
Supervised Learning Algorithm used for LOLBins
detection in Linux Machines

Ângello Cássio Vasconcelos Oliveira
University of Brasília

Electrical Engineering Department
Brasília (DF), Brasil

Daniel Chaves Café
University of Brasília

Electrical Engineering Department
Brasília (DF), Brasil

Abstract — Living Off the Land Binaries (LOLBins) is a cyber
intrusion technique in which the attacker exploits legitimate
operating system binaries to carry out criminal actions. This work
proposes to compare different machine learning techniques to
automatically detect LOLBins attacks. The command lines were
preprocessed using Natural Language Processing (NLP)
algorithms. The effectiveness of the methods was evaluated taking
into consideration data balancing techniques such as Random
Oversampling/Undersampling and SMOTE. Performance metrics
such as accuracy and F1-Score were used to compare the different
techniques. In conclusion, it was verified that the Decision Tree
(DT) and Random Forest (RF) algorithms were superior to the
others. Furthermore, using a command window as input generated
better results than evaluating isolated command lines.

Keywords – linux; machine learning, intrusion detection, Living
Off the Land, LOTL, LOLBins.

I. INTRODUCTION
In 2023, a relevant vulnerability was identified and exploited

in Barracuda Email Security Gateway (ESG) [12] [13]. This
security failure consists in sending a malicious .tar file as an
email attachment. When processed by the ESG system, the .tar
file exploited a flaw in the validation and sanitization of file
names within the system.

This security breach opened a vector to Remote Code
Execution (RCE), which was abused using Living Off the Land
Binaries (LOLBins) techniques. Analyzing the Indicators of
Compromise (IOC) it was observed that the attackers used the
code 1 to execute commands in the target through a reverse
shell. With this purpose, the attackers used the openssl command
to establish this reverse connection and mkfifo to create a named
pipe to redirect the sh commands and its results between the
target and the attacker’s Command and Control (C2).

setsid sh -c "mkfifo /tmp/p; sh -i </tmp/p 2>&1 | openssl s_client -quiet -
connect 107.148.149[.]156:8080 >/tmp/p 2>/dev/null; rm /tmp/p"

Code 1. Bash Script used in Barracuda exploit.

LOLBins [16] is a technique in which legitimate operating
system binaries can be exploited by malicious individuals to
subvert misconfigured systems. This technique, as elucidated by
Ding et al. [7], is a furtive method used by attackers to harder
their detection and has been increasingly seen as part of the

APT’s (Advanced Persistent Threats) Tactics, Techniques and
Procedures (TTP) [1].

The central goal of this study is to carry out a binary
classification of Linux commands, with the specific aim of
identifying tactics associated with the use of LOLBins. To
achieve this, combinations of several Machine Learning models
will be employed, including Random Forest, Neural Networks
and Decision Trees, concomitantly with the use of Natural
Language Processing (NLP) techniques, such as Bag of Words,
TF-IDF and Doc2Vec. Furthermore, to overcome the challenge
of data imbalance, artificial database balancing algorithms will
be implemented.

Thus, the analysis focused on commands originating from
the Linux operating system, with a significant portion of the data
originating from records in the file “.bash_history”, the same
way portion used by Ngan [14] in his work, and the list of
commands from the GTFOBins website [16]. This restricted the
information available to command text only. Given this
contextual limitation, the solution proposed by Ngan [14] was
used, which involved analyzing a window of N previous
commands to provide more context to the lack of detailed data
about each command.

As highlighted by Kotsiantis et al. [9], the challenge of
unbalanced data is increasingly common, especially in practical
situations that involve the detection of rare but relevant events.
This scenario is similar to the context of identifying malicious
commands or malwares. Due to the limited and relatively small
list of LOLBins, it was necessary to employ artificial dataset
balancing techniques given that these commands represented
only 1,601% of the total. To mitigate this disparity, several
techniques were explored, including Random Undersampling
(RUS) , Random Oversampling (ROS) and Near Miss, aiming to
balance data distribution and improve the effectiveness of
detection models. However, for a better analysis of LOLBins, it
was necessary to consider not only Machine Learning models
and Artificial Balancing algorithms, but also the Natural
Language Processing (NLP) algorithms used to represent the
command’s strings. This interaction between different
approaches directly influenced the final metrics of each test.

Data preprocessing was carried out in a similar way to
Ngan’s work. However, improvements were made to some
functions to avoid possible loss of information that could occur
when dealing with environment variables and file paths.

In this context, an analysis of relevant studies in machine
learning applied to the detection of cyber threats will be carried
out, as well as the methodology adopted for the development and
automation of codes, which facilitate the training process of
machine learning models. Finally, the results achieved through
these approaches will be presented and discussed providing
insights and contributions to the field of cybersecurity.

II. RELATED WORK
The vast majority of machine learning work in the

cybersecurity field is focused on the area of malware detection.
For example, Chumachenko (2017) [6] explored several
Machine Learning algorithms for the purpose of detecting and
classifying malware. His research concluded that, with his
dataset, the most accurate algorithms were Random Forest,
followed by J48. Furthermore, Rathore (2018) [17] compared
the results between the use of Machine Learning and Deep
Learning in malware detection, concluding that Random Forest
outperformed Deep Neural Networks. In both studies, Random
Forest proved to be a promising option for threat detection. As
Rathore, Ding [7] implemented Deep Learning techniques, this
time, to detect LOLBins, reaching an accuracy of 99.45%.

Work aimed at detecting LOLBins in general, in which was
included other systems such as Windows, for example,
addresses this interaction between different ways of representing
texts originating from command lines. An example of this was
Ogun [15] who implemented a way of assigning features that he
called cmd2vec. In his work, Ongun [15] submited the tokens
for each command to the Doc2Vec or FastText algorithm for
vectorization. After that, he trained his first database using the
Random Forest algorithm and calculates the average probability
that each token appears on a leaf of the tree with a final label
representing the LOLBins commands. As Windows LOLBins
commands mostly have a greater number of tokens than regular
commands or even the Linux LOLBins, Ongun created a new
database where, for each entry, he used the metrics obtained
through previous training, creating a new entry containing 3
tokens with the highest probability, 3 with the lowest
probability, 3 with the medium grouping and the 3 with the
highest probability scores. Finally, he also included a count of
the entry tokens and the rarest ones, as he noticed that in his
database the binaries used in attacks sometimes appeared only a
few times.

Boros [3] also tried to improve the representation of the
command line strings. He assigned key characteristics that
represented certain actions in each input to better interpret the
commands.

Although Thuy Ngan’s master’s thesis [14] (DAO, 2020)
focused on the classification of Unix commands in general,
categorizing them by risk levels without focusing specifically on
LOLBins, the present work appropriates some of the techniques
addressed by Ngan to investigate LOLBins attacks further, such
as using command windows to represent the context of
commands.

To achieve his goal, Ngan [14] collected 660 .bash_history
files from GitHub and used logs from two honeypots from
another study carried out at his university. The total corpus was
905,405 commands. The availability of its database represented

another significant contribution of his work. Accessing this data
set enabled a direct and effective comparison with the
performance of the algorithms used in the present study.

In a first analysis, Ngan performed a binary classification of
the data, assuming that GitHub commands were legitimate,
while those coming from honeypots were considered malicious.
In a second stage, all data was subjected to a labeling function,
categorizing each command into risk indices.

Their results, as shown in Tables I and II, demonstrate that
the use of a context, in this case a window of 3 commands,
combined with changing the NLP algorithm improved accuracy
in almost 10%. In all scenarios, both in the binary classification
approach and in the risk classification, the NLP algorithm that
had the best performance was Doc2Vec.

TABLE I. NGAN’S RESULTS IN BINARY CLASSIFICATION

Context Representation Classifier Accuracy False
Neg.

1-Command 1-gram + BoW KNN 89.13% 28,878

3-Command

1-gram + TF-IDF
Linear
SVC

98.13% 2,292

3-gram + TF-IDF 98.27% 2,066
3-gram +
Doc2Vec 96.71% 1,499

TABLE II. NGAN’S RESULTS IN RISK LEVEL CLASSIFICATION

Representation Classifier Accuracy
Count-Vector Logistic Regression

95,05%

Doc2Vec 99,58%

At the end of each training, the predictions were submitted
to a confusion matrix, where the False Negative and False
Positive rates were measured. False Negatives are particularly
more harmful as the incorrect classification of a malicious
command can have significant impacts on a given system.

Therefore, this work seeks to apply reasoning similar to
Ngan’s but with a focus only on the detection of LOLBins in
Linux, proposing some improvements over his command
processing approach and proving some insights obtained in
previous works, mainly regarding the need not to analyze
commands in isolation.

III. METHODOLOGY
To analyze the LOLBins, the benign portion of the Ngan

database was used together with the list of commands obtained
from the website https://gtfobins.github.io [16]. This GitHub
repository offers a JSON file containing the commands listed on
the site, accessible via the “code” key.

The preprocessing approach followed a similar pattern to
Ngan. However, Ngan’s implementation had some
vulnerabilities. As for the representation of the complete paths
of a command, they were always suppressed, having, for
example, “/bin/bash -p” being transformed into “_PATH_ -p”,
which could result in the loss of important information.
Furthermore, a frequent use of environment variables was
observed in LOLBins list. Given that variables can be named in

different ways, this could lead the models to consider them
different while they represent the same action.

def replace_file_path(text):

Modified to replace only the directory, not the file at the end
return re.sub(r"((?<=)[ˆ]*/)([ˆ/]*)", r"_PATH_/\2", text)

def replace_env_variables(text):
Replace $String and $_ENV for String= ou _ENV_=.
text = re.sub(r"\$([A-Za-z_][A-Za-z0-9_]*)", r"$_ENV", text)
text = re.sub(r"([A-Za-z_][A-Za-z0-9_]*)=", r"_ENV_=", text)
return text

Code 2. Python script for text manipulation

To overcome these information losses, the functions
replace_file_path and replace_env_variables were changed
according to Code 2 to respectively replace only the directory,
not the full path with PATH string and replace variable
declarations with the ENV string.

A. Unbalanced Learning
After processing the data, it was observed that the database

was excessively unbalanced with the part of the data that
represented GTFOBins being only 1,601 % of the total. So, if
any model just guessed a value, it would be correct
approximately 98% of the time. For this, some algorithms were
used to artificially balance databases such as Random
Oversampling and Random Undersampling.

Random Oversampling (ROS) randomly upsamples the data
that is outnumbered while Random Undersampling (RUS) does
the opposite, reducing the majority sampling. As reported by
Weiss [19], these techniques have their shortcomings such as
Undersampling leading to loss of information due to discarding
data and Oversampling which has the risk of leading to
overfitting.

To improve comparative sampling, other algorithms were
applied as well, such as the Synthetic Minority Over-Sampling
Technique (SMOTE), which, according to Alamsyah et al. [2],
generates new data based on the minority class to balance the
dataset. Near Miss, in turn, removes samples from the majority
class based on proximity to the minority data, seeking to
preserve as much information as possible. One Side Selection,
according to Kubat [10], eliminates points distant from the
minority class, aiming to improve the representation of this
class.

In this way, 02 functions were created in Python that would
automate the process of creating balanced data, dividing the data
into testing and training, and finally training the data with the
chosen model. The create_dataset_balanceado function
performs data balancing using random_state = 32 as its only
parameter.

Chicco and Jurman (2020, 2021) highlight a limitation in
evaluating machine learning models in binary classification
tasks with imbalanced datasets. This is because, as mentioned
before, in a scenario where data is disproportionately distributed
across classes, a model that simply predicts the majority class in

all instances would achieve a high accuracy rate despite not
having learned to effectively distinguish between the classes. On
the other hand, Matthews Correlation Coefficient (MCC) and
F1-Score are more robust, with F1 being one of the most used
metrics in the context of Machine Learning, not only in binary
classification but also in multiclass classification [4] [5].

To provide a balanced and clear comparison of the models,
a metric called “grade” was created, which is represented by

, according to Code 3. In this new metric,
the F1 score had a greater weight than the others because, since
it considers both accuracy and recall, it is considered useful in
scenarios with an unbalanced dataset.

This metric is calculated through the fit_predict function,
which is responsible for dividing the data into test and training,
carrying out the training and finally extracting the Accuracy, F1-
Score, MCC and grade metrics. For the purpose of replicating
the results, the parameters test_size=0.3, random_state=42 were
used to separate the training and testing datasets.

def fit_predict(model, X, Y):

train_cmds, test_cmds, train_labels, test_labels
= train_test_split(X, Y, test_size=0.3, random_state=42)

Training the dataset
model.fit(train_cmds, train_labels)

Predicting the results
y_pred = model.predict(test_cmds)

Gathering the metrics
acc = accuracy_score(test_labels, y_pred)*100
f1 = f1_score(test_labels, y_pred)*100
mcc = 3atthews_corrcoef(test_labels, y_pred)*100

Final grade proposed for this article
nota = (acc + 2*f1 + mcc)/4

return {"Accuracy": acc, "F1-Score": f1, "MCC": mcc, "Nota": nota}

Code 3. Python Script for training and validating a model

B. Test’s Order
Commands executed in the Linux terminal are saved in the

.bash_history file. This file stores solely and exclusively the
texts of the commands and their ordering. This way, any other
information relevant to the context of an attack, such as date and
time, user and permissions, is not stored. To overcome this
limitation, Ngan (2020) proposed the use of a ’command
window’ as a method to analyze the operational context of
commands. This approach, by considering a sequence of
commands instead of evaluating each one in isolation,
demonstrated a significant improvement in his results,
increasing the accuracy in identifying malicious activity by
around 10%.

Based on this understanding, the first analysis scenario was
conducted without incorporating contextual analysis, treating
each command individually and applying the Bag of Words

technique for data modeling. The first reference to this term in
the linguistic context was attributed to Zellig Harris [8]. The bag
of words (BoW) is a textual representation in vector form, where
a set of words is organized into a list, each item corresponding
to a specific word. This method counts the occurrences of the
words in this list for each text entry, as detailed by Marcelo
Silveira in his book on machine learning [18].

The second scenario was conducted using the TF-IDF
technique, applied to a sequence of three consecutive
commands, thus aligning with the contextual analysis
methodology introduced by Ngan. The TF-IDF method is an
approach to representing the importance of words in a text.
Described by Ding et al. [7], this method uses Term Frequency
(TF) combined with Inverse Document Frequency (IDF), where

IDF is calculated as IDF(term) = log , seeking to
measure the relevance of a term within a document.

Finally, Doc2Vec was used with the same window of 3
commands. Doc2Vec was created by Le and Mikolov (2014) as
a simple extension to Word2Vec. As elucidated by Lau and
Baldwin [11], the intent of this extension was to create vector
representations for documents rather than individual words.

IV. RESULTS
For each scenario, 5 training sessions were carried out, one

for each balancing algorithm, for each of the 6 supervised
learning models. As seen in Figure 1, grades with the Doc2Vec
implementation had the best results.

Figure 1. Distribution of grades by method.

A. Oversampling

Figure 2. Average grades by balancing techniques.

In the experiments carried out, it was observed that
algorithms focused on increasing the representation of the
minority class, specifically Random Oversampling and
SMOTE, presented superior performance compared to
algorithms that aim to reduce the majority class. The graphical
analysis, illustrated in Figure 2, reveals the average ’grades’
achieved by each balancing method. These data show that the
two algorithms mentioned not only sustained high averages but
also presented results that were very similar to each other.

B. Bag of Words
In tests carried out with BoW and a window with just one

command, reasonably low accuracy rates were observed,
ranging from 89 to 92 %, with emphasis to Neural Networks, as
shown in Figure 3, which obtained 92,090 % accuracy with
Random Oversampling.

Figure 3. Model’s Grades with BoW method.

The most unfavorable results were observed when using the
Random Undersampling method, which, in all tested algorithms,
recorded an accuracy of less than 90%, apart from the Random
Forest algorithm.

These results, in general, demonstrate the limitations of this
approach in effectively differentiating between benign and
malicious commands when analyzed in isolation.

C. TF-IDF
In this approach, context analysis was carried out through the

window of N commands, in this case 3 commands.

This window brought greater substance of information to the
context of the command, with it was possible to achieve 94,338
% accuracy training with Random Forest and balanced with
SMOTE, as shown in Figure 4.

Figure 4. Model’s Grades with TF-IDF Method.

D. Doc2Vec
This implementation used the same window with 3

commands mentioned previously. The results obtained in
training with Random Forest and balancing with Random
Oversampling reached a ’grade’ of 99,999 %, as can be seen in
Figure 5.

Figure 5. Model’s Grades with Doc2Vec Method.

E. One Side Selection
In tests performed, this balancing method consistently

achieved high accuracy compared to other algorithms. However,
it was notable that their F1-Score and MCC values remained
significantly low, as illustrated in Figure 6.

Obtaining a low F1-Score implies that, although the model
demonstrates good accuracy in predicting the majority class, it
fails to properly identify the minority class effectively. This
observation suggests a limitation of the model in dealing with
the imbalance between classes, which may compromise its
applicability in intrusion detection scenarios. In these scenarios,
malicious inputs often deviate from normal patterns and
constitute a minority class, requiring accurate detection for
effective security.

V. CONCLUSIONS
Considering that the nature of LOLBins attacks rely on

legitimate operating system binaries, the need for a contextual
analysis of the commands executed is clear. The initial study
with Bag of Words, which was based on the evaluation of
isolated lines of command, proved to be a considerable
challenge, resulting in lower scores and low effectiveness.
However, when adapting the approach to classification based on
a command window, thus representing the context in which the
commands are executed, a significant improvement in
performance metrics was observed.

Finally, the results of the tests conducted revealed that the
techniques focused on increasing the minority class, in
combination with the Doc2Vec technique, showed promising
results. This observation is evidenced in Table III, where the five
best evaluations were achieved using Doc2Vec. Regarding
machine learning algorithms, Decision Trees (DT) and Random
Forest (RF), along with neural networks, have demonstrated
superior performance, not only with Doc2Vec, but also with
other NLP techniques.

TABLE III. BEST 5 GRADES OBTAINED IN THE TESTS

Technique Model Method Grade
(%) MCC

ROS RF

Doc2Vec

99.99% 99.99
SMOTE RF 99.76% 99.61
SMOTE NN 99.55% 99.29

ROS DT 99.19% 98.71
ROS NN 99.14% 98.62

The results of these tests emphasize that the best
effectiveness of the proposed models is achieved through a
synergy between NLP techniques and artificial data balancing,
complemented by the selection of appropriate machine learning
algorithms.

REFERENCES
[1] LIVING OFF THE LAND (LOTL) ATTACKS AND DEFENDING

AGAINST APT’S, April 2023. Infosec News. Accessed: 2023-12-05.
[2] Anas Rulloh Alamsyah, S Rahma, Nadira Sri Belinda, and Adi Setiawan.

Smote and nearmiss methods for disease classification with unbalanced
data case study: Ifls 5. volume 2021, 01 2022.

[3] Tiberiu Boros, Andrei Cotaie, Antrei Stan, Kumar Vikramjeet, Vivek
Malik, and Joseph Davidson. Machine learning and feature engineering
for detecting living off the land attacks, 2022.

[4] Davide Chicco and Giuseppe Jurman. The advantages of the matthews
correlation coefficient (mcc) over f1 score and accuracy in binary
classification evaluation. BMC genomics, 21(1):1–13, 2020.

[5] Davide Chicco, Niklas Totsch, and Giuseppe Jurman.¨ The matthews
correlation coefficient (mcc) is more reliable than balanced accuracy,
bookmaker informedness, and markedness in two-class confusion matrix
evaluation. BioData mining, 14(1):1–22, 2021.

[6] Kateryna Chumachenko. Machine learning methods for malware
detection and classification. 2017.

[7] Kuiye Ding, Shuhui Zhang, Feifei Yu, and Guangqi Liu. Lolwtc: A deep
learning approach for detecting living off the land attacks. In 2023 IEEE
9th International Conference on Cloud Computing and Intelligent
Systems (CCIS), pages 176–181, Aug 2023.

[8] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

[9] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al.
Handling imbalanced datasets: A review. GESTS international
transactions on computer science and engineering, 30(1):25–36, 2006.

[10] M. Kubat. Addressing the curse of imbalanced training sets: One-sided
selection. Fourteenth International Conference on Machine Learning, 06
2000.

[11] Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec
with practical insights into document embedding generation. arXiv
eprints, page arXiv:1607.05368, July 2016.

[12] Mandiant. Barracuda esg zero-day vulnerability (cve-2023-2868)
exploited globally by aggressive and skilled actor, suspected links to
china, 2023. Accessed: 2024-01-24.

[13] National Institute of Standards and Technology (NIST). CVE-20232868:
Barracuda Networks ESG Appliance Improper Input Validation
Vulnerability. https://nvd.nist.gov/vuln/detail/CVE-2023-2868, 2023.
Accessed: 2024-01-24.

[14] D. Thuy Ngan. Classification of linux commands in ssh session by risk
levels. Master’s thesis, University of Namur, Faculty of Computer
Science, September 2020. Student thesis: Master in Computer Science
with Professional focus in Data Science.

[15] Talha Ongun, Jack W. Stokes, Jonathan Bar Or, Ke Tian, Farid
Tajaddodianfar, Joshua Neil, Christian Seifert, Alina Oprea, and John C.
Platt. Living-off-the-land command detection using active learning. In
Proceedings of the 24th International Symposium on Research in Attacks,
Intrusions and Defenses, RAID ’21, page 442–455, New York, NY, USA,
10 2021. Association for Computing Machinery.

[16] Emilio Pinna and Andrea Cardaci. GTFOBins, 2023. Accessed: 2023-12-
05.

[17] Hemant Rathore, Swati Agarwal, Sanjay K Sahay, and Mohit Sewak.
Malware detection using machine learning and deep learning. In Big Data
Analytics: 6th International Conference, BDA 2018, Warangal, India,
December 18–21, 2018, Proceedings 6, pages 402–411. Springer, 2018.

[18] Guilherme Silveira and Bennett Bullock. Machine Learning – Introdução
a Classificação . Editora Casa do Codigo, São Paulo, Brasil, 2020.

[19] Gary Weiss. Foundations of Imbalanced Learning, pages 13–41. 06 2013.

Figure 6. OneSideSelecfon’s Metrics.

