization technique despite this two
changes, and it can be found on Attachment I.2.

3.1.2 Creation of the Dataset

As mentioned in Section 2.2.1, one of the challenges of this project was finding a proper dataset to
serve as a basis for our research. Fortunately, Ngan’s master’s thesis (13) pursued a similar line of work by
classifying malicious Linux commands, and provided all the code and datasets through Kaggle1.

Ngan used a dataset comprising two parts: one sourced from GitHub, where all commands were con-
sidered benign, and another obtained from two honeypots, where all commands were deemed malicious.
For this work, we chose to use the benign portion of Ngan’s dataset. For the malicious portion, we relied
on the GTFOBins repository (2), which provided its dataset in JSON format2.

1 gtfo_df = pd.read_json('https://gtfobins.github.io/gtfobins.json')

2 gtfo_list = []

3 for function in gtfo_df.T.functions:

4 for keys in function:

5 for i in function[keys]:

6 for chave in i:

7 if chave == 'code':

8 gtfo_list.append(i[chave])

Code 3.2: GTFOBins’s JSON to dataframe

The JSON file is processed using the Pandas module to convert it into a DataFrame, as shown in Code
3.2. This DataFrame is then normalized using the function described in Section 3.1.1, as illustrated in Code
3.3. Following this process, the LOLBins portion of the dataset consists of 1,670 unique commands and
3,463 in total.

1<https://www.kaggle.com/datasets/thuyngandao/bashlogs>
2<https://gtfobins.github.io/gtfobins.json>
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1 gfto_split = []

2 for x in gtfo_list:

3 gfto_split.append(x.split('\n'))

4 gtfo_norm = []

5 for x in gfto_split:

6 a = []

7 for y in x:

8 a.append (normalize(y))

9 gtfo_norm.append(a)

10 for cmd in gtfo_norm:

11 for x in cmd:

12 if x == '':

13 cmd.remove(x)

Code 3.3: GTFOBins’s normalization

The GTFOBins repository categorizes commands into various functions based on their use cases. In
Figure 3.2, it is evident that the majority of commands fall under the sudo category, followed by shell in
second place and suid in third. The dominance of the sudo and suid categories highlights that many of these
commands require specific privileges to execute, making them particularly potent in privilege escalation
scenarios. Meanwhile, the shell category primarily focuses on spawning shells, emphasizing its utility for
interactive access and further exploitation.
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Figure 3.2: Frequency distribution of LOLBins functions.

Source: Author

For the benign portion of the dataset, the reading and normalization process followed the exact same
implementation provided in Ngan’s work, as illustrated in Code 3.4. Following this process, the benign
portion of the dataset consists of 53,091 unique commands from the total of 210,402 entries.

1 data_path = "./Datasets/"

2 bash_logs_path = data_path + "bash_logs/"

3 bash_file_names = os.listdir(bash_logs_path)

4 benign_logs = []

5 for file in bash_file_names:

6 with open(os.path.join(bash_logs_path, file)) as f:

7 benign_logs.append([normalize(line) for line in f.read()

8 .replace("&&", "\n")

9 .replace(";", "\n")

10 .splitlines()])

11 benign_unique = set(itertools.chain.from_iterable(benign_logs))

12 while("" in benign_unique):

13 benign_unique.remove("")

Code 3.4: Ngan’s portion normalization

37



Upon comparing the two datasets, it was observed that the LOLBins portion constitutes approximately
1.6% of the entire dataset and 3.04% when considering only unique commands, highlighting a clearly
imbalanced dataset.

An important aspect to address is the decision to use the entire corpus rather than only unique com-
mands. In Ngan’s work, one of the premises was that to better analyze LOLBin attacks, it is essential
to consider additional factors such as the user, timestamp, and the commands executed together, in other
words, the context in which the commands were executed. Due to the lack of contextual information in
bash_history files, Ngan proposed the use of a Window of Command, Code 3.5, grouping three consecutive
commands to simulate the context of execution.

1 def create_n_command_by_sliding_window(session_cmds, labels, window_size=3):

2 cmds_flat = []

3 labels_flat = []

4 for sess_idx, cmds in enumerate(session_cmds):

5 for i in range(len(cmds) + 1):

6 start_idx = max(0, i - window_size)

7 if start_idx == i:

8 continue

9 cmds_flat.append(" ".join(cmds[start_idx:i]))

10 labels_flat.append(labels[sess_idx])

11 return cmds_flat, labels_flat

Code 3.5: Ngan’s window of commands

3.1.3 Test’s Order

As mentioned in Section 3.1.2, the dataset was found to be significantly imbalanced, with the GTFO-
Bins portion representing only 1.601% of the unique commands and 3.04% of the total dataset. This imba-
lance suggests that a model predicting solely the majority class could achieve an accuracy of approximately
97%, despite failing to correctly classify minority instances. To address this issue, five algorithms—ROS,
RUS, SMOTE, Near Miss, and OSS—were tested, as each offers distinct advantages and drawbacks. As
discussed in Section 2.1.3, ROS increases the representation of the minority class by duplicating existing
data, while RUS reduces the majority class by randomly discarding data points. However, as noted by
Weiss (94), these approaches have inherent limitations: RUS may result in the loss of critical information,
whereas ROS increases the risk of overfitting by repeatedly using the same data. To mitigate these short-
comings, advanced techniques like SMOTE were employed. According to Alamsyah et al. (96), SMOTE
generates synthetic samples for the minority class by interpolating between existing data points, balancing
the dataset without relying solely on duplication. Near Miss, in contrast, removes majority class samples
based on their proximity to the minority class, preserving essential information in the process. Finally,
OSS, as described by Kubat (66), eliminates majority class samples that are distant from the minority
class, thereby enhancing the minority class representation.

To automate the data balancing process, two Python functions were developed. These functions create
balanced datasets, split the data into training and testing sets, and train the model with the chosen balancing
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technique. The function criar_dataset_balanceado applies all five tested techniques using random_state =
32 to ensure reproducibility across methods, as shown in Code 3.6.

1 def criar_dataset_balanceado(X, Y):

2 rus = RandomUnderSampler(random_state=32)

3 X_rus_res, y_rus_res = rus.fit_resample(X, Y)

4 nm = NearMiss(version=1)

5 X_nm_res, y_nm_res = nm.fit_resample(X, Y)

6 oss = OneSidedSelection(random_state=32)

7 X_oss_res, y_oss_res = oss.fit_resample(X, Y)

8 ros = RandomOverSampler(random_state=32)

9 X_ros_res, y_ros_res = ros.fit_resample(X, Y)

10 smote = SMOTE(random_state=32)

11 X_smote_res, y_smote_res = smote.fit_resample(X, Y)

12 return X_rus_res, y_rus_res, X_nm_res, y_nm_res, X_oss_res, y_oss_res,

X_ros_res, y_ros_res, X_smote_res, y_smote_res

Code 3.6: Creating a balanced dataset

As for the NLP processing used, similar to Ngan’s approach, three techniques were employed: Bag
of Words (BoW), Term Frequency-Inverse Document Frequency (TF-IDF), and Doc2Vec. All of these
techniques were configured to use a feature size of 128. To ensure reproducibility, the code for training
each NLP model is provided below, divided into separate listings for clarity in Code 3.7, 3.8 and 3.9.

1 from sklearn.feature_extraction.text import CountVectorizer

2 vocab_size = 128

3 vectorizer = CountVectorizer(max_features=vocab_size)

4 vectorizer.fit(one_cmd_corpus)

5 X_train_encoded = vectorizer.transform(cmds_flat)

Code 3.7: Training Bag of Words (BoW) with 128 vocab size

1 from sklearn.feature_extraction.text import CountVectorizer

2 from sklearn.feature_extraction.text import TfidfTransformer

3 from sklearn.decomposition import TruncatedSVD

4 VOCAB_SIZE = 128

5 N_GRAM = 3

6 vectorizer = CountVectorizer(ngram_range=(1, N_GRAM), max_features=VOCAB_SIZE)

7 vectorizer.fit(X)

8 X_train_encoded = vectorizer.transform(X)

9 tf_transformer = TfidfTransformer().fit(X_train_encoded)

10 X_train_tfidf = tf_transformer.transform(X_train_encoded)

11 svd = TruncatedSVD(n_components=50).fit(X_train_tfidf)

12 X_train_features = svd.transform(X_train_tfidf)

Code 3.8: Training TF-IDF with 128 vocab size and SVD
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1 from gensim.models import doc2vec

2 all_corpus = []

3 for cmd, lbl in zip(cmds_flat, labels_flat):

4 tokens = cmd.split()

5 all_corpus.append(doc2vec.TaggedDocument(tokens, str(lbl)))

6 VECTOR_SIZE = 128

7 model = doc2vec.Doc2Vec(

8 vector_size=VECTOR_SIZE,

9 min_count=2,

10 )

11 model.build_vocab(all_corpus)

12 model.train(all_corpus, total_examples=model.corpus_count, epochs=model.epochs)

13 def extract_features(tagged_corpus, model):

14 X = []

15 y = []

16 for words, tags in tagged_corpus:

17 X.append(model.infer_vector(words))

18 y.append(float(tags))

19 return X, y

20 X_train_features, y = extract_features(all_corpus, model)

Code 3.9: Training Doc2Vec with 128 vector size

Regarding the ML models, Ngan’s approach relied solely on KNN and Linear SVC. However, in our
reevaluation of Ngan’s work, we extended the analysis to include additional ML models. Our findings
revealed that several of these models outperformed those previously used. As highlighted in Table 3.2,
Random Forest and Neural Networks demonstrated superior performance compared to the other algorithms
tested.
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NLP Technique Algorithm Accuracy Execution Time False Negatives

BoW

Decision Tree 93.12% 0.4s 5,270
Random Forest 93.13% 20.4s 5,271
Logistic Regression 91.75% 5.4s 4,415
SVM (SVC) 91.33% 92m 3.5s 6,724
Neural Network 93.13% 4m 19.6s 5,288

TF-IDF

Unigram:
Decision Tree 99.49% 8.3s 761
Random Forest 99.51% 2m 27.1s 766
Logistic Regression 98.22% 6.4s 2,538
SVM (SVC) 98.64% 19m 36s 1,573
Neural Network 99.49% 16m 2.7s 775
Trigram:
Decision Tree 98.87% 7.3s 2,006
Random Forest 98.88% 1m 23.9s 2,008
Logistic Regression 98.40% 6.4s 2,255
SVM (SVC) 98.34% 23m 20.9s 2,145
Neural Network 98.86% 21m 32.6s 2,023

Doc2Vec

Decision Tree 97.50% 5m 2.5s 3,123
Random Forest 98.48% 50m 30.8s 831
Logistic Regression 98.11% 12.6s 920
SVM (SVC) 98.25% 259m 45.6s 884
Neural Network 99.23% 197m 37.4s 792

Table 3.2: Performance comparison of algorithms across NLP techniques.

For this reason, we used these five machine learning models to evaluate their performance in classifying
malicious LOLBins commands. Ultimately, all combinations of balancing techniques, NLP methods, and
ML models, as outlined in Table 3.3, were tested, resulting in a total of 75 experiments.

Aspect Techniques/Models Used

Balancing Techniques

- Random Oversampling (ROS)
- Random Undersampling (RUS)
- SMOTE
- Near Miss
- One-Sided Selection (OSS)

NLP Methods
- Bag of Words (BoW)
- Term Frequency-Inverse Document Frequency (TF-IDF)
- Doc2Vec

ML Models

- Decision Tree
- Random Forest
- Logistic Regression
- Support Vector Machine (SVM)
- Neural Network

Table 3.3: Summary of Balancing Techniques, NLP Methods, and ML Models Used
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3.2 CLASSIFICATION OF OBFUSCATED LOLBINS IN LINUX

After completion of the processes described in Section 3.1, the model with the best performance,
as determined by the MCC score, was selected for fine-tuning. The original dataset used in the initial
training was then augmented with obfuscated commands, resulting in a significantly larger dataset. As
seen in Figure 3.3 this enhanced dataset was subsequently used to train the fine-tuned model using three
different normalization techniques. The first was the same method applied during the initial training, the
second introduced slight modifications to handle strings more effectively, and the third employed a novel
normalization approach designed to deobfuscate the commands prior to training.

Figure 3.3: Overview of the second test.

Source: Author

This section is structured into three parts: Fine Tuning, Obfuscation Techniques, Augmented Dataset
and Normalization Functions.

3.2.1 Fine Tuning

All results will be detailed in Section 4, but to address aspects of the training process, some findings
from the previous training phase need to be highlighted. It was determined that the combination yielding
the best MCC score comprised the Random Forest model, Doc2Vec for feature representation, and Random
Oversampling for balancing the dataset.

The Random Forest (RF) model used for binary classification of LOLBins was configured with a
straightforward setup: random_state set to 0, Gini impurity as the splitting criterion, and the number
of trees in the forest (n_estimators) set to 100. To optimize these parameters, the GridSearchCV function
from sklearn was employed. This method applied the Cross Validation technique to evaluate multiple
parameter combinations and identify the optimal configuration. As shown in Code 3.10, the parameters
criterion, min_samples_leaf, min_samples_split, and n_estimators were tested. This process systematically
evaluates all possible parameter combinations within the specified range and returns the configuration that
delivers the best performance.
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1 parametros = {

2 'criterion' : ['gini', 'entropy'],

3 'n_estimators' : [40, 100, 200],

4 'min_samples_split' : [2, 5, 10],

5 'min_samples_leaf' : [1, 5, 10]

6 }

7 grid = GridSearchCV(estimator=RandomForestClassifier(), param_grid=parametros)

8 grid.fit(X_ros_res, y_ros_res)

Code 3.10: Grid Search for Random Forest

3.2.2 Obfuscation Techniques

As discussed in Section 2.2.2, and specifically illustrated in Table 2.6, the syntax used in interpre-
ting shell commands in Linux allows obfuscation techniques similar to those described by Tsai (90) in a
PowerShell environment. To handle obfuscated data during text pre-processing, a methodology was em-
ployed to standardize it with non-obfuscated strings. This involved creating Python functions to enhance
the normalize function, ensuring consistency across the dataset.

The following obfuscation techniques were addressed in this study: Base64 Encoding, Command Subs-
titution, Variable Manipulation, and Encoding Schemes. These techniques were systematically processed
to mitigate their impact and improve the effectiveness over the machine learning models.

3.2.2.1 Base64 Encoding

Base64 can be used to encode and store information, including commands. An example of this is
shown in Code 3.11, where the whoami command is executed after being encoded in Base64.

1 $ base64 <<< whoami

2 d2hvYW1pCg==

3 $ echo "d2hvYW1pCg==" | base64 -d | bash

4 angellocassio

Code 3.11: Executing commands encoded in Base64

To process texts encoded in Base64, a Python function was developed to detect and decode them, as
shown in Code 3.12.

1 def decode_base64_if_needed(s):

2 base64_pattern = re.compile(r'([A-Za-z0-9+/=]{20,})')

3 def decode_base64(match):

4 try:

5 base64_str = match.group()

6 if len(base64_str) % 4 != 0:

7 return base64_str

8 decoded_bytes = base64.b64decode(base64_str, validate=True)

9 return decoded_bytes.decode('utf-8')
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10 except (binascii.Error, ValueError, UnicodeDecodeError):

11 return match.group()

12 decoded_str = base64_pattern.sub(decode_base64, s)

13 return decoded_str, decoded_str != s

Code 3.12: Detecting and decoding Base64 strings

This function ensures that normal text remains unaffected, as it first verifies Base64 compatibility.
According to RFC 4648 (97), a valid Base64-encoded string must consist of an integer number of octets.
Specifically: - If the input is a multiple of 24 bits, the final sequence will have a length that is a multiple of
4. - If the input is 8 or 16 bits, the character “=“ will be appended once or twice, respectively.

Before attempting decoding with b64decode, the function checks if the string’s length is divisible
by 4, ensuring a valid Base64 size. If decoding fails, an exception is caught, and the function safely returns
the original text without alteration.

3.2.2.2 Command Substitution

In Unix systems, it is possible to embed commands within other commands, either to construct an ar-
gument or to assign a value to a variable (98). This technique is known as command substitution, and it can
be implemented using two syntaxes: $(COMMAND) or `COMMAND`. An example of this is illustrated
in Code 3.13, where the whoami command is executed as a demonstration.

1 $ echo `whoami`
2 angellocassio

3 $ echo $(whoami)

4 angellocassio

Code 3.13: Executing Command Substitution

The original text normalization function previously misprocessed command substitution patterns, which
could result in the Machine Learning model treating them as entirely different commands. To address this,
specialized functions were implemented to correctly normalize such patterns. These functions, shown in
Code 3.14, replace command substitution patterns with spaces, ensuring consistency in text processing.

1 def replace_dollar_parentheses(text):

2 return re.sub(r'\$$begin:math:text$(.*?)$end:math:text$', r' \1 ', text)

3

4 def replace_backticks(text):

5 return text.replace('`', ' ')

Code 3.14: Replacing Command Substitution Patterns
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3.2.2.3 Variable Manipulation

Another method of obfuscating commands involves inserting data into variables and subsequently con-
catenating them to construct the final command. In Code 3.15, the whoami command is split into two
variables, which are then concatenated and executed.

1 $ Universidade="wh"

2 $ deBrasilia="oami"

3 $ $Universidade$deBrasilia

4 angellocassio

Code 3.15: Executing Variable Manipulation

In some cases, the variable definitions may not be present in the same text segment as the concatenated
command, even when employing Ngan’s Window of Command technique (13). To address this limitation,
variable concatenations are replaced with the placeholder string ’CONCATENACAO’, ensuring consistent
normalization. The implementation of this replacement is shown in Code 3.16.

1 def replace_env_concatenation(text):

2 return re.sub(r'(\$\w+(\s*\$\w+)+)', 'CONCATENACAO', text)

Code 3.16: Replacing Variable Concatenations

3.2.2.4 Encoding Schemes

The manual page for the echo command (99) highlights that the argument -e enables the interpretation
of backslash escapes, which include representations for Unicode encoding, as well as octal and hexadeci-
mal digits. Unicode is a universal character encoding standard, while octal and hexadecimal are numerical
systems used to represent values (100, 97, 101).

By combining the echo command with bash through a pipe, it is possible to execute commands encoded
in these schemes, as demonstrated in Code 3.17.

1 [$] echo -e "\x77\x68\x6f\x61\x6d\x69" | bash

2 > angellocassio

Code 3.17: Executing Encoded Commands

To process encoded strings effectively, the function in Code 3.18 was developed to identify and decode
these encoding schemes using regular expressions. The echo command interprets octal patterns as \0nn,
hexadecimal patterns as \xHH, and Unicode patterns as \uHHHH. The decode_escapes function decodes
each of these patterns separately, transforming them into a format that can be further processed by the NLP
algorithm.

1 def hex_to_char(match):
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2 return bytes.fromhex(match.group(1)).decode('utf-8')

3

4 def unicode_to_char(match):

5 return chr(int(match.group(1), 16))

6

7 def octal_to_char(match):

8 try:

9 return chr(int(match.group(1), 8))

10 except ValueError:

11 return match.group(0)

12

13 def decode_escapes(text):

14 text = re.sub(r'\\x([0-9A-Fa-f]{2})', hex_to_char, text)

15 text = re.sub(r'\\u([0-9A-Fa-f]{4})', unicode_to_char, text)

16 text = re.sub(r'\\([0-3]?[0-7]{2,3})', octal_to_char, text)

17 return text

Code 3.18: Decoding Encoded Strings

3.2.2.5 Escape Characters and Alias

Two additional techniques that can obscure and obfuscate commands in Linux are the use of Escape
Characters and Alias Commands. According to the Bash manual 3, an escape character is defined as a non-
quoted backslash, which preserves the literal value of the next character, except for newlines. On the other
hand, the alias command 4 is used to create a new name or shortcut for an existing command. Leveraging
these techniques, the whoami command can be executed as demonstrated in Code 3.19.

1 # Escape Characters

2 $ w\ho\am\i

3 angellocassio

4

5 # Alias

6 $ alias myname='whoami'

7 $ myname

8 angellocassio

Code 3.19: Executing Obfuscated Commands - Escape and Alias

However, these techniques were not incorporated into the new normalization function. Their exclusion
is primarily due to the complexity involved in adapting the entire dataset to account for them. As such,
they were not used to augment the dataset.

3<https://www.gnu.org/savannah-checkouts/gnu/bash/manual/html_node/Escape-Character.html>
4<https://www.man7.org/linux/man-pages/man1/alias.1p.html>
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3.2.3 Augmented Dataset

The original dataset did not include encoded commands necessary to perform the tests, making it es-
sential to construct one. For this purpose, functions were created to transform all entries into encoded
commands based on the techniques outlined in Section 3.2.2, except for Escape Characters, Alias, and
Variable Manipulation (the latter only had a normalization function created). The implemented functi-
ons, shown in Code 3.20, Code 3.21, and Code 3.22, perform transformations for different encoding and
substitution techniques.

1 def convert_command_to_hex(s):

2 return ''.join(f'\\x{ord(c):02x}' for c in s)

3 def convert_command_to_octal(s):

4 return ''.join(f'\\0{ord(c):03o}' for c in s)

5 def convert_command_to_unicode(s):

6 return ''.join(f'\\u{ord(c):04x}' for c in s)

Code 3.20: Transforming Dataset - Encoding Commands

1 def transform_strings_to_base64_bash(strings):

2 new_strings = []

3 for s in strings:

4 encoded_bytes = base64.b64encode(s.encode('utf-8'))

5 encoded_str = encoded_bytes.decode('utf-8')

6 new_str = f"echo {encoded_str} | base64 -d | bash"

7 new_strings.append(new_str)

8 return new_strings

Code 3.21: Transforming Dataset - Base64 Encoding

1 def generate_alternatives(strings):

2 new_strings = []

3 for s in strings:

4 new_str_dollar = f"$({s})"

5 new_str_backticks = f"`{s}`"
6 new_strings.append(new_str_dollar)

7 new_strings.append(new_str_backticks)

8 return new_strings

Code 3.22: Transforming Dataset - Command Substitution

3.2.4 Normalization Functions

The primary goal of this phase is to conduct three separate trainings using different normalization
techniques, as prior studies have demonstrated that normalization significantly impacts model performance.
The first normalization approach employs the same function used in the initial part of this work to ensure
a fair comparison with the newer techniques.
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The second normalization method differs from the first in handling quoted strings. In the original
approach, all text enclosed in quotation marks was replaced with the placeholder _STRING_. However, as
shown in Code 3.23, the new function removes the quotation marks while retaining the text inside them.
This allows the ML model to leverage the quoted content as useful information during training.

1 def replace_quoted_string(text):

2 return re.sub(r'"(.*?)"|\'(.*?)\'', lambda m: m.group(1) if m.group(1) is not

None else m.group(2), text)

Code 3.23: New Function for Handling Quoted Strings

The final test involves deobfuscating all commands before sending them to the NLP model for feature
extraction. This ensures that the obfuscation does not hinder the ability of the model to analyze and classify
the commands effectively. For Command Substitution, all dollar-parentheses and backtick notations are
removed using regular expressions, as shown in Code 3.24.

1 def replace_dollar_parentheses(text):

2 return re.sub(r'\$\((.*?)\)', r' \1 ', text)

3 def replace_backticks(text):

4 return text.replace('`', ' ')

Code 3.24: Deobfuscation Function - Command Substitution

As shown in Code 3.25, for Base64 obfuscation, the function first identifies potential Base64 strings
using a regular expression pattern. It then verifies if the string adheres to the Base64 length requirements
specified in RFC 4648. If the string passes the validation, it is decoded; otherwise, it remains unchanged.

1 def decode_base64_if_needed(s):

2 base64_pattern = re.compile(r'([A-Za-z0-9+/=]{20,}={0,2})')

3

4 def decode_base64(match):

5 try:

6 base64_str = match.group()

7 if len(base64_str) % 4 != 0:

8 base64_str += '=' * (4 - len(base64_str) % 4)

9 decoded_bytes = base64.b64decode(base64_str, validate=True)

10 return decoded_bytes.decode('utf-8')

11 except (binascii.Error, ValueError, UnicodeDecodeError):

12 return match.group() # Return original text if decoding fails

13

14 decoded_str = base64_pattern.sub(decode_base64, s)

15 return decoded_str, decoded_str != s

Code 3.25: Deobfuscation Function - Base64

Finally, in Code 3.26 provides a function to decode the hexadecimal, octal and unicode strings if
the text matches a certain regex. The function applies regular expressions to identify specific patterns
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corresponding to these encodings. If a match is found, the respective decoding logic is executed, converting
the encoded values back into their readable string representation.

1 def hex_to_char(match):

2 return bytes.fromhex(match.group(1)).decode('utf-8')

3 def unicode_to_char(match):

4 return chr(int(match.group(1), 16))

5 def octal_to_char(match):

6 try:

7 return chr(int(match.group(1), 8))

8 except ValueError:

9 return match.group(0)

10 def decode_escapes(text):

11 text = re.sub(r'\\x([0-9A-Fa-f]{2})', hex_to_char, text)

12 text = re.sub(r'\\u([0-9A-Fa-f]{4})', unicode_to_char, text)

13 text = re.sub(r'\\([0-3]?[0-7]{2,3})', octal_to_char, text)

14 return text

Code 3.26: Deobfuscate Function - Encoded Commands

All these new functions, along with the one cited in Code 3.16, are executed prior to the original
normalization function. This ensures that all commands are fully deobfuscated before undergoing proper
normalization.
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4 DATA ANALYSIS AND RESULTS

This chapter presents the results of the experiments conducted in this study. It is divided into two main
sections: the classification of plain LOLBins and the classification of obfuscated LOLBins.

4.1 RESULTS OF THE PLAIN LOLBINS CLASSIFICATION

For each scenario, five training sessions were conducted, corresponding to five balancing algorithms
across six supervised learning models. The performance of the NLP techniques, evaluated by various
metrics, is presented in Box Plot graphs for better visualization and comparison.

Figure 4.1 illustrates the accuracy distribution for each NLP method. Doc2Vec exhibited the broadest
range of accuracy values, indicating significant variability depending on the choice of ML model and
balancing algorithm. In contrast, TF-IDF and BoW demonstrated more consistent accuracy, with BoW
showing a few prominent outliers. These results suggest that while Doc2Vec has the potential to achieve
high accuracy, its performance is more sensitive to the choice of complementary techniques. In contrast,
BoW and TF-IDF offer more stable and predictable results.

Figure 4.1: Box Plot of accuracy across NLP methods.

Source: Author

Figure 4.2 presents the F1-Score distribution for each NLP method. Similar to the accuracy metric,
Doc2Vec displayed the widest range of F1-Score values, emphasizing its variability across different con-
figurations. Both BoW and TF-IDF showed greater stability, with BoW exhibiting slightly more outliers
than TF-IDF.
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Figure 4.2: Box Plot of F1-Score across NLP methods.

Source: Author

Finally, the MCC score distribution, the primary evaluation metric for this work, is shown in Figure 4.3.
Once again, Doc2Vec exhibited the widest performance range, reflecting its sensitivity to the ML model
and balancing algorithm.

Figure 4.3: Box Plot of MCC scores across NLP methods.

Source: Author

However, this variability does not imply that Doc2Vec is the weakest performer. As shown in Table
4.1, while Doc2Vec demonstrated the most unstable performance across all metrics, it also achieved the
best results when properly optimized. Conversely, TF-IDF was the most stable option, offering consistent
performance across scenarios. BoW, despite its stability, exhibited a high number of outliers, suggesting
occasional significant deviations.
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Table 4.1: Summary of Metrics by NLP Method

NLP Method Accuracy (Mean ± Std) F1-Score (Mean ± Std) MCC (Mean ± Std)
BoW 90.12 ± 2.35 88.45 ± 5.22 80.34 ± 8.14
Doc2Vec 92.78 ± 5.67 91.34 ± 7.45 85.67 ± 10.23
TF-IDF 89.56 ± 3.12 87.89 ± 4.55 82.45 ± 6.78

The One-Sided Selection (OSS) tests consistently achieved high accuracy across various scenarios, as
shown in Figure 4.4. However, it is worth noting that this method’s F1-Score and MCC values remained
significantly lower.

A low F1-Score indicates that, despite the model’s ability to achieve high accuracy by correctly pre-
dicting the majority class, it struggles to identify the minority class effectively. Similarly, the low MCC
values reinforce this limitation, suggesting that the model’s predictions are imbalanced and skewed towards
the majority class. This limitation is particularly critical in intrusion detection scenarios, where malicious
inputs typically form a minority class, deviating from standard patterns. Accurate identification of such
anomalies is essential for ensuring robust security measures.

The observed shortcomings highlight that while OSS may be effective in improving class distribution,
its performance in handling imbalanced datasets remains suboptimal for applications that demand precise
detection of minority class instances.

Figure 4.4: Performance metrics for One-Sided Selection (OSS).

Source: Author

In the experiments conducted, algorithms designed to increase the representation of the minority class,
particularly ROS and SMOTE, demonstrated superior performance compared to those aiming to reduce
the majority class. The heatmap analysis, illustrated in Figure 4.5, showcases the performance of each
combination used with the BoW NLP method. The column corresponding to the OSS technique stands
out for its poor performance, with the highest MCC reaching only 62.8. Conversely, ROS and SMOTE
achieved the best results in this scenario. Although underperformed, the overall MCC range for BoW was
relatively stable, varying between 76.0 and 84.5, demonstrating its consistency across different balancing
techniques despite OSS.
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Figure 4.5: Heatmap with the BoW performance.

Source: Author

Figure 4.6 presents the performance of the TF-IDF NLP method. In this case, scores slightly improved
compared to BoW, achieving a maximum MCC of 90.3 with SMOTE and the Random Forest (RF) mo-
del. TF-IDF consistently outperformed BoW across most combinations, indicating its effectiveness in text
vectorization for this task. The stability observed in BoW is also apparent here, but TF-IDF managed to
produce higher peak scores in several scenarios.
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Figure 4.6: Heatmap with the TF-IDF performance.

Source: Author

Finally, Doc2Vec, as illustrated in Figure 4.7, achieved the best performance across all NLP methods,
with a maximum MCC score of 99.998, rounded to 100 in the graphic. This exceptional result was obtained
using the RF model combined with ROS.
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Figure 4.7: Heatmap with the Doc2Vec performance.

Source: Author

Doc2Vec emerged as the most effective NLP method for this classification task, especially when com-
bined with robust balancing techniques such as ROS or SMOTE. TF-IDF demonstrated solid and consistent
performance, making it a strong alternative in scenarios where stability and reliability are prioritized. BoW,
while stable, showed lower peak performance compared to Doc2Vec and TF-IDF, showing the importance
of careful selection of NLP methods in classification tasks.

Table 4.2 shows that the five best evaluations were achieved using Doc2Vec. Regarding machine le-
arning algorithms, Decision Trees (DT), Random Forest (RF), and Neural Networks (NN) consistently
demonstrated superior performance, not only with Doc2Vec but also when paired with other NLP techni-
ques.
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Table 4.2: Top 5 Performances Achieved in the Evaluation

Technique Balancing Technique Model Metrics (Accuracy | F1-Score | MCC)
Doc2Vec Random Oversampler RF 99.9992 | 99.9992 | 99.9984
Doc2Vec SMOTE RF 99.8091 | 99.8083 | 99.6182
Doc2Vec SMOTE NN 99.6475 | 99.6470 | 99.2962
Doc2Vec Random Oversampler DT 99.3544 | 99.3561 | 98.7171
Doc2Vec Random Oversampler NN 99.3116 | 99.3118 | 98.6264

Table 4.3 presents the execution time of each training performed in this phase. Algorithms like DT and
LR showed significantly lower execution times across all representations, indicating greater computational
efficiency. On the other hand, algorithms like SVM and NN require considerably longer execution times.
When comparing the NLP representations, the BoW approach resulted in the shortest times for most algo-
rithms, except for the Neural Network, which had a high execution time even in this configuration. The
TF-IDF representation, although more expressive regarding classification performance, required more time
in algorithms such as SVM. Doc2Vec was a significant computational expense, especially for the SVM and
NN algorithms.

Algorithm BoW TF-IDF Doc2Vec

KNN 16min 13s 42.9s 1min 21s
DT 1.79s 14.6s 1min 44s
RF 42.4s 3min 38s 10min 49s
LR 6.05s 5.47s 21.1s
SVM 46min 56s 1h 23min 39s 4h 8min 9s
NN 19min 7s 9min 48s 14min 49s

Table 4.3: Execution time of training

4.2 RESULTS OF THE OBFUSCATED LOLBINS CLASSIFICATION

In Section 4.1, the top five results were achieved using Doc2Vec as the NLP method. Among the
balancing algorithms, those that increased the representation of the minority class, such as Random Over-
sampling and SMOTE, demonstrated superior performance compared to others. As shown in Table 4.2,
the highest MCC achieved was 99.992%. Specifically, the best combination utilized Random Oversam-
pling, Doc2Vec, and Random Forest. Based on this, a fine-tuning process was conducted using GridSearch,
resulting in the optimal parameters for the Random Forest model, as detailed in Code 4.1.

1 # Optimal Parameters

2 {'criterion': 'entropy', 'min_samples_leaf': 5, 'min_samples_split': 5, '

n_estimators': 200}

Code 4.1: Optimal parameters for Random Forest with a vector size of 128

To comprehensively evaluate the impact of the new preprocessing approach, the original dataset was
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enhanced with encoded LOLBin commands. Each LOLBin command was systematically transformed to
incorporate all the previously discussed encoding techniques, except Variable Manipulation. The Table 4.4
gives an example of the new entries for the command whoami in the new dataset.

Table 4.4: Transformations Applied to LOLBin Commands

Command Encoding

whoami Original
echo -e "\x77\x68\x6f\x61\x6d\x69" | bash Hexadecimal
echo -e "\0167\0150\0157\0141\0155\0151" | bash Octal
echo -e "\u0077\u0068\u006f\u0061\u006d\u0069" | bash Unicode
echo "d2hvYW1p" | base64 -d | bash Base64
$(whoami) Command Substitution

Following the transformations and the application of Ngan’s Window of Command, the dataset expan-
ded significantly. Initially, the Doc2Vec processing generated 128 features, resulting in a highly demanding
dataset. Although the machine used for testing was equipped with 96 GB of RAM, it was not possible to
process the dataset with all 128 features in the second training. Consequently, the number of features was
reduced to 64. Even with this reduction, the second training took approximately 35 hours, as shown in
Table 4.5.

Script Execution Time N-commands

Training 01 9h 15min 7.43s 12.357.660
Training 02 34h 50min 18.65s 37.521.664
Training 03 12h 21min 34.36s 18.251.164

Table 4.5: Execution time and dataset size (N-commands) for each training script

As discussed in Section 3.2, the new dataset was preprocessed in three distinct ways. First, it was
processed using the original normalize function, preserving the same approach used in previous tests.
Second, the normalize function was modified so that the replace_quoted_string routine would only remove
single or double quotation marks, allowing the content within them to be analyzed by the NLP algorithm.
Finally, the dataset was processed using the newly developed re_normalize function, which incorporates
all deobfuscation techniques.

As shown in Table 4.5, these three preprocessing strategies resulted in datasets of different sizes. For
this reason, evaluation metrics alone are insufficient to assess their performance. Therefore, confusion
matrices were also used for a more comprehensive analysis.

However, this limitation was only identified during the second training. Consequently, the first training
was executed with a feature size of 128. Contrary to initial expectations, the model demonstrated strong
performance, achieving an accuracy of approximately 98.71% and a Matthews Correlation Coefficient
(MCC) of 97.41%. The confusion matrix presented in Figure 4.8 shows that the model correctly classified
most benign and malicious commands. Nevertheless, it produced 2,193 false negatives. Although this
number represents a small fraction of the total dataset, it is essential to emphasize that, in a real-world
detection scenario, these false negatives correspond to undetected malicious commands. This highlights a
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critical risk, as it would allow 2,193 attacks to bypass the detection system.

The confusion matrix also shows a relatively low number of false positives (89,384), indicating that
the model effectively distinguishes benign commands from malicious ones. However, further fine-tuning
or additional preprocessing strategies may be required to reduce the false negative rate, as even a small
number of undetected attacks can have significant security implications.

Figure 4.8: Confusion Matrix for Training 01.

Source: Author

During the second training, the approach to handling text within quotation marks significantly impacted
the dataset size. The normalized dataset generated in this stage contained 37,521,664 entries, approxima-
tely three times larger than the dataset used in the first training, which had 12,357,660 entries. As a result
of this substantial increase, the machine used for testing was unable to process the dataset efficiently.

As a result, it was necessary to revisit the fine-tuning process. The vector size for Doc2Vec was
reduced from 128 to 64 to accommodate the hardware limitations. Despite this adjustment, the opti-
mization process yielded slightly different results. The new optimal parameters for the Random Forest
model, shown in Code 4.2, varied only in the value for n_estimators, while maintaining the same criterion,
min_samples_split and min_samples_leaf.

1 # New Optimal Parameters

2 {'criterion': 'entropy', 'min_samples_leaf': 5, 'min_samples_split': 5, '
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n_estimators': 100}

Code 4.2: Optimal parameters for Random Forest with a vector size of 64

The first training was re-executed with the adjusted parameters and a reduced vector size of 64. The
results showed minimal differences compared to the previous test, with a vector size of 128. As depicted in
the Confusion Matrix in Figure 4.9, the MCC score achieved was 97.3969, slightly lower than the 97.4196
obtained with the larger vector size. This negligible variation suggests that the reduction in vector size did
not significantly impact the model’s performance.

Figure 4.9: Confusion Matrix for Training 01 with a vector size of 64.

Source: Author

In the second scenario, as previously mentioned, the differences in preprocessing the text strings resul-
ted in a dataset that was three times larger than the original. However, the model successfully completed
the routine with a reduced vector size of 64. The MCC score saw a modest increase of approximately 1%,
reaching 98.3591%, while the F1-Score improved to 99.1594%.

Despite the improved scores, the Confusion Matrix in Figure 4.10 reveals an increase in the number
of False Negatives, totaling 72,815 mismatches. This indicates that while the overall performance metrics
improved, the model allowed more malicious commands to go undetected.
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Figure 4.10: Confusion Matrix for Training 02 with a vector size of 64.

Source: Author

Finally, in the third and final training, the dataset size was slightly more prominent than in the first
training but smaller than in the second. Despite initial expectations that the deobfuscation techniques would
enhance the detection rate, this test resulted in the weakest performance among the three experiments,
achieving an MCC of 97.2186%.

As depicted in the Confusion Matrix in Figure 4.11, the number of False Negatives remained almost as
high as in the second training, further emphasizing the limitations of this approach. While the deobfusca-
tion process was intended to improve the model’s ability to detect malicious commands, the results suggest
that it may introduce complexity that adversely impacts the model’s performance.
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Figure 4.11: Confusion Matrix for Training 03 with a vector size of 64.

Source: Author

When comparing the MCC scores across the three training sessions, it becomes evident that the dif-
ference between the highest and lowest scores was less than 1%, as shown in Table 4.6 and illustrated in
Figure 4.12.

Table 4.6: Performance Metrics for All Trainings

Metric Training 01 Training 02 Training 03

Accuracy 98.69097095270440% 99.18037875474455% 98.62713069482673%
F1-Score 98.70729753929967% 99.18116701538018% 98.62815753036448%
MCC 97.41256167550615% 98.36090871364883% 97.25435446805292%

61



Figure 4.12: Performance Metrics for Final Trainings.

Source: Author

This minor variation suggests that introducing obfuscated alternatives for each command in the dataset
may have introduced a bias in the model. This bias could limit the model’s ability to accurately differentiate
between the tested scenarios, thereby affecting its capacity to identify the optimal approach for improving
performance.
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5 FINAL CONSIDERATIONS

5.1 CONCLUSION

Building on the innovative foundation laid by Ngan’s work, this research extended the study of the
classification of Malicious Linux Commands by exploring additional machine learning algorithms and
incorporating the Doc2Vec NLP method. This study demonstrated that combining alternative NLP tech-
niques and machine learning models can offer better solutions tailored to the problem being addressed.
Additionally, improvements were made to the normalization process to prevent the loss of critical informa-
tion during preprocessing.

Using an enhanced version of Ngan’s methodology, this research successfully classified LOLBins in
their plain form, addressing the significant challenge of an imbalanced dataset. The findings emphasize the
importance of combining NLP techniques, effective balancing algorithms, and machine learning models to
achieve accurate classification results. By testing various combinations, the study identified that Doc2Vec
yielded the most effective results when paired with Random Forest and oversampling techniques like ROS
and SMOTE.

The evaluation highlighted that techniques aimed at reducing the majority class often resulted in sig-
nificant information loss, negatively impacting overall performance. On the other hand, oversampling
techniques such as ROS and SMOTE demonstrated their effectiveness in balancing the dataset without
compromising classification accuracy. While Doc2Vec achieved the highest metrics under optimal condi-
tions, TF-IDF proved to be a more consistent alternative across different scenarios. Meanwhile, though
stable, traditional approaches like BoW fell short in delivering competitive performance, underscoring the
importance of selecting NLP methods that align with specific use cases.

After identifying the best-performing combination of methods, the machine learning model was fine-
tuned using the Grid Search method to optimize its parameters. The study then progressed to a more
challenging task: classifying obfuscated LOLBins. The dataset was expanded with obfuscated versions
of the original entries, incorporating multiple obfuscation techniques to achieve this. Three normalization
approaches were tested, including one that deobfuscated the commands before NLP processing. While
this approach added complexity, it did not significantly enhance performance, revealing the challenges of
addressing obfuscation in real-world datasets.

The study’s exploration of preprocessing techniques and obfuscation highlighted the trade-offs in ba-
lancing sophistication with dataset integrity. While adding deobfuscation functions enriched the dataset,
it introduced diminishing returns in classification performance. This suggests that overly complex prepro-
cessing may inadvertently introduce biases or inconsistencies, emphasizing the need for careful dataset
preparation. Future research could focus on creating balanced datasets that include a diverse range of
obfuscated and plain commands to evaluate detection models better.

This work also revealed the computational limitations of current methods. The significant time and
resources required for fine-tuning and training on large datasets underscore the need for more scalable
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solutions in cyber intelligence. Future studies could explore optimization techniques, distributed architec-
tures, or hybrid machine learning approaches to handle large-scale data without sacrificing performance.

In conclusion, this research contributes valuable insights into the detection of LOLBins, advancing the
understanding of both plain and obfuscated command classification. Addressing these challenges lays the
groundwork for further advancements in normalization techniques, robust machine learning models, and
scalable architectures. Ultimately, this study not only highlights the need for adaptability and continu-
ous innovation but also inspires us to strengthen cybersecurity defenses against increasingly sophisticated
threats.

5.2 FUTURE WORK

To further improve this work and effectively mitigate the bias introduced by dataset transformations, the
proposed approach must be evaluated using a more diverse dataset, including both legitimate and malicious
LOLBins, in obfuscated and unobfuscated forms.

Another important direction is to enhance the model’s performance to accommodate a feature size of
128, as initially intended. This also involves comparing performance across different hardware setups and
system architectures since the current research was conducted on an ARM-based architecture in a macOS
environment.

Finally, the deobfuscation technique implemented in this work addresses only a single layer of obfus-
cation. However, an adversary may apply multiple layers of obfuscation to a malicious command. As it
currently stands, the function cannot recursively handle such cases. Therefore, extending the deobfuscation
process to support multi-layered obfuscation is a key area for future exploration.
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Appendix

I.1 APPENDIX A - PLAIN NORMALIZATION

1 def replace_quoted_string(text):

2 # Replaces everything in quotes with _STRING_

3 return re.sub(r"\"(.+?)\"|\'(.+?)\'", "_STRING_", text)

4

5 def replace_file_path(text):

6 # Replace file name or directory name with _PATH_

7 return re.sub(r"((?<= )[^ ]*/)([^/ ]*)", r"_PATH_/\2", text) # Modified to

only replace the directory not the final file

8

9 def replace_env_variables(text):

10 # Replace $String with $_ENV and String= with _ENV_=.

11 text = re.sub(r"\$([A-Za-z_][A-Za-z0-9_]*)", r"$_ENV", text)

12 text = re.sub(r"([A-Za-z_][A-Za-z0-9_]*)=", r"_ENV_=", text)

13 return text

14

15 def replace_ip_address(text):

16 # Replace IPv4 with _IP_

17 return re.sub("[0-9]+(?:\.[0-9]+){3}", "_IP_", text)

18

19 def refine_pipe(text):

20 # Make clear seperation between different commands in pipe.

21 return text.replace("|", " | ")

22

23 def normalize(line):

24 # convert to lowercase

25 line = line.lower()

26 # Replace $String with $_ENV and String= with _ENV_=

27 line = replace_env_variables(line)

28 # normalize quoted mark

29 line = quotation_marks(line) # TEXTACY's function

30 # refine pipe operator

31 line = refine_pipe(line)

32 # replace quoted text by _STRING_

33 line = replace_quoted_string(line)

34 # replace IP adress by '_IP_' token

35 line = replace_ip_address(line)

36 # replace file path by '_PATH_' token

37 line = replace_file_path(line)

38 # replace email by '_EMAIL_' token

39 line = emails(line, "_EMAIL_") #TEXTACY's function

40 # replace URL by '_URL_' token

41 line = urls(line, "_URL_") #TEXTACY's function
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42 return line

Code 1: First Normalization Code

I.2 APPENDIX B - DEOBFUSCATION NORMALIZATION

1 def replace_quoted_string(text):

2 # Removes quotes but keeps the content between quotes.

3 return re.sub(r'"(.*?)"|\'(.*?)\'', lambda m: m.group(1) if m.group(1) is not

None else m.group(2), text)

4

5

6 def replace_file_path(text):

7 # Replace file name or directory name with _PATH_

8 # return re.sub(r"(~)*(/[^/ ]*)+", "_PATH_", text) # ((?:[^/]*/)*)(.*)

9 return re.sub(r"((?<= )[^ ]*/)([^/ ]*)", r"_PATH_/\2", text) # Modified to

replace only the directory, not the final file

10

11 def replace_env_variables(text):

12 #Replace $String with $_ENV and String= with _ENV_=.

13 text = re.sub(r"\$([A-Za-z_][A-Za-z0-9_]*)", r"$_ENV", text)

14 text = re.sub(r"([A-Za-z_][A-Za-z0-9_]*)=", r"_ENV_=", text)

15 return text

16

17 def replace_ip_address(text):

18 #Replace IPv4 with _IP_

19 return re.sub("[0-9]+(?:\.[0-9]+){3}", "_IP_", text)

20

21 def refine_pipe(text):

22 """Make a clear separation between different commands in a pipe.

23 E.g.: cmd1|cmd2 -> cmd1 | cmd2

24 """

25 return text.replace("|", " | ")

26

27 def replace_dollar_parentheses(text):

28 # Replaces the pattern $(STRING) with ' STRING ', inserting spaces where $(

and ) were.

29 return re.sub(r'\$\((.*?)\)', r' \1 ', text)

30

31 def replace_backticks(text):

32 # Replaces the ` character with a space.

33 return text.replace('`', ' ')

34

35 def hex_to_char(match):

36 try:

37 return bytes.fromhex(match.group(1)).decode('utf-8')

38 except UnicodeDecodeError:

39 return bytes.fromhex(match.group(1)).decode('latin-1')
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40 # Converts a hexadecimal sequence to the corresponding character.

41

42 def unicode_to_char(match):

43 # Converts a Unicode sequence to the corresponding character.

44 # The substring 2: is used to skip the '\u'.

45 return chr(int(match.group(1), 16))

46

47 def octal_to_char(match):

48 try:

49 return chr(int(match.group(1), 8))

50 except ValueError:

51 return match.group(0)

52

53 def decode_escapes(text):

54 # Decodes hexadecimal sequences.

55 text = re.sub(r'\\x([0-9A-Fa-f]{2})', hex_to_char, text)

56 # Decodes Unicode sequences.

57 text = re.sub(r'\\u([0-9A-Fa-f]{4})', unicode_to_char, text)

58 # Decodes octal sequences - Assumes the octal is preceded by a \ and followed

by 1 to 3 digits [0-7].

59 text = re.sub(r'\\([0-3]?[0-7]{2,3})', octal_to_char, text)

60

61 return text

62

63 def decode_base64_if_needed(s):

64 # Regular expression to identify potential base64 substrings.

65 base64_pattern = re.compile(r'([A-Za-z0-9+/=]{20,}={0,2})')

66

67 def decode_base64(match):

68 try:

69 base64_str = match.group()

70 # Ensure the string length is valid for base64.

71 if len(base64_str) % 4 != 0:

72 base64_str += '=' * (4 - len(base64_str) % 4)

73 decoded_bytes = base64.b64decode(base64_str, validate=True)

74 return decoded_bytes.decode('utf-8')

75 except (binascii.Error, ValueError, UnicodeDecodeError):

76 return match.group() # Return as is if decoding fails

77

78 # Substitute base64 substrings with their decoded versions.

79 decoded_str = base64_pattern.sub(decode_base64, s)

80 return decoded_str, decoded_str != s

81

82 def replace_env_concatenation(text):

83 """

84 Replaces environment variable concatenations with 'CONCATENATION'.

85 A concatenation pattern is identified by sequences of $VARNAME.

86 """

87 return re.sub(r'(\$\w+ \s*\$\w+)+', 'CONCATENATION', text)

88

89 def re_normalize(line):

90 ### NEW ###
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91 # First, check and decode base64 if necessary.

92 # print("Original Line:", line)

93 line, was_base64 = decode_base64_if_needed(line)

94 # print("After Base64 Decode:", line, was_base64)

95

96 # Encoding

97 line = decode_escapes(line)

98 # print("After decode_escapes:", line)

99

100 # Apply the new replacement functions.

101 line = replace_dollar_parentheses(line)

102 # print("After replace_dollar_parentheses:", line)

103 line = replace_backticks(line)

104 # print("After replace_backticks:", line)

105

106 # CONCATENATION

107 line = replace_env_concatenation(line)

108 # print("After replace_env_concatenation:", line)

109

110 # Convert to lowercase.

111 line = line.lower()

112 # print("After convert to lowercase:", line)

113

114 # Replace $String with $_ENV and String= with _ENV_=.

115 line = replace_env_variables(line)

116 # print("After replace_env_variables:", line)

117

118 # Normalize quoted marks.

119 line = quotation_marks(line) # Function from TEXTACY

120 # print("After quotation_marks:", line)

121

122 # Refine pipe operator.

123 line = refine_pipe(line)

124 # print("After refine_pipe:", line)

125

126 # Replace quoted text by '_STRING_'.

127 line = replace_quoted_string(line)

128 # print("After replace_quoted_string:", line)

129

130 # Replace IP address by '_IP_' token.

131 line = replace_ip_address(line)

132 # print("After replace_ip_address:", line)

133

134 # Replace file path by '_PATH_' token.

135 line = replace_file_path(line)

136 # print("After replace_file_path:", line)

137

138 # Replace email by '_EMAIL_' token.

139 line = emails(line, "_EMAIL_") # Function from TEXTACY

140 # print("After emails:", line)

141

142 # Replace URL by '_URL_' token.
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143 line = urls(line, "_URL_") # Function from TEXTACY

144 # print("After urls:", line)

145

146 return line

Code 2: First Normalization Code

I.3 APPENDIX C - OBFUSCATION AND TRAINING ROUTINE

1 print ("###################################")

2 print ("Reading the GFTOBINS")

3

4 ## 01 - Reading the GTFOBINS

5

6 gtfo_df = pd.read_json('https://gtfobins.github.io/gtfobins.json')

7

8 gtfo_list = []

9 for function in gtfo_df.T.functions:

10 for keys in function:

11 for i in function[keys]:

12 for key in i:

13 if key == 'code':

14 gtfo_list.append(i[key])

15

16 # Splitting the commands by \n and creating a list of lists

17 gfto_split = []

18 for x in gtfo_list:

19 gfto_split.append(x.split('\n'))

20

21 # Normalizing the commands with the normalize() function

22 gtfo_norm = []

23 for x in gfto_split:

24 a = []

25 for y in x:

26 a.append(re_normalize(y))

27 gtfo_norm.append(a)

28

29 # Removing empty items from the list

30 for cmd in gtfo_norm:

31 for x in cmd:

32 if x == '':

33 cmd.remove(x)

34

35 gtfo_norm[1:5]

36

37

38 ## 02 - Reading the Benign

39
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40 print ("###################################")

41 print ("Reading the Benign")

42

43 import os

44 import re

45 import itertools

46

47 data_path = "./Datasets/"

48 bash_logs_path = os.path.join(data_path, "bash_logs")

49

50 # Read bash log data

51 bash_file_names = os.listdir(bash_logs_path)

52 benign_logs = []

53

54 for file in bash_file_names:

55 file_path = os.path.join(bash_logs_path, file)

56 with open(file_path, 'rb') as f: # Opening in binary mode

57 # Reading the content and decoding line by line

58 content = f.read().replace(b"&&", b"\n").replace(b";", b"\n").splitlines()

59 for line in content:

60 try:

61 # Decode each line individually

62 decoded_line = line.decode('utf-8', errors='ignore')

63 # Normalize the decoded line

64 normalized_line = re_normalize(decoded_line)

65 benign_logs.append(normalized_line)

66 except UnicodeDecodeError as e:

67 print(f"Error decoding line: {e}")

68 continue

69

70 # Remove empty lines

71 benign_unique = set(benign_logs)

72 benign_unique.discard("")

73

74

75 ## 03 - Transforming Dataset

76 print ("###################################")

77 print ("Transforming Dataset")

78

79 import base64

80

81 def convert_command_to_hex(s):

82 """Converts the string to hexadecimal."""

83 return ''.join(f'\\x{ord(c):02x}' for c in s)

84

85 def convert_command_to_octal(s):

86 """Converts the string to octal with the prefix \0."""

87 return ''.join(f'\\0{ord(c):03o}' for c in s)

88

89 def convert_command_to_unicode(s):

90 """Converts the string to unicode."""

91 return ''.join(f'\\u{ord(c):04x}' for c in s)
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92

93 def transform_strings_to_base64_bash(strings):

94 """

95 Transforms each string to base64 and creates a new string with the structure

96 "echo [STRING_BASE64] | base64 -d | bash".

97

98 Args:

99 strings (list of str): List of strings to be transformed.

100

101 Returns:

102 list of str: List with the transformed strings.

103 """

104 new_strings = []

105

106 for s in strings:

107 # Encode the string to base64

108 encoded_bytes = base64.b64encode(s.encode('utf-8'))

109 encoded_str = encoded_bytes.decode('utf-8')

110

111 # Create the new string with the desired structure

112 new_str = f"echo {encoded_str} | base64 -d | bash"

113

114 # Add the new string to the list

115 new_strings.append(new_str)

116

117 return new_strings

118

119

120 def generate_alternatives(strings):

121 """

122 For each string in the list, generates two new items:

123 one with the content between $() and another with the content between ``.
124

125 Args:

126 strings (list of str): List of strings to be transformed.

127

128 Returns:

129 list of str: List with the transformed strings.

130 """

131 new_strings = []

132

133 for s in strings:

134 # Create the new strings with the desired structures

135 new_str_dollar = f"$({s})"

136 new_str_backticks = f"`{s}`"
137

138 # Add the new strings to the list

139 new_strings.append(new_str_dollar)

140 new_strings.append(new_str_backticks)

141

142 return new_strings

143
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144 def generate_encoded_commands(strings):

145 """

146 For each string in the list, generates three new items:

147 one with the command converted to hexadecimal,

148 one to octal, and one to unicode.

149

150 Args:

151 strings (list of str): List of strings to be transformed.

152

153 Returns:

154 list of str: List with the transformed strings.

155 """

156 new_strings = []

157

158 for s in strings:

159 # Convert command to hexadecimal

160 hex_str = f'echo -e "{convert_command_to_hex(s)}" | sh'

161

162 # Convert command to octal

163 octal_str = f'echo -e "{convert_command_to_octal(s)}" | sh'

164

165 # Convert command to unicode

166 unicode_str = f'echo -e "{convert_command_to_unicode(s)}" | sh'

167

168 # Add the new strings to the list

169 new_strings.append(hex_str)

170 new_strings.append(octal_str)

171 new_strings.append(unicode_str)

172

173 return new_strings

174

175

176 def combine_all_transformations(strings):

177 """

178 Combines all string transformations into a single list.

179

180 Args:

181 strings (list of str): List of strings to be transformed.

182

183 Returns:

184 list of str: List with all transformed strings.

185 """

186 combined_list = []

187

188 # Apply base64 transformation

189 combined_list.extend(transform_strings_to_base64_bash(strings))

190

191 # Apply alternatives generation

192 combined_list.extend(generate_alternatives(strings))

193

194 # Apply encoded commands generation

195 combined_list.extend(generate_encoded_commands(strings))
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196

197 return combined_list

198

199 # Test the function with a list of strings

200 test_strings = cmds_flat

201 transformed_list = combine_all_transformations(test_strings)

202 transformed_list2 = combine_all_transformations(benign_unique)

203

204

205 print ("LOLBINS transformed: {0}".format(len(transformed_list)))

206 print ("Benign transformed: {0}".format(len(transformed_list2)))

207

208

209 ## 04 - Normalizing the transformed Lists

210 print ("###################################")

211 print ("Normalizing the transformed Lists")

212

213 def apply_normalize_to_transformed_list(transformed_list):

214 """

215 Applies the normalize() function to each item in the transformed list.

216

217 Args:

218 transformed_list (list of str): List of transformed strings.

219

220 Returns:

221 list of str: List with normalized strings.

222 """

223 normalized_list = [re_normalize(item) for item in transformed_list]

224 return normalized_list

225

226

227 normalized_list = apply_normalize_to_transformed_list(transformed_list)

228 normalized_list2 = apply_normalize_to_transformed_list(transformed_list2)

229

230

231 # 05 - Creating the New Dataset

232 print ("###################################")

233 print ("Creating the New Dataset")

234

235 # WINDOW 03 commands

236 def create_n_command_by_sliding_window(session_cmds, labels, window_size=3):

237 cmds_flat = []

238 labels_flat = []

239

240 for sess_idx, cmds in enumerate(session_cmds):

241 for i in range(len(cmds) + 1):

242 start_idx = max(0, i - window_size)

243 if start_idx == i:

244 continue

245 cmds_flat.append(" ".join(cmds[start_idx:i]))

246 labels_flat.append(labels[sess_idx])

247
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248 return cmds_flat, labels_flat

249

250 WINDOW_SIZE = 3

251

252 normalized_list2_labels = [0] * len(normalized_list2)

253 norm_labels = [1] * len(normalized_list)

254 benign_labels = [0] * len(benign_logs)

255 GTFOBins_labels = [1] * len(gtfo_norm)

256

257 session_cmds = benign_logs + gtfo_norm + normalized_list + normalized_list2

258 labels = benign_labels + GTFOBins_labels + norm_labels + normalized_list2_labels

259

260 print(len(session_cmds))

261 print(len(labels))

262

263

264 cmds_flat, labels_flat = create_n_command_by_sliding_window(

265 session_cmds, labels, window_size=WINDOW_SIZE

266 )

267

268 print("N-commands", len(cmds_flat), len(labels_flat))

269

270

271 # create tagged corpus: {[list of token], [tag]}

272

273 from gensim.models import doc2vec

274

275 all_corpus = []

276

277 for cmd, lbl in zip(cmds_flat, labels_flat):

278 tokens = cmd.split()

279 all_corpus.append(doc2vec.TaggedDocument(tokens, str(lbl)))

280

281 # build Doc2Vec model

282 print ("build Doc2Vec model")

283 VECTOR_SIZE = 64

284

285 model = doc2vec.Doc2Vec(

286 vector_size=VECTOR_SIZE,

287 min_count=2,

288 )

289

290 print(len(all_corpus))

291 model.build_vocab(all_corpus)

292

293 # train model

294

295 model.train(all_corpus, total_examples=model.corpus_count, epochs=model.epochs)

296

297 # build feature

298

299 def extract_features(tagged_corpus, model):
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300 X = []

301 y = []

302

303 for words, tags in tagged_corpus:

304 X.append(model.infer_vector(words))

305 y.append(float(tags))

306

307 return X, y

308

309 X_train_features, y = extract_features(all_corpus, model)

310

311 print(len(X_train_features), len(y))

312

313 def create_balanced_dataset(X, Y):

314 '''

315 Function to apply various data balancing algorithms on unbalanced datasets:

316 '''

317

318 # Random Oversampler

319 ros = RandomOverSampler(random_state=32)

320 X_ros_res, y_ros_res = ros.fit_resample(X, Y)

321

322 return X_ros_res, y_ros_res

323

324 X_ros_res, y_ros_res = create_balanced_dataset(X_train_features, y)

325

326

327 ## 06 - RF Training

328 print ("###################################")

329 print ("RF Training")

330

331 best_params = {

332 'criterion': 'entropy',

333 'min_samples_leaf': 5,

334 'min_samples_split': 5,

335 'n_estimators': 100

336 }

337

338 rf_model = RandomForestClassifier(**best_params)

339

340 def fit_predict(model, X, Y):

341 train_cmds, test_cmds, train_labels, test_labels = train_test_split(

342 X, Y, test_size=0.3, random_state=42

343 )

344

345 # Training the model

346 model.fit(train_cmds, train_labels)

347

348 # Predicting the results

349 y_pred = model.predict(test_cmds)

350

351 # Calculating metrics
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352 acc = accuracy_score(test_labels, y_pred) * 100

353 f1 = f1_score(test_labels, y_pred) * 100

354 mcc = matthews_corrcoef(test_labels, y_pred) * 100

355 final_score = (acc + 2 * f1 + mcc) / 4 # Final score

356

357 # Returning metrics

358 print("Accuracy: ", acc)

359 print("F1-Score: ", f1)

360 print("MCC: ", mcc)

361 print("Final Score: ", final_score)

362

363 return {"Accuracy": acc, "F1-Score": f1, "MCC": mcc, "Final Score": final_

score}

364

365

366 fit_predict(rf_model, X_ros_res, y_ros_res)

Code 3: First Normalization Code
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I.4 APPENDIX C - RESULTS FROM BOW TRAINING

Table 1: Results from BOW

Accuracy F1-Score MCC Tecnica Modelo Metodo

86.236766 86.928702 73.563865 Random Undersampler KNN BoW
87.776708 86.603376 75.979806 NearMiss KNN BoW
98.817020 61.840121 61.362812 OneSidedSelection KNN BoW
91.555901 91.153967 83.396267 Random Oversampler KNN BoW
91.262813 91.840388 83.467727 SMOTE KNN BoW
89.749759 88.900469 79.791425 Random Undersampler DT BoW
88.594803 87.559055 77.562369 NearMiss DT BoW
98.941708 61.442362 62.209619 OneSidedSelection DT BoW
91.959094 91.606096 84.160301 Random Oversampler DT BoW
91.894140 91.490724 84.103609 SMOTE DT BoW
90.038499 89.246753 80.333341 Random Undersampler RF BoW
88.787295 87.794657 77.920958 NearMiss RF BoW
98.957294 62.096317 62.848401 OneSidedSelection RF BoW
91.991572 91.637164 84.229661 Random Oversampler RF BoW
91.921864 91.517642 84.162908 SMOTE RF BoW
88.931665 87.817797 78.385989 Random Undersampler RL BoW
88.306064 87.337155 76.880304 NearMiss RL BoW
98.580112 34.882059 40.041677 OneSidedSelection RL BoW
89.385466 88.855251 79.067599 Random Oversampler RL BoW
90.272651 89.783524 80.853705 SMOTE RL BoW
87.872955 86.736842 76.142482 Random Undersampler SVC BoW
88.739172 87.710084 77.861748 NearMiss SVC BoW
98.561409 23.781998 35.296420 OneSidedSelection SVC BoW
89.061485 88.493555 78.441824 Random Oversampler SVC BoW
89.973226 90.641312 80.875831 SMOTE SVC BoW
89.172281 88.101534 78.846109 Random Undersampler NN BoW
89.124158 88.204593 78.550472 NearMiss NN BoW
98.896509 64.741036 64.271067 OneSidedSelection NN BoW
92.024841 91.665563 84.305972 Random Oversampler NN BoW
91.784034 92.320109 84.496137 SMOTE NN BoW
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I.5 APPENDIX D - RESULTS FROM DOC2VEC TRAINING

Table 2: Results from Doc2Vec

Accuracy F1-Score MCC Tecnica Modelo Metodo

85.686747 86.166744 72.302557 Random Undersampler KNN DOC2VEC
94.313253 93.703308 89.141766 NearMiss KNN DOC2VEC
99.033386 56.439127 60.802520 OneSidedSelection KNN DOC2VEC
98.726256 98.737556 97.484353 Random Oversampler KNN DOC2VEC
91.763438 92.363508 84.692518 SMOTE KNN DOC2VEC
78.265060 77.881314 56.597416 Random Undersampler DT DOC2VEC
95.180723 95.000000 90.351674 NearMiss DT DOC2VEC
98.008995 39.140811 38.205148 OneSidedSelection DT DOC2VEC
99.354415 99.356133 98.717102 Random Oversampler DT DOC2VEC
96.374424 96.412475 92.787978 SMOTE DT DOC2VEC
89.204819 88.405797 78.457161 Random Undersampler RF DOC2VEC
98.168675 98.107570 96.345225 NearMiss RF DOC2VEC
98.760111 32.597623 43.664500 OneSidedSelection RF DOC2VEC
99.999208 99.999205 99.998416 Random Oversampler RF DOC2VEC
99.809097 99.808339 99.618193 SMOTE RF DOC2VEC
88.481928 87.787430 76.939764 Random Undersampler RL DOC2VEC
96.674699 96.495683 93.355875 NearMiss RL DOC2VEC
98.944377 49.627422 55.763606 OneSidedSelection RL DOC2VEC
90.812883 90.562291 81.707105 Random Oversampler RL DOC2VEC
91.974145 91.821117 83.983672 SMOTE RL DOC2VEC
89.638554 88.968702 79.277942 Random Undersampler SVC DOC2VEC
97.253012 97.139990 94.497476 NearMiss SVC DOC2VEC
99.097411 60.027663 64.038837 OneSidedSelection SVC DOC2VEC
91.559069 91.298241 83.228831 Random Oversampler SVC DOC2VEC
92.653792 92.499070 85.353941 SMOTE SVC DOC2VEC
91.421687 91.231527 82.896695 Random Undersampler NN DOC2VEC
97.638554 97.541395 95.269767 NearMiss NN DOC2VEC
99.270745 76.473552 76.106091 OneSidedSelection NN DOC2VEC
99.311640 99.311776 98.626432 Random Oversampler NN DOC2VEC
99.647502 99.647024 99.296182 SMOTE NN DOC2VEC
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I.6 APPENDIX E - RESULTS FROM TF-IDF TRAINING

Table 3: Results from TFIDF

Accuracy F1-Score MCC Tecnica Modelo Metodo

91.710843 91.706847 83.708577 Random Undersampler KNN TFIDF
92.048193 91.585926 84.089564 NearMiss KNN TFIDF
98.971209 65.517241 65.038036 OneSidedSelection KNN TFIDF
94.153293 94.100250 88.310742 Random Oversampler KNN TFIDF
94.059822 93.901120 88.204764 SMOTE KNN TFIDF
91.759036 91.914894 84.159502 Random Undersampler DT TFIDF
92.096386 91.606960 84.201017 NearMiss DT TFIDF
99.033560 69.276511 68.797029 OneSidedSelection DT TFIDF
94.549358 94.754096 89.430359 Random Oversampler DT TFIDF
94.859080 95.053881 90.057478 SMOTE DT TFIDF
93.590361 93.621103 87.557201 Random Undersampler RF TFIDF
92.530120 92.103923 85.052937 NearMiss RF TFIDF
99.095911 70.408163 69.953710 OneSidedSelection RF TFIDF
94.606391 94.806136 89.536021 Random Oversampler RF TFIDF
94.974731 95.163307 90.283357 SMOTE RF TFIDF
91.807229 91.500000 83.595759 Random Undersampler RL TFIDF
91.518072 91.020408 83.027664 NearMiss RL TFIDF
98.689071 51.638873 51.506664 OneSidedSelection RL TFIDF
90.968141 90.920963 81.936155 Random Oversampler RL TFIDF
91.071117 91.022905 82.142177 SMOTE RL TFIDF
91.807229 91.335372 83.604316 Random Undersampler SVC TFIDF
91.662651 91.231627 83.300351 NearMiss SVC TFIDF
98.664131 53.800539 53.254665 OneSidedSelection SVC TFIDF
90.613267 90.352048 81.311234 Random Oversampler SVC TFIDF
91.122606 91.041352 82.248839 SMOTE SVC TFIDF
92.867470 92.959087 86.256126 Random Undersampler NN TFIDF
91.903614 91.463415 83.788769 NearMiss NN TFIDF
99.069412 71.089588 70.676454 OneSidedSelection NN TFIDF
94.404398 94.339653 88.818390 Random Oversampler NN TFIDF
94.726002 94.676496 89.456852 SMOTE NN TFIDF
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