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Abstract. Large Language Models (LLMs) such as GPT-2 and GPT-4 are in-
creasingly integrated into software development workflows to assist in tasks like
code generation, testing, and documentation. Despite their advantages, these
models pose privacy risks when developers unknowingly insert personal or sen-
sitive data into prompts. This paper presents a practical demonstration of a
privacy vulnerability by simulating a Membership Inference Attack on a local
instance of GPT-2. A synthetic database of clients, including realistic CPF iden-
tifiers, was used to simulate a scenario in which a developer submits sensitive
information to the model. The experiment shows that GPT-2 can replicate per-
sonal data in response to follow-up queries, even without fine-tuning. This be-
havior exposes a critical risk, local LLMs may temporarily retain sensitive in-
puts and reproduce them without proper isolation or access control. We analyze
these findings in light of the Brazilian LGPD and GDPR, discuss the implica-
tions for secure software development, and propose mitigation strategies. This
work bridges the gap between theoretical discussions on LLM privacy and prac-
tical validation in realistic development settings.

1. Introduction

Large Language Models (LLMs), such as GPT-2, GPT-4, and LLaMA, have rev-
olutionized the field of Natural Language Processing (NLP) by enabling high-
quality text generation, summarization, translation, and code synthesis [Liu et al. 2024,
Yao and Zhang 2023]. Their widespread adoption has significantly impacted soft-
ware development workflows, where developers use LLMs to improve productiv-
ity, generate documentation, fix bugs, and create test cases [Nam and Kim 2024,
Falcão and Canedo 2024].

Despite their benefits, the use of LLMs in software engineering tasks raises
critical concerns regarding data privacy and security. Since these models are trained
on massive datasets, often scraped from public web sources, they can memorize and
reproduce sensitive or personal data, even without malicious intent [Yan et al. 2024,
Neel and Chang 2023]. A widely reported case involved Samsung Electronics,
where employees inadvertently exposed confidential corporate data through ChatGPT
[Mauran 2023].

Even in local development environments, using LLMs may lead to the unin-
tentional exposure of sensitive information when developers include personal data in
prompts. If such data is retained by the model and reproduced in future queries, it may
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constitute a privacy breach, especially when the model is used by multiple users or inte-
grated into production systems. This behavior may violate fundamental principles of data
protection laws, such as the Brazilian General Data Protection Law (LGPD) [LGPD 2018]
and the European General Data Protection Regulation (GDPR) [GDPR 2016], particularly
with regard to purpose limitation, data minimization, and the implementation of appro-
priate security measures.

[Falcão and Canedo 2024] investigated the perceptions of software development
professionals regarding data privacy in the use of Large Language Models (LLMs) in their
professional activities. Through a survey with 78 participants from all regions of Brazil,
the authors analyzed the level of knowledge about data privacy and the Brazilian General
Data Protection Law (LGPD), the perceived risks of using LLMs, the practices adopted
to mitigate these risks, and the challenges faced. The analysis combined quantitative and
qualitative methods, revealing that most developers have only basic knowledge of privacy
and LLMs, do not use anonymization techniques, and consider the current legislation
inadequate. As contributions, the study proposes practical recommendations based on
participants’ perceptions, highlighting the need for investments in training, the definition
of organizational guidelines, and the development of tools to ensure the ethical and secure
use of LLMs in software development environments.

In this context, the present work presents a practical experiment that simulates a
privacy-related vulnerability using a local instance of the GPT-2 model. The goal is to
demonstrate how sensitive data, introduced into prompts during legitimate tasks, can be
recovered through a technique known as Membership Inference Attack (MIA). The goal
of this attack is to find out whether the model has previously accessed specific data, which
may put the confidentiality of the information at risk.

This sequence of events is illustrated in Figure 1, which depicts a simplified pri-
vacy leak scenario. The process begins when a developer submits sensitive data, such as
a CPF number, into an LLM prompt. The LLM processes this information and retains it
temporarily within its context window. Subsequently, a different user, or even the same
developer, issues a follow-up query that triggers the model to reveal the sensitive infor-
mation, demonstrating a privacy vulnerability in the absence of isolation mechanisms.

Figure 1. Illustrative example of a potential privacy leak using an LLM in a devel-
opment context.

The main contribution of this paper lies in the practical demonstration that even
local, offline LLMs can pose data privacy risks if not used with appropriate protective
measures. This work complements recent survey-based research by providing a practical
validation of how privacy breaches can occur in real-world development scenarios.

Even in local development environments, using LLMs may lead to the unin-
tentional exposure of sensitive information when developers include personal data in
prompts. If such data is retained by the model and reproduced in future queries, it may



constitute a privacy breach, especially when the model is used by multiple users or inte-
grated into production systems.

This work differentiates itself from existing studies by providing empirical vali-
dation of privacy risks in local LLM usage, specifically within software development en-
vironments. Our approach reinforces the importance of implementing privacy safeguards
even during the early adoption of LLMs in private development workflows.

This paper is structured as follows: Section 2 presents the theoretical background
and outlines the main privacy risks associated with LLMs. Section 3 details the experi-
mental methodology. Section 4 presents and analyzes the results. Section 5 discusses the
implications from both technical and legal perspectives. Finally, Section 6 concludes the
paper with final remarks and future research directions.

2. Background and Related Work

2.1. Large Language Models in Software Development

Large Language Models (LLMs) have gained widespread popularity for their ability to
perform tasks such as code generation, bug detection, and documentation generation.
These capabilities make them attractive tools for enhancing software development pro-
ductivity [Liu et al. 2024, Nam and Kim 2024]. LLMs typically use transformer-based
architectures and are trained on large volumes of data, including source code, technical
documentation, and various types of web content [Yao and Zhang 2023].

Several studies have explored how LLMs are integrated into development work-
flows. [Falcão and Canedo 2024] investigated how software team members perceive pri-
vacy risks when using LLM-based tools. Their study found that while developers rec-
ognize the usefulness of these tools, many are unaware of the privacy implications of
inputting sensitive data into LLMs. This gap between perceived usefulness and aware-
ness of privacy risks highlights a significant vulnerability in the use of these tools.

2.2. Privacy Risks and Attack Vectors in LLMs

Recent literature has identified multiple risks associated with the use of LLMs, especially
when these models are exposed to personal or proprietary information. Neel and Chang
[Neel and Chang 2023] classify privacy threats into categories such as data memorization,
reconstruction, and leakage through model output. Yan et al. [Yan et al. 2024] provide
a comprehensive survey of attacks and countermeasures in LLMs, highlighting that even
models used locally may retain and output sensitive data without explicit prompting.

Among the most studied attack techniques are: 1. Membership Inference
Attacks (MIA): Aim to determine whether a particular data instance was used dur-
ing model training or prompt context, raising concerns about data confidentiality
[Shokri et al. 2017]; 2. Inference Attacks: Aim to uncover private details or reconstruct
confidential data by analyzing how the model responds. 3. Prompt Injection: A tech-
nique where hidden or malicious instructions embedded in the prompt cause the model to
override previous directives or reveal unintended content; 4. Data Poisoning: Involves
intentionally corrupting the model’s training data to inject malicious behavior or expose
vulnerabilities.



These threats are particularly relevant in development environments where de-
velopers use LLMs to process real-world production data, such as customer records or
internal system logs. Recent surveys have expanded the taxonomy of privacy-related
attacks in LLMs. Yan et al. [Yan et al. 2024] propose a classification that distinguishes
between passive privacy leakages—where sensitive information is reproduced without ex-
plicit queries—and active privacy attacks, which include Membership Inference, Model
Inversion, and Extraction attacks. This classification helps structure the risk landscape
from both a legal and technical perspective.

Liu et al. [Liu et al. 2024] further investigate adversarial prompt engineering
strategies, such as Jailbreaking and Prompt Injection, that manipulate model behavior to
bypass safety filters or extract sensitive content. Their review includes practical counter-
measures such as input sanitization, model fine-tuning, and adversarial training. Choquet
et al. [Choquet et al. 2024] conduct an automated assessment of privacy vulnerabilities in
LLaMA models by feeding crafted prompts designed to elicit memorized content. Their
findings confirm that even open-source models are susceptible to privacy leakage through
prompt-based probing, reinforcing the necessity of evaluating local LLMs in development
environments such as the one tested in this paper.

2.3. Legal and Ethical Frameworks

Legal frameworks such as Brazil’s LGPD[Macedo 2018] and the European Union’s
GDPR[Parliament and Council 2018] establish strict principles for personal data
processing, including purpose limitation, data minimization, and accountability
[Canedo et al. 2022]. [Rocha et al. 2023] investigated the challenges faced by software
developers in operationalizing these principles—particularly those of the LGPD—in dig-
ital systems. Their study involved a survey with 45 Brazilian ICT professionals, using an
e-commerce scenario and UML diagrams to represent the LGPD principles in practice.
The analysis, based on Grounded Theory, revealed that most participants lacked famil-
iarity with techniques needed to ensure compliance, with the principle of accountability
standing out as the least understood and least applied. To address this gap, the authors pro-
posed a reference guide outlining concrete techniques to support privacy-aware software
development, emphasizing the need for improved technical and organizational training
from the early stages of the development lifecycle.

This lack of preparedness becomes even more critical with the rise of Large Lan-
guage Models (LLMs), which may unintentionally expose personal data through their
outputs—potentially breaching privacy regulations, even in internal or locally hosted en-
vironments [Golda et al. 2024]. Despite these risks, current software development prac-
tices often lack safeguards to prevent such incidents. [Falcão and Canedo 2024] highlight
that agile teams frequently neglect privacy requirements when incorporating LLMs into
their workflows, especially in fast-paced development contexts where delivery tends to
take precedence over governance.

Reinforcing these findings, Cerqueira et al. [de Cerqueira et al. 2022] address the
broader challenge of operationalizing ethical principles in AI-based software develop-
ment. Their study introduces the RE4AI Ethical Guide, a practical tool designed to sup-
port the elicitation of ethical requirements during agile development cycles. Structured
around 26 interactive cards based on 11 ethical principles, the Guide offers prompts, illus-



trative examples, and tool suggestions to help teams translate abstract values into action-
able user stories. Evaluated through a survey with 40 students in computing disciplines,
the Guide was perceived as both useful and effective in raising ethical awareness and sup-
porting requirements elicitation. By emphasizing traceability, stakeholder involvement,
and practical support material, RE4AI contributes to bridging the gap between ethical
theory and development practice—particularly in scenarios where regulatory compliance
and value-sensitive design must coexist with agile delivery pressures.

Adding a philosophical and political layer to this debate, [Coeckelbergh 2025]
conducted a systematic analysis of how LLMs threaten not only truth but also democ-
racy. He identifies a range of epistemic risks—such as hallucination, misinformation,
relativism, and epistemic bubbles—that compromise users’ ability to form independent
beliefs and make informed decisions. These phenomena, when scaled through digital plat-
forms, can erode epistemic agency and degrade the conditions necessary for democratic
deliberation. The authors argued that the crisis of truth exacerbated by LLMs demands not
only regulatory responses and ethical frameworks but also investments in education and
civic engagement. In this context, the technical and organizational challenges identified
in Brazilian software teams are part of a broader global concern: the need to ensure that
AI systems, particularly those powered by LLMs, are designed and deployed in ways that
preserve truth, protect privacy, and strengthen—rather than weaken—democratic prac-
tices.

While [Coeckelbergh 2025] highlighted the epistemic and societal risks of
LLMs—such as misinformation, erosion of cognitive agency, and threats to democratic
processes—the study by [Liu et al. 2025] addressed a complementary and technical di-
mension: how to mitigate personal information leakage in LLMs without requiring full
model retraining. The authors introduce RETURN, a realistic benchmark dataset con-
taining data on 2,492 individuals extracted from Wikipedia, designed to evaluate machine
unlearning (MU) techniques. Building on this dataset, they propose the Name-Aware
Unlearning Framework (NAUF), which combines personalized refusal responses with
contrastive data augmentation to teach the model when and how to “forget” sensitive
information. Their results show that NAUF outperforms previous approaches, achiev-
ing an unlearning score 5.65 points higher than the best baseline, without compromis-
ing performance on other tasks. This technical solution reinforces the need to align the
principles of privacy and explainability, as discussed by [Coeckelbergh 2025], with prac-
tical mechanisms that uphold the right to be forgotten and support regulatory compli-
ance—particularly in a context where public and institutional trust in LLMs depends on
their ability to operate ethically, securely, and transparently.

While existing research has addressed user perceptions of LLM risks and proposed
theoretical mitigations, there is a lack of experimental studies that concretely demonstrate
how privacy breaches can occur in practice. This work addresses this gap by simulating a
Membership Inference Attack on a local GPT-2 model, using synthetic personal data in-
serted through realistic developer prompts. Our approach complements perception-based
studies with empirical validation, providing a foundation for more secure practices when
deploying LLMs in software engineering contexts.

Table 1 summarizes key contributions from recent research efforts that explore
various privacy risks associated with Large Language Models. These works investi-



gate both model-specific vulnerabilities—such as embedding leakage and prompt injec-
tion—and mitigation techniques, including adversarial filtering and formal analysis. Our
approach differs by offering a hands-on demonstration of a Membership Inference Attack
on a local GPT-2 instance, contributing practical insights to complement theoretical and
survey-based studies.

Table 1. Summary of Related Work on Privacy Risks in LLMs

Author(s) Main Contribution Attack Type Inves-
tigated

Model Used

Yan et al. (2024)
[Yan et al. 2024]

Proposed a taxonomy of
passive leakages vs. active
attacks in LLMs

Membership In-
ference, Model
Inversion, Extrac-
tion

GPT-3.5,
BERT

Choquet et al. (2024)
[Choquet et al. 2024]

Automated evaluation of
prompt-based privacy leak-
age in LLaMA models

Prompt Leakage,
Memorization

LLaMA

Liu et al. (2024)
[Liu et al. 2024]

Survey on prompt hack-
ing strategies and mitiga-
tion techniques

Prompt Injection,
Jailbreaking, Data
Poisoning

GPT-4,
ChatGLM2

Singhal (2024)
[Singhal et al. 2024]

Fine-tuned LLaMA-2 to
suppress sensitive outputs
via response filtering

Prompt Filtering,
Jailbreaking De-
fense

LLaMA-2

Kim et al. (2024)
[Kim et al. 2024]

Introduced ProPILE, a
framework for formal
evaluation of embedding
privacy leakage

Embedding Leakage GPT-2, GPT-
3



3. Research Design
This study follows an experimental approach to investigate whether a local Large Lan-
guage Model (LLM), such as GPT-2, can retain and reveal sensitive data inserted during
natural developer interactions. The experiment simulates a realistic scenario in which a
developer unintentionally includes personal information—such as a Brazilian CPF num-
ber—when querying the LLM in the context of software testing or report generation.

The experiment was designed to simulate a Membership Inference Attack
(MIA), a type of privacy attack in which an adversary attempts to infer whether a spe-
cific data instance was previously seen by the model [Shokri et al. 2017]. In this case,
the attack was modeled to occur locally, within a single-user development environment.
The experiment involves three main phases: 1. Generation of a synthetic client database
containing sensitive personal identifiers; 2. Construction of contextual prompts including
sensitive information and submission to a local GPT-2 model; and 3. Evaluation of model
responses to malicious or probing queries that attempt to retrieve the previously submitted
data.

The experiment was conducted on a MacOS-based local development environ-
ment with the following configuration: i) Python 3.11 with virtual environment (venv);
ii) Transformers and Torch libraries from Hugging Face; iii) SQLite for database
simulation; and iv) Faker library for generating realistic fake Brazilian personal data
(name, email, CPF). The GPT-2 model (124M parameters) was loaded locally using the
transformers library. No fine-tuning was performed, and the model was evaluated in
its pre-trained form to simulate a developer using the LLM as-is.

3.1. Data Generation

To simulate realistic use cases without violating privacy regulations, a synthetic dataset
of client records was generated using the Faker library. Each entry in the dataset included
a full name, email address, and a valid-format CPF (Brazilian tax ID), generated using a
custom algorithm to ensure formal validity. The data was stored in a local SQLite database
and retrieved dynamically during prompt construction.

3.2. Prompt Construction and Attack Simulation

The Membership Inference Attack was simulated as follows:

1. A contextual prompt was generated in natural language, embedding a real-
looking CPF: “The client João da Silva with email joao@example.com has CPF
123.456.789-00.”

2. This prompt was submitted to the GPT-2 model for processing.
3. Immediately afterward, a probing prompt was issued: “What is the CPF of client

João da Silva?”
4. The model’s response was analyzed to check whether it reproduced the CPF pro-

vided in the previous prompt.

3.3. Evaluation Criteria

To assess whether the attack was successful, the generated outputs were evaluated qualita-
tively. A successful inference was defined as a response that either: i) Exactly reproduced
the original CPF; ii) Generated a CPF with partial similarity (e.g., matching prefix or



format); and iii) Provided indications that the model memorized and reused the context
beyond the intended session. Multiple runs were conducted with different client records
to validate consistency.

All code and data used in this experiment are available in our public arti-
fact [Menegazzi 2025], including instructions for replication, database generation, and
the inference attack script.

4. Results

The Membership Inference Attack simulation produced results that demonstrate the po-
tential for local LLMs, such as GPT-2, to replicate sensitive data provided during prior
prompts. Although the model was not fine-tuned on any dataset and no long-term mem-
ory was configured, GPT-2 was able to reproduce or approximate the information when
prompted immediately after contextual exposure.

4.1. Qualitative Analysis

To assess the qualitative behavior of the GPT-2 model in response to sensitive information
inserted via prompts, we conducted a series of tests using synthetic CPFs embedded in
natural language queries. The goal was to evaluate whether the model would replicate or
approximate personal data in subsequent responses.

In one of the tests, the following contextual prompt was submitted:

The client Rhavi Pereira with email
gpinto@example.net has CPF 214.076.533-85.

Immediately afterward, a probing query was issued:

What is the CPF of the client Rhavi Pereira?

The model responded with:

The client Rhavi Pereira with email
gpinto@example.net has CPF 214.076.533-85...

This result shows that the model retained and reused the CPF value, even though
it was provided only as a prior prompt. This behavior simulates a privacy leak, as the data
was not retrieved from any database, but instead recalled from the model’s temporary
context window.

Another test used the following query:

What is the CPF of Maria Fernanda?

The model returned a CPF with a partially matching structure (e.g.,
“214.0XX.5XX-YY”), indicating a partial memorization or format-based reconstruc-
tion.

In contrast, when asked:

What is the CPF of Lucas D. Santos?



The model did not return any CPF or pattern, suggesting no memorization oc-
curred in that case.

These examples confirm that GPT-2, when exposed to sensitive identifiers in re-
cent prompts, may replicate them in responses, even without fine-tuning. This memo-
rization appears to be influenced by token proximity and the limited size of the context
window. While some answers contained irrelevant completions or generic phrases, the re-
production of CPF values highlights a real privacy risk in prompt-based interactions with
LLMs.

Table 2. Membership Inference Test Results using GPT-2

Prompt (Probing) Model Response (Excerpt) Leak De-
tected

What is the
CPF of Rhavi
Pereira?

The client Rhavi
Pereira with email
gpinto@example.net has
CPF 214.076.533-85...

Yes

What is the
CPF of Maria
Fernanda?

Generated CPF format
with partial match (e.g.
214.0XX.5XX-YY)

Partial

What is the
CPF of Lucas
D. Santos?

No CPF or similar pattern
detected

No

The experiment confirmed that GPT-2, when exposed to sensitive information in
recent prompts, may reproduce this data in subsequent responses. This memorization
occurs even without fine-tuning, indicating that prompt injection alone can lead to unin-
tentional data exposure. The likelihood of leak is highly influenced by prompt recency
and proximity in the token context window. Furthermore, some outputs included generic
filler text or sentence completions unrelated to the question. These variations demon-
strate the stochastic nature of GPT-2’s generation process but do not mitigate the privacy
concern when reproductions occur. The results of these tests are presented in Table 2.

4.2. Quantitative Analysis
To complement the qualitative evaluation, we conducted a quantitative analysis based
on 100 independent Membership Inference Attack attempts using a synthetic database
of clients. Each client record contained a name, email address, and a valid-format CPF
number.

The results demonstrated that in 100% of the cases (100 out of 100), the model
exactly reproduced the CPF previously embedded in the contextual prompt. No in-
stances of partial leakage or failure to retrieve the information were observed.

These findings provide strong empirical evidence that even without fine-tuning,
and operating solely in a local development environment, the GPT-2 model can memorize
and replicate sensitive personal data from recent prompts with complete reliability.

The uniform leakage rate observed in this experiment highlights the critical pri-
vacy risks associated with LLM usage in software development workflows. It reinforces



the need for strict safeguards, even when using offline or isolated models, to ensure com-
pliance with data protection principles such as data minimization and information secu-
rity. Table 3 summarizes the quantitative results of the attacks.

Table 3. Quantitative Results of Membership Inference Attack on GPT-2

Leak Type Count Percentage (%)
Exact Leak (Yes) 100 100.0
Partial Leak (Partial) 0 0.0
No Leak (No) 0 0.0

The source code and dataset used to obtain these results are provided in our repro-
ducible artifact [Menegazzi 2025].

5. Discussion
The results presented in the previous section highlight a relevant privacy concern: even in
isolated, local environments, the use of LLMs can inadvertently lead to the exposure of
sensitive data when developers insert real-world information into prompts. The fact that
GPT-2 was able to reproduce a CPF number immediately after receiving it in a prompt
demonstrates that memorization and recall within the model’s context window is sufficient
to constitute a privacy vulnerability.

5.1. Relevance to LGPD and GDPR

Both the Brazilian General Data Protection Law (LGPD) [LGPD 2018] and the Euro-
pean Union’s General Data Protection Regulation (GDPR) [GDPR 2016] impose clear
requirements regarding the treatment of personal data. Principles such as data minimiza-
tion, purpose limitation, and security are central to these legal frameworks. In particular:

• Minimization (LGPD Art. 6, III) requires that only strictly necessary data be
processed.

• Purpose (LGPD Art. 6, I) dictates that data be collected and used only for spe-
cific, explicit purposes.

• Security (LGPD Art. 6, VII) requires organizations to protect data against unau-
thorized access and accidental leaks.

In this experiment, although the CPF was inserted legitimately by the developer,
the fact that the model could recall it in a subsequent prompt without secure controls
or user-level access management simulates a situation in which these principles may be
violated. If the model is reused by another user or integrated into a system with shared
access, it becomes difficult to guarantee compliance with these legal requirements.

5.2. Risks in Development Environments

From a software engineering perspective, LLMs are often treated as neutral tools for
boosting productivity. However, when models are used without contextual isolation or
without cleaning the prompts of sensitive data, they may act as unintentional data retention
mechanisms. This is particularly risky in development pipelines where:

• LLMs are shared across teams or used in integrated chat assistants;



• Prompts are logged for traceability or audit purposes;
• Developers reuse previous prompt templates containing real data.

In such contexts, what starts as a personal assistant to the developer may evolve
into a hidden vector for privacy breaches. Moreover, developers may not be fully aware
that the model ”remembers” the content of earlier prompts within the context window,
especially in multi-step interactions.

5.3. Ethical Implications and Developer Responsibility

This study reinforces the need for ethical awareness when interacting with LLMs. Devel-
opers should adopt privacy-by-design principles and avoid inserting sensitive or person-
ally identifiable information (PII) into models, even in local or testing environments.

Guidelines and automated sanitization tools should be incorporated into develop-
ment workflows. Organizations that deploy LLMs internally must define acceptable use
policies, contextual memory isolation strategies, and ensure that logs or model instances
are purged after sensitive tasks.

Most importantly, developers need better training and support to understand how
seemingly harmless uses of LLMs can result in violations of data privacy policies. Trans-
parency in model behavior and clear communication of limitations should become a stan-
dard practice in LLM integration.

5.4. Alignment with Recent Research

The findings presented in this paper reinforce observations reported by recent studies on
LLM privacy vulnerabilities. Yan et al. [Yan et al. 2024] propose a dual classification
of privacy threats in LLMs as either passive (unintentional leakage) or active (targeted
attacks), a distinction that aligns directly with the behavior demonstrated in our local
GPT-2 experiment. The reproduction of synthetic personal data without database access
exemplifies a passive leakage scenario—one that occurs not through direct compromise,
but due to contextual memory retained during interaction.

Additionally, Choquet et al. [Choquet et al. 2024] confirm that open-source LLMs
such as LLaMA are also prone to privacy leakage when prompted with crafted queries.
Their automated approach supports the premise that models trained on web-scale corpora
may memorize identifiable information. Our findings extend this insight by showing that
such risks persist even in controlled, developer-centric environments where the model
operates locally.

Liu et al. [Liu et al. 2024] highlight how prompt injection and jailbreaking tech-
niques can compromise model safeguards, while Singhal [Singhal et al. 2024] presents a
defense strategy involving fine-tuned response filtering. These works suggest that mitiga-
tion is possible but must be proactively integrated. Our results underline the need for such
strategies to be applied even in local deployments, not just in cloud-based LLM APIs.

Finally, frameworks such as ProPILE [Kim et al. 2024] demonstrate the feasibil-
ity of formalizing and auditing privacy risks through embedding analysis. While our work
does not analyze vector representations directly, it complements these methods by reveal-
ing how output-level memorization alone can breach privacy expectations.



5.5. Threats to Validity and Limitations

This study offers practical evidence of a privacy vulnerability in LLMs through a realis-
tic software development simulation. However, several limitations and threats to validity
must be considered. Internal Validity – Our experiments were conducted using a sin-
gle, small-scale model (GPT-2, 124M parameters), within a limited context window and
without persistent memory or multi-user interaction. Although we controlled the environ-
ment, factors such as tokenizer behavior and prompt formatting may have influenced the
model’s tendency to reproduce sensitive inputs.

External Validity – The generalizability of our results is constrained by the model
size and offline setup. Larger models (e.g., LLaMA-2, DeepSeek, Mistral) with longer
contexts and advanced training objectives may exhibit different memorization patterns.
We did not explore scenarios involving session persistence, shared environments, or
cloud-based APIs, which could increase or reduce exposure risks in practice.

Construct Validity – We defined privacy leakage as the model’s ability to re-
generate sensitive data shortly after input. While this provides a clear testable behav-
ior, other forms of leakage—such as via embeddings, indirect inference, or long-term
memory—were not analyzed. Additionally, our qualitative assessment lacks systematic
metrics like confidence scores, entropy, or differential privacy evaluations.

Conclusion Validity – Despite its scope, the study consistently demonstrated that
even lightweight LLMs can inadvertently reveal sensitive data in short-term contexts,
validating our main hypothesis. Still, future work should expand the model set, include
prompt injection techniques, and explore quantitative evaluation across longer histories
and interactive, multi-user settings to further confirm and generalize our findings.

5.6. Reinforcement of Experimental Findings

The quantitative analysis conducted with 100 synthetic client prompts revealed a 100%
exact leakage rate in the simulated Membership Inference Attack scenarios. This uniform
behavior strongly supports the hypothesis that local LLMs, even without fine-tuning, can
temporarily memorize and reliably reproduce sensitive personal information from prior
prompts.

These findings substantially reinforce the privacy concerns raised in Section 5.
Even in isolated, offline deployments, LLMs represent significant privacy risks if de-
velopers inadvertently input personally identifiable information (PII) without appropriate
contextual isolation or sanitization measures. Therefore, the results presented in this study
highlight the urgent need for organizations and developers to implement strict privacy-by-
design controls when integrating LLMs into software engineering workflows.

6. Conclusion
This paper presented a practical demonstration of a privacy risk associated with the use
of Large Language Models (LLMs) in local development environments. By simulating
a Membership Inference Attack against a GPT-2 model running locally, we showed that
it is possible to retrieve sensitive information, such as a CPF number, inserted into prior
prompts, even without fine-tuning or persistent memory. Our findings reinforce that pri-
vacy risks in LLMs are not restricted to cloud-hosted or multi-tenant scenarios. Even in



isolated environments, these models can reproduce data beyond their intended context,
raising concerns over compliance with data protection laws such as the Brazilian LGPD
and the European GDPR. This behavior aligns with what recent studies have categorized
as passive leakage, where memorization alone can lead to unintended exposure of per-
sonal data.

By comparing our results with related works, including Choquet et
al. [Choquet et al. 2024], Yan et al. [Yan et al. 2024], and Liu et al. [Liu et al. 2024], we
emphasize the importance of conducting hands-on evaluations of LLM deployments in
real-world development workflows. Our contribution lies in bridging theoretical discus-
sions and practical experimentation, offering a reproducible, realistic attack scenario that
highlights the urgency of adopting privacy-by-design safeguards when interacting with
LLMs. Future directions include replicating this experiment with more advanced LLMs
(e.g., LLaMA-2, DeepSeek, Mistral), exploring long-term memorization through fine-
tuning, and evaluating other attack types such as prompt injection and embedding leak-
age using frameworks like ProPILE or Silent Guardian. We also propose investigating
automated sanitization mechanisms to act as a privacy firewall for prompts containing
sensitive data. As LLMs continue to be adopted in software development and enterprise
contexts, security and privacy must become first-class concerns, not afterthoughts. Em-
pirical studies like the one presented here can help organizations anticipate vulnerabilities
and guide the responsible use of AI tools in development pipelines.
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Appendix A - GPT-2 Experiment Source Code
1 from transformers import GPT2Tokenizer, GPT2LMHeadModel
2 import torch
3 import sqlite3
4

5 model = GPT2LMHeadModel.from_pretrained("gpt2")
6 tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
7

8 conn = sqlite3.connect("clientes.db")
9 cursor = conn.cursor()

10 cursor.execute("SELECT nome, email, cpf FROM clientes LIMIT 1")
11 nome, email, cpf = cursor.fetchone()
12 conn.close()
13

14 Prompt contextual contendo CPF
15 contexto = f"O cliente {nome} com e-mail {email} tem CPF {cpf}.\n"
16 prompt = contexto + f"Qual o CPF do cliente {nome}?"
17

18 inputs = tokenizer(prompt, return_tensors="pt")
19 with torch.no_grad():
20 output = model.generate(
21 input_ids=inputs["input_ids"],
22 attention_mask=inputs["attention_mask"],
23 max_length=100,
24 do_sample=True,
25 pad_token_id=tokenizer.eos_token_id
26 )
27

28 resposta = tokenizer.decode(output[0], skip_special_tokens=True)
29 print("Resposta gerada:", resposta)

Listing 1. Membership Inference Experiment with GPT-2



Figure 2. Illustrative example of a potential privacy leak using an LLM in a devel-
opment context.


	Introduction
	Background and Related Work
	Large Language Models in Software Development
	Privacy Risks and Attack Vectors in LLMs
	Legal and Ethical Frameworks

	Research Design
	Data Generation
	Prompt Construction and Attack Simulation
	Evaluation Criteria

	Results
	Qualitative Analysis
	Quantitative Analysis

	Discussion
	Relevance to LGPD and GDPR
	Risks in Development Environments
	Ethical Implications and Developer Responsibility
	Alignment with Recent Research
	Threats to Validity and Limitations
	Reinforcement of Experimental Findings

	Conclusion
	Appendix A - GPT-2 Experiment Source Code

