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Abstract — Living Off the Land Binaries (LOLBins) is a cyber 
intrusion technique in which the attacker exploits legitimate 
operating system binaries to carry out criminal actions. This work 
proposes to compare different machine learning techniques to 
automatically detect LOLBins attacks. The command lines were 
preprocessed using Natural Language Processing (NLP) 
algorithms. The effectiveness of the methods was evaluated taking 
into consideration data balancing techniques such as Random 
Oversampling/Undersampling and SMOTE. Performance metrics 
such as accuracy and F1-Score were used to compare the different 
techniques. In conclusion, it was verified that the Decision Tree 
(DT) and Random Forest (RF) algorithms were superior to the 
others. Furthermore, using a command window as input generated 
better results than evaluating isolated command lines. 

Keywords – linux; machine learning, intrusion detection, Living 
Off the Land, LOTL, LOLBins. 

I.  INTRODUCTION  
In 2023, a relevant vulnerability was identified and exploited 

in Barracuda Email Security Gateway (ESG) [12] [13]. This 
security failure consists in sending a malicious .tar file as an 
email attachment. When processed by the ESG system, the .tar 
file exploited a flaw in the validation and sanitization of file 
names within the system. 

This security breach opened a vector to Remote Code 
Execution (RCE), which was abused using Living Off the Land 
Binaries (LOLBins) techniques. Analyzing the Indicators of 
Compromise (IOC) it was observed that the attackers used the 
code 1 to execute commands in the target through a reverse 
shell. With this purpose, the attackers used the openssl command 
to establish this reverse connection and mkfifo to create a named 
pipe to redirect the sh commands and its results between the 
target and the attacker’s Command and Control (C2). 

 
setsid sh -c "mkfifo /tmp/p; sh -i </tmp/p 2>&1 | openssl s_client -quiet -
connect 107.148.149[.]156:8080 >/tmp/p 2>/dev/null; rm /tmp/p" 

 
Code 1. Bash Script used in Barracuda exploit. 

LOLBins [16] is a technique in which legitimate operating 
system binaries can be exploited by malicious individuals to 
subvert misconfigured systems. This technique, as elucidated by 
Ding et al. [7], is a furtive method used by attackers to harder 
their detection and has been increasingly seen as part of the 

APT’s (Advanced Persistent Threats) Tactics, Techniques and 
Procedures (TTP) [1]. 

The central goal of this study is to carry out a binary 
classification of Linux commands, with the specific aim of 
identifying tactics associated with the use of LOLBins. To 
achieve this, combinations of several Machine Learning models 
will be employed, including Random Forest, Neural Networks 
and Decision Trees, concomitantly with the use of Natural 
Language Processing (NLP) techniques, such as Bag of Words, 
TF-IDF and Doc2Vec. Furthermore, to overcome the challenge 
of data imbalance, artificial database balancing algorithms will 
be implemented. 

Thus, the analysis focused on commands originating from 
the Linux operating system, with a significant portion of the data 
originating from records in the file “.bash_history”, the same 
way portion used by Ngan [14] in his work, and the list of 
commands from the GTFOBins website [16]. This restricted the 
information available to command text only. Given this 
contextual limitation, the solution proposed by Ngan [14] was 
used, which involved analyzing a window of N previous 
commands to provide more context to the lack of detailed data 
about each command. 

As highlighted by Kotsiantis et al. [9], the challenge of 
unbalanced data is increasingly common, especially in practical 
situations that involve the detection of rare but relevant events. 
This scenario is similar to the context of identifying malicious 
commands or malwares. Due to the limited and relatively small 
list of LOLBins, it was necessary to employ artificial dataset 
balancing techniques given that these commands represented 
only 1,601% of the total. To mitigate this disparity, several 
techniques were explored, including Random Undersampling 
(RUS) , Random Oversampling (ROS) and Near Miss, aiming to 
balance data distribution and improve the effectiveness of 
detection models. However, for a better analysis of LOLBins, it 
was necessary to consider not only Machine Learning models 
and Artificial Balancing algorithms, but also the Natural 
Language Processing (NLP) algorithms used to represent the 
command’s strings. This interaction between different 
approaches directly influenced the final metrics of each test. 

Data preprocessing was carried out in a similar way to 
Ngan’s work. However, improvements were made to some 
functions to avoid possible loss of information that could occur 
when dealing with environment variables and file paths. 



In this context, an analysis of relevant studies in machine 
learning applied to the detection of cyber threats will be carried 
out, as well as the methodology adopted for the development and 
automation of codes, which facilitate the training process of 
machine learning models. Finally, the results achieved through 
these approaches will be presented and discussed providing 
insights and contributions to the field of cybersecurity. 

II. RELATED WORK 
The vast majority of machine learning work in the 

cybersecurity field is focused on the area of malware detection. 
For example, Chumachenko (2017) [6] explored several 
Machine Learning algorithms for the purpose of detecting and 
classifying malware. His research concluded that, with his 
dataset, the most accurate algorithms were Random Forest, 
followed by J48. Furthermore, Rathore (2018) [17] compared 
the results between the use of Machine Learning and Deep 
Learning in malware detection, concluding that Random Forest 
outperformed Deep Neural Networks. In both studies, Random 
Forest proved to be a promising option for threat detection. As 
Rathore, Ding [7] implemented Deep Learning techniques, this 
time, to detect LOLBins, reaching an accuracy of 99.45%. 

Work aimed at detecting LOLBins in general, in which was 
included other systems such as Windows, for example, 
addresses this interaction between different ways of representing 
texts originating from command lines. An example of this was 
Ogun [15] who implemented a way of assigning features that he 
called cmd2vec. In his work, Ongun [15] submited the tokens 
for each command to the Doc2Vec or FastText algorithm for 
vectorization. After that, he trained his first database using the 
Random Forest algorithm and calculates the average probability 
that each token appears on a leaf of the tree with a final label 
representing the LOLBins commands. As Windows LOLBins 
commands mostly have a greater number of tokens than regular 
commands or even the Linux LOLBins, Ongun created a new 
database where, for each entry, he used the metrics obtained 
through previous training, creating a new entry containing 3 
tokens with the highest probability, 3 with the lowest 
probability, 3 with the medium grouping and the 3 with the 
highest probability scores. Finally, he also included a count of 
the entry tokens and the rarest ones, as he noticed that in his 
database the binaries used in attacks sometimes appeared only a 
few times. 

Boros [3] also tried to improve the representation of the 
command line strings. He assigned key characteristics that 
represented certain actions in each input to better interpret the 
commands. 

Although Thuy Ngan’s master’s thesis [14] (DAO, 2020) 
focused on the classification of Unix commands in general, 
categorizing them by risk levels without focusing specifically on 
LOLBins, the present work appropriates some of the techniques 
addressed by Ngan to investigate LOLBins attacks further, such 
as using command windows to represent the context of 
commands. 

To achieve his goal, Ngan [14] collected 660 .bash_history 
files from GitHub and used logs from two honeypots from 
another study carried out at his university. The total corpus was 
905,405 commands. The availability of its database represented 

another significant contribution of his work. Accessing this data 
set enabled a direct and effective comparison with the 
performance of the algorithms used in the present study. 

In a first analysis, Ngan performed a binary classification of 
the data, assuming that GitHub commands were legitimate, 
while those coming from honeypots were considered malicious. 
In a second stage, all data was subjected to a labeling function, 
categorizing each command into risk indices. 

Their results, as shown in Tables I and II, demonstrate that 
the use of a context, in this case a window of 3 commands, 
combined with changing the NLP algorithm improved accuracy 
in almost 10%. In all scenarios, both in the binary classification 
approach and in the risk classification, the NLP algorithm that 
had the best performance was Doc2Vec. 

TABLE I.  NGAN’S RESULTS IN BINARY CLASSIFICATION 

Context Representation Classifier Accuracy False 
Neg. 

1-Command 1-gram + BoW KNN 89.13% 28,878 

3-Command 

1-gram + TF-IDF 
Linear 
SVC 

98.13% 2,292 

3-gram + TF-IDF 98.27% 2,066 
3-gram + 
Doc2Vec 96.71% 1,499 

 

TABLE II.  NGAN’S RESULTS IN RISK LEVEL CLASSIFICATION 

Representation Classifier Accuracy 
Count-Vector Logistic Regression 

 
95,05% 

Doc2Vec 99,58% 
 

At the end of each training, the predictions were submitted 
to a confusion matrix, where the False Negative and False 
Positive rates were measured. False Negatives are particularly 
more harmful as the incorrect classification of a malicious 
command can have significant impacts on a given system. 

Therefore, this work seeks to apply reasoning similar to 
Ngan’s but with a focus only on the detection of LOLBins in 
Linux, proposing some improvements over his command 
processing approach and proving some insights obtained in 
previous works, mainly regarding the need not to analyze 
commands in isolation. 

III. METHODOLOGY 
To analyze the LOLBins, the benign portion of the Ngan 

database was used together with the list of commands obtained 
from the website https://gtfobins.github.io [16]. This GitHub 
repository offers a JSON file containing the commands listed on 
the site, accessible via the “code” key. 

The preprocessing approach followed a similar pattern to 
Ngan. However, Ngan’s implementation had some 
vulnerabilities. As for the representation of the complete paths 
of a command, they were always suppressed, having, for 
example, “/bin/bash -p” being transformed into “_PATH_ -p”, 
which could result in the loss of important information. 
Furthermore, a frequent use of environment variables was 
observed in LOLBins list. Given that variables can be named in 



different ways, this could lead the models to consider them 
different while they represent the same action. 

 
def replace_file_path(text): 

# Modified to replace only the directory, not the file at the end 
return re.sub(r"((?<= )[ˆ ]*/)([ˆ/ ]*)", r"_PATH_/\2", text) 

def replace_env_variables(text): 
# Replace $String and $_ENV for String= ou _ENV_=.  
text = re.sub(r"\$([A-Za-z_][A-Za-z0-9_]*)", r"$_ENV", text) 
text = re.sub(r"([A-Za-z_][A-Za-z0-9_]*)=", r"_ENV_=", text) 
return text 

 
Code 2. Python script for text manipulation 

To overcome these information losses, the functions 
replace_file_path and replace_env_variables were changed 
according to Code 2 to respectively replace only the directory, 
not the full path with PATH string and replace variable 
declarations with the ENV string. 

A. Unbalanced Learning 
After processing the data, it was observed that the database 

was excessively unbalanced with the part of the data that 
represented GTFOBins being only 1,601 % of the total. So, if 
any model just guessed a value, it would be correct 
approximately 98% of the time. For this, some algorithms were 
used to artificially balance databases such as Random 
Oversampling and Random Undersampling. 

Random Oversampling (ROS) randomly upsamples the data 
that is outnumbered while Random Undersampling (RUS) does 
the opposite, reducing the majority sampling. As reported by 
Weiss [19], these techniques have their shortcomings such as 
Undersampling leading to loss of information due to discarding 
data and Oversampling which has the risk of leading to 
overfitting. 

To improve comparative sampling, other algorithms were 
applied as well, such as the Synthetic Minority Over-Sampling 
Technique (SMOTE), which, according to Alamsyah et al. [2], 
generates new data based on the minority class to balance the 
dataset. Near Miss, in turn, removes samples from the majority 
class based on proximity to the minority data, seeking to 
preserve as much information as possible. One Side Selection, 
according to Kubat [10], eliminates points distant from the 
minority class, aiming to improve the representation of this 
class. 

In this way, 02 functions were created in Python that would 
automate the process of creating balanced data, dividing the data 
into testing and training, and finally training the data with the 
chosen model. The create_dataset_balanceado function 
performs data balancing using random_state = 32 as its only 
parameter. 

Chicco and Jurman (2020, 2021) highlight a limitation in 
evaluating machine learning models in binary classification 
tasks with imbalanced datasets. This is because, as mentioned 
before, in a scenario where data is disproportionately distributed 
across classes, a model that simply predicts the majority class in 

all instances would achieve a high accuracy rate despite not 
having learned to effectively distinguish between the classes. On 
the other hand, Matthews Correlation Coefficient (MCC) and 
F1-Score are more robust, with F1 being one of the most used 
metrics in the context of Machine Learning, not only in binary 
classification but also in multiclass classification [4] [5]. 

To provide a balanced and clear comparison of the models, 
a metric called “grade” was created, which is represented by 

, according to Code 3. In this new metric, 
the F1 score had a greater weight than the others because, since 
it considers both accuracy and recall, it is considered useful in 
scenarios with an unbalanced dataset. 

This metric is calculated through the fit_predict function, 
which is responsible for dividing the data into test and training, 
carrying out the training and finally extracting the Accuracy, F1-
Score, MCC and grade metrics. For the purpose of replicating 
the results, the parameters test_size=0.3, random_state=42 were 
used to separate the training and testing datasets. 

 
def fit_predict(model, X, Y): 

train_cmds, test_cmds, train_labels, test_labels 
= train_test_split( X, Y, test_size=0.3, random_state=42) 
 

# Training the dataset  
model.fit(train_cmds, train_labels) 
 
# Predicting the results  
y_pred = model.predict(test_cmds) 
 
# Gathering the metrics   
acc = accuracy_score(test_labels, y_pred)*100  
f1 = f1_score(test_labels, y_pred)*100  
mcc = 3atthews_corrcoef(test_labels, y_pred)*100 
 
# Final grade proposed for this article  
nota = (acc + 2*f1 + mcc)/4 
 
return {"Accuracy": acc, "F1-Score": f1, "MCC": mcc, "Nota": nota} 

 
Code 3. Python Script for training and validating a model 

B. Test’s Order 
Commands executed in the Linux terminal are saved in the 

.bash_history file. This file stores solely and exclusively the 
texts of the commands and their ordering. This way, any other 
information relevant to the context of an attack, such as date and 
time, user and permissions, is not stored. To overcome this 
limitation, Ngan (2020) proposed the use of a ’command 
window’ as a method to analyze the operational context of 
commands. This approach, by considering a sequence of 
commands instead of evaluating each one in isolation, 
demonstrated a significant improvement in his results, 
increasing the accuracy in identifying malicious activity by 
around 10%. 

Based on this understanding, the first analysis scenario was 
conducted without incorporating contextual analysis, treating 
each command individually and applying the Bag of Words 



technique for data modeling. The first reference to this term in 
the linguistic context was attributed to Zellig Harris [8]. The bag 
of words (BoW) is a textual representation in vector form, where 
a set of words is organized into a list, each item corresponding 
to a specific word. This method counts the occurrences of the 
words in this list for each text entry, as detailed by Marcelo 
Silveira in his book on machine learning [18]. 

The second scenario was conducted using the TF-IDF 
technique, applied to a sequence of three consecutive 
commands, thus aligning with the contextual analysis 
methodology introduced by Ngan. The TF-IDF method is an 
approach to representing the importance of words in a text. 
Described by Ding et al. [7], this method uses Term Frequency 
(TF) combined with Inverse Document Frequency (IDF), where 

IDF is calculated as IDF(term) = log  , seeking to 
measure the relevance of a term within a document. 

Finally, Doc2Vec was used with the same window of 3 
commands. Doc2Vec was created by Le and Mikolov (2014) as 
a simple extension to Word2Vec. As elucidated by Lau and 
Baldwin [11], the intent of this extension was to create vector 
representations for documents rather than individual words. 

IV. RESULTS 
For each scenario, 5 training sessions were carried out, one 

for each balancing algorithm, for each of the 6 supervised 
learning models. As seen in Figure 1, grades with the Doc2Vec 
implementation had the best results. 

 
Figure 1.  Distribution of grades by method. 

A. Oversampling 

 
Figure 2.  Average grades by balancing techniques. 

In the experiments carried out, it was observed that 
algorithms focused on increasing the representation of the 
minority class, specifically Random Oversampling and 
SMOTE, presented superior performance compared to 
algorithms that aim to reduce the majority class. The graphical 
analysis, illustrated in Figure 2, reveals the average ’grades’ 
achieved by each balancing method. These data show that the 
two algorithms mentioned not only sustained high averages but 
also presented results that were very similar to each other. 

B. Bag of Words 
In tests carried out with BoW and a window with just one 

command, reasonably low accuracy rates were observed, 
ranging from 89 to 92 %, with emphasis to Neural Networks, as 
shown in Figure 3, which obtained 92,090 % accuracy with 
Random Oversampling. 

 
Figure 3.  Model’s Grades with BoW method. 

The most unfavorable results were observed when using the 
Random Undersampling method, which, in all tested algorithms, 
recorded an accuracy of less than 90%, apart from the Random 
Forest algorithm. 

These results, in general, demonstrate the limitations of this 
approach in effectively differentiating between benign and 
malicious commands when analyzed in isolation. 



C. TF-IDF 
In this approach, context analysis was carried out through the 

window of N commands, in this case 3 commands. 

This window brought greater substance of information to the 
context of the command, with it was possible to achieve 94,338 
% accuracy training with Random Forest and balanced with 
SMOTE, as shown in Figure 4. 

 
Figure 4.  Model’s Grades with TF-IDF Method. 

D. Doc2Vec 
This implementation used the same window with 3 

commands mentioned previously. The results obtained in 
training with Random Forest and balancing with Random 
Oversampling reached a ’grade’ of 99,999 %, as can be seen in 
Figure 5. 

 
Figure 5.  Model’s Grades with Doc2Vec Method. 

E. One Side Selection 
In tests performed, this balancing method consistently 

achieved high accuracy compared to other algorithms. However, 
it was notable that their F1-Score and MCC values remained 
significantly low, as illustrated in Figure 6. 

Obtaining a low F1-Score implies that, although the model 
demonstrates good accuracy in predicting the majority class, it 
fails to properly identify the minority class effectively. This 
observation suggests a limitation of the model in dealing with 
the imbalance between classes, which may compromise its 
applicability in intrusion detection scenarios. In these scenarios, 
malicious inputs often deviate from normal patterns and 
constitute a minority class, requiring accurate detection for 
effective security. 

V. CONCLUSIONS 
Considering that the nature of LOLBins attacks rely on 

legitimate operating system binaries, the need for a contextual 
analysis of the commands executed is clear. The initial study 
with Bag of Words, which was based on the evaluation of 
isolated lines of command, proved to be a considerable 
challenge, resulting in lower scores and low effectiveness. 
However, when adapting the approach to classification based on 
a command window, thus representing the context in which the 
commands are executed, a significant improvement in 
performance metrics was observed. 

Finally, the results of the tests conducted revealed that the 
techniques focused on increasing the minority class, in 
combination with the Doc2Vec technique, showed promising 
results. This observation is evidenced in Table III, where the five 
best evaluations were achieved using Doc2Vec. Regarding 
machine learning algorithms, Decision Trees (DT) and Random 
Forest (RF), along with neural networks, have demonstrated 
superior performance, not only with Doc2Vec, but also with 
other NLP techniques. 

TABLE III.  BEST 5 GRADES OBTAINED IN THE TESTS 

Technique Model Method Grade 
(%) MCC 

ROS RF 

Doc2Vec 

99.99% 99.99 
SMOTE RF 99.76% 99.61 
SMOTE NN 99.55% 99.29 

ROS DT 99.19% 98.71 
ROS NN 99.14% 98.62 

 

The results of these tests emphasize that the best 
effectiveness of the proposed models is achieved through a 
synergy between NLP techniques and artificial data balancing, 
complemented by the selection of appropriate machine learning 
algorithms. 
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