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Abstract: Decision-making is a fundamental challenge in science and engineering, mainly
when subjective factors influence the process. This paper introduces a decision support
model based on the Analytic Hierarchy Process (AHP) that was specifically adapted for
binary decisions and we term Binary AHP. The model facilitates structured decision-making
when evaluating two opposing alternatives, such as yes/no scenarios. To demonstrate its
applicability, we applied the Binary AHP model to a real-world case in the Brazilian public
sector, where agencies must determine whether a technological solution qualifies as an
Information and Communication Technology (ICT) solution. This classification is crucial
since it directly impacts procurement policies and regulatory compliance. Our results show
that Binary AHP enhanced the decision consistency, transparency, and reproducibility, and
reduced the subjective discrepancies between the evaluators. Additionally, by inverting the
priority vectors, the model allowed for a comparative analysis of both decision alternatives,
thus offering more profound insights into the classification process. This study highlights
the flexibility of AHP-based decision support methodologies and proposes a structured
approach to refining binary decision frameworks in complex, multi-criteria environments.

Keywords: AHP method; binary decisions; multi-criteria methodologies

1. Introduction
Decision-making has constituted a fundamental challenge throughout human history,

influencing domains as diverse as science, engineering, governance, and management. In
ancient civilizations, people often sought guidance from priests, kings, and oracles [1]. For
instance, rulers and high priests in ancient Egypt were regarded as possessing the most
effective solutions, whereas in classical Greece, oracles fulfilled this advisory role [1]. In
contemporary contexts, decision-making increasingly relies on scientific methodologies
and computational tools. Disciplines such as operations research, statistics, and computer
science contribute to structuring and optimizing decisions by applying theories including
linear programming, queueing system optimization, and multi-criteria decision-making [2].

In recent years, organizations have increasingly integrated multi-criteria decision
analysis (MCDA) methods to balance tangible and intangible factors in complex decision
processes [3]. Researchers and practitioners apply these methodologies across diverse
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fields, including public policy, economics, engineering, and business, to ensure rationality,
transparency, and the incorporation of multiple perspectives [4]. Among these methodolo-
gies, the Analytic Hierarchy Process (AHP) provides a structured framework that enables
decision-makers to compare alternatives based on predefined criteria [5].

Despite its widespread application, the AHP presents a notable limitation: it typically
requires the evaluation of multiple alternatives, which complicates its direct use in binary
decisions (i.e., yes/no choices) [6]. Many real-world decision-making scenarios, espe-
cially in public administration and regulatory frameworks, involve precisely these binary
classifications. Researchers actively investigate binary decision models, particularly in
economics, the social sciences, and financial markets [7–9]. Kirman [10] explored collective
decision-making in ants through a simple binary choice model, and Sano [11] analyzed the
fat-tailed distribution in stock markets and its relation to binary decisions.

Researchers have proposed several multi-criteria decision-making (MCDM) ap-
proaches to address decision challenges in various domains. TOPSIS (Technique for Order
of Preference by Similarity to Ideal Solution) evaluates alternatives by measuring their
distances from positive and negative ideal solutions [12]. A recent contribution, the Full
Consistency Method (FUCOM), determines the criteria weights by minimizing the devi-
ation from complete consistency in pairwise comparisons. In FUCOM, decision-makers
rank criteria by importance and compare only the adjacent criteria, increasing the process’s
efficiency and consistency [13].

Jafar Rezaei introduced the Best-Worst Method (BWM) in 2015 to streamline criteria
weighting by requiring decision-makers to identify the most and least important criteria
and then perform pairwise comparisons between these and all other criteria [14,15]. The
Best-Worst Method (BWM) reduces the number of pairwise comparisons and improves
the consistency by focusing on the most and least important criteria. However, certain
limitations of BWM led to the decision not to adopt it in this study.

One key drawback arises when decision-makers provide judgments that lack complete
consistency, particularly when more than three criteria exist; in such cases, the original
non-linear BWM model sometimes yields multiple optimal solutions rather than a unique
set of weights. Additionally, BWM requires experts to reach a consensus on the best and
worst criteria. This process often challenges participants and sometimes fails to capture the
diversity of expert opinions in complex environments [16].

Nevertheless, many researchers and practitioners continue to adopt the AHP as
a leading decision support methodology because its structured pairwise comparison pro-
cess effectively incorporates subjective preferences into decision-making [17]. Boucher
et al. [18] emphasized that AHP requires at least two alternatives, which creates a challenge
when decision-makers must choose between only two opposing options.

To address this gap, we introduce Binary AHP, an adaptation of the traditional AHP
methodology explicitly designed for binary decision-making scenarios. This model retains
the structured, hierarchical approach of the AHP and enables decision-makers to system-
atically evaluate two opposing alternatives, such as yes/no choices. We demonstrate the
practical application of Binary AHP in the Brazilian public sector, where agencies must de-
termine whether a technological solution qualifies as an Information and Communication
Technology (ICT) solution. This classification is critical in shaping the procurement pro-
cesses, funding allocation, and regulatory compliance. The proposed model increases the
consistency, transparency, and comparability in such classifications; reduces the subjective
biases; and improves the decision reliability.

The remainder of this article follows this structure: In Section 2, we present the foun-
dations of the AHP method, addressing its hierarchical structure, the pairwise comparison
process, and the mechanisms for evaluating the consistency of expert opinions. Section 3
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describes the proposed Binary AHP model in detail, including the mechanism for inverting
comparison matrices and the calculation of global priority vectors for both alternatives.
Section 4 applies the case study to the Brazilian public administration context, covering the
model structuring, issuance of expert opinions, analysis of inverted priority vectors, and the
final classification of technological solutions. In Section 5, we offer a comparative analysis
between Binary AHP and other multi-criteria methods, highlighting the advantages and
limitations of the proposed model. Finally, Section 6 presents our conclusions, discusses
the identified limitations, and suggests directions for future research.

2. The AHP Method
Decision-makers often analyze complex systems with multiple interdependent com-

ponents, such as resources, objectives, people, or organizations. Thomas Saaty developed
the Analytic Hierarchy Process (AHP) in 1980, which provides a structured approach
for evaluating multiple criteria in decision-making scenarios [19]. This method allows
decision-makers to decompose complex problems into hierarchical structures, enhancing
the clarity and facilitating comparisons. Researchers widely apply the AHP in engineering,
economics, healthcare, and public policy because it integrates qualitative and quantitative
criteria into a logical decision-making framework [20].

A more detailed explanation of the AHP begins by structuring the decision prob-
lem into a hierarchy, which typically includes three levels: the overall goal at the top,
the criteria and subcriteria that define decision parameters in the middle, and the al-
ternatives at the bottom. This hierarchical breakdown enables decision-makers to sys-
tematically analyze each problem component, enhancing the transparency and under-
standing [21]. Next, decision-makers perform pairwise comparisons, assessing the rela-
tive importance of each pair of elements within the same level (for example, comparing
two criteria or two alternatives) using Saaty’s scale, which ranges from 1 (equal importance)
to 9 (extreme importance) [22].

These comparisons form a pairwise comparison matrix, and mathematical methods,
such as the principal eigenvector approach, derive the priority vectors (weights). The
process culminates by synthesizing priorities via combining the weights of criteria and
alternatives to identify the most suitable option. A sensitivity analysis also assesses the
robustness of the decision [21].

At its core, the AHP relies on hierarchical structuring, where decision-makers divide
a problem into three levels: the goal (or objective), the criteria and subcriteria, and the
alternatives under comparison. Decision-makers perform pairwise comparisons of these
elements using Saaty’s numerical scale, which ranges from 1 to 9 to indicate the relative
importance of one aspect over another, as detailed in Table 1 [23]. Figure 1 shows the
hierarchical structure of the AHP and the logical arrangement of objectives, criteria, and
decision alternatives.

A key strength of the AHP lies in its ability to systematically handle subjectivity, as it
allows experts to express preferences with a structured methodology. After performing
pairwise comparisons, experts calculate the Consistency Ratio (CR) to assess whether the
judgments remain logically coherent.

In group decision-making contexts, researchers primarily aggregate individual pair-
wise comparisons into a group comparison using the Aggregation of Individual Judgments
(AIJ) and Aggregation of Individual Priorities (AIP). In the AIJ method, researchers com-
pute the geometric mean of the individual judgments for each pairwise comparison, which
produces a combined comparison matrix that preserves the reciprocal property of AHP
matrices. Researchers then use this aggregated matrix to derive group priorities. In the
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AIP method, each participant calculates their priority vector, and the group priority results
from averaging these vectors, usually using the arithmetic mean [26].
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Table 1. Saaty’s pairwise comparison scale. Numerical scale used for pairwise comparisons in the
AHP, providing a structured way to assign importance levels [25].

Intensity of
Importance Definition Explanation

1 Equal importance Both elements contribute equally.

3 Moderate importance Experience and opinion favor one
element over the other.

5 Strong importance One element is strongly favored.

7 Very strong importance One element is very strongly favored
over the other.

9 Extreme importance One element is overwhelmingly
more important.

2, 4, 6, 8 Intermediate values Used when a compromise between
two judgments is needed.

The criteria in the AHP model play a critical role, so decision-makers should carefully
define them according to the decision context. Typical criteria include financial factors (e.g.,
cost, return on investment), strategic factors (e.g., alignment with organizational goals),
risk-related factors (e.g., operational, regulatory, reputational risks), stakeholder-centric
factors (e.g., customer satisfaction, employee engagement), and technical factors (e.g.,
feasibility, resource availability). Decision-makers can further break down these criteria
into subcriteria to enable a more granular and customized analysis, which ensures that
they systematically consider all relevant aspects of the decision problem. The process of
selecting and structuring criteria and subcriteria fundamentally supports the robustness
and clarity of the AHP decision model [27].

Analyze the Consistency of Opinions

In decision-making processes based on the AHP, evaluators may introduce inconsis-
tencies in pairwise comparisons because of uncertainties, cognitive biases, or subjective
judgment variations. Decision-makers need to assess the Consistency Ratio (CR) to ensure
the reliability and coherence of expert evaluations. Saaty defines this ratio as a measure of
logically consistent comparisons [5,6].
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Inconsistency occurs when comparisons contradict each other. For example, if an
evaluator assigns A > B and B > C, but then assigns C > A, this sequence introduces
a logical inconsistency. Decision-makers must review and adjust their responses when the
calculated CR exceeds 0.10 to mitigate such inconsistencies [5,6]. Decision-makers calculate
the CR by multiplying each row of the comparison matrix by the corresponding priority
vector to generate a weighted sum vector.

1. λmax calculation—According to Saaty, one can estimate λmax, the principal eigenvalue
of the matrix, by dividing the values in the weighted sum vector by the respective
priority vector values [28].

2. Consistency Index (CI) calculation—Saaty computes the Consistency Index using
the following formula [28]:

CI =
λmax − n

n − 1
,

where n is the number of criteria or subcriteria in the comparison matrix.
3. CR calculation—Saaty defines the Consistency Ratio (CR) as the result of dividing the

Consistency Index (CI) by the Average Random Index (ARI), a predefined constant
that varies depending on the matrix size [27]:

CR =
CI

ARI

If the resulting CR is less than or equal to 0.10, the evaluators consider the judgments
as consistent and make no adjustments. However, if the CR exceeds 0.10, the evaluators
reassess their pairwise comparisons to improve the logical coherence [29].

Table 2 shows an example of a pairwise comparison matrix that evaluates the consis-
tency of expert opinions, while Table 3 illustrates the corresponding weighted sum vector
calculations. The evaluators calculate the Consistency Index (CI) using the λmax estimate,
which they obtain by averaging the weighted sum values divided by their respective
priority vector values (see Table 4).

Table 2. Pairwise comparison matrix (between criteria) with a consistency check. An example of
a pairwise comparison matrix used in a consistency analysis.

Criteria 1 2 3 Priority Vector

1 1 1/4 1/2 14.29%
2 4 1 2 57.14%
3 2 1/2 1 28.57%

CR: 0.0000

Table 3. Weighted sum vector calculation. Calculation of the weighted sum vector to determine the
principal eigenvalue.

Calculation Method

(1 × 0.14) + (1/4 × 0.58)+(1/2 × 0.29) = 0.43
(4 × 0.14) + (1 × 0.58)+(2 × 0.29) = 1.71

(2 × 0.14) + (1/2 × 0.58)+(1 × 0.29) = 0.86
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Table 4. λmax calculation and Consistency Index (CI). Determination of λmax and CI for consistency
verification.

Calculation Method

0.43/0.14 = 2.99
1.71/0.58 = 3
0.86/0.29 = 3

The method computes the Consistency Index (CI) as follows:

CI =
3.0 − 3
3 − 1

= 0.0 .

Researchers finalize the consistency verification by calculating the Consistency Ratio
(CR). They divide the Consistency Index (CI) by the Average Random Inconsistency Index
(ARI) for a 3 × 3 matrix, which equals 0.52, as shown in Table 5.

CR =
0.00
0.52

= 0.00 .

Table 5. Average Random Inconsistency Index (ARI) by matrix dimension. Predefined ARI values
based on matrix size for consistency evaluation.

Matrix Dimension and Average Random Inconsistency

MD 1 2 3 4 5 6 7 8 9 10
ARI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 14.5 1.49

The literature clarifies that the Average Random Index (ARI) does not represent
a predefined constant. Instead, researchers calculate the ARI as the mean Consistency
Index (CI) obtained from numerous randomly generated pairwise comparison matrices
of the same order. Thus, the ARI reflects the expected level of inconsistency in random
judgments and serves as a benchmark for evaluating the consistency of actual judgments
in the AHP [30].

3. The Proposed Binary AHP
3.1. Mechanism and Logic of the Binary AHP

The Binary Analytic Hierarchy Process (Binary AHP) represents the main theoretical
contribution of this work, as it adapts the classical AHP framework to address decision
problems involving two mutually exclusive alternatives. While maintaining the hierarchical
structure of goal, criteria, subcriteria, and alternatives, Binary AHP introduces a streamlined
methodology focused on binary classification tasks, such as answering a yes/no question.

In this approach, experts perform pairwise comparisons for each criterion and subcri-
terion, systematically evaluating which of the two alternatives better fulfills the decision
objective. They quantify these judgments using Saaty’s fundamental scale, which ensures
consistency and transparency in the evaluation process. Experts construct pairwise com-
parison matrices for each level of the hierarchy and verify their consistency to maintain
logical coherence in the expert judgments.

After confirming the consistency of the pairwise comparisons, experts calculate local
priority vectors for both criteria and subcriteria. They then synthesize these vectors to
form the global priority vector (VPG), which quantitatively represents the influence of
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each subcriterion on the final decision. Experts obtain the VPG by multiplying the priority
vector of the criteria (VPC) by the priority vector of the subcriteria (VPS):

VPG = VPC × VPS

This global priority vector is computed separately for each alternative, providing
a structured and objective basis for comparison.

3.2. Use of the Transposed Pairwise Comparison Matrix

The proposed Binary AHP introduces a distinctive feature: experts use the transposed
pairwise comparison matrix to enhance the decision robustness and impartiality. When
experts recalculate the priority vectors from the perspective of the opposite alternative by
transposing the original comparison matrix, they achieve several benefits:

• They validate the consistency and symmetry of the assigned weights, ensuring the
model does not unintentionally favor one alternative.

• They facilitate direct and transparent comparisons between the alternatives, strength-
ening the decision process’s reliability.

• They avoid the need to reconstruct the entire model for each alternative, thereby
optimizing the workflow.

• They help identify and correct inconsistencies in expert judgments, increasing the
decision quality.

This dual-perspective analysis is particularly valuable in binary decision contexts,
where fairness and methodological rigor are paramount.

3.3. Development of the Global Priority Vector

After experts establish consistent pairwise comparisons, they synthesize the local
priorities into a global priority vector for each alternative. This global priority vector
quantifies the overall influence of each subcriterion and provides a clear, objective metric
for decision-making.

For each alternative (e.g., ICT and non-ICT), experts sum the priority scores assigned
to each subcriterion to yield the final score:

SICT = Σ(VPGICT)

and
SNon−ICT = Σ(VPGNon−ICT),

The alternative with the highest total score is selected, ensuring a quantitative, struc-
tured, and unbiased classification.

3.4. Methodological Steps: Flowchart Summary

To facilitate understanding and implementation, the steps for summarizing the pro-
posed Binary AHP method are presented below:

Step 1: Define the objective and alternatives.
↓

Step 2: Structure hierarchy: criteria and subcriteria.
↓

Step 3: Pairwise comparisons by experts.
↓

Step 4: Check the consistency of the judgments.
↓
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Step 5: Calculate the priority vectors (criteria and subcriteria).
↓

Step 6: Compute the global priority vector (VPG = VPC × VPS).
↓

Step 7: Use the transposed matrix for opposite alternative.
↓

Step 8: Calculate the priority vectors (criteria and subcriteria) for opposite alternative.
↓

Step 9: Compute the global priority vector (VPG = VPC × VPS) for opposite alternative.
↓

Step 10: Sum the priority scores for each alternative.
↓

Step 11: Make the final classification decision.

4. Case Study
To demonstrate the applicability of the proposed Binary AHP model, its application

addressed a real-world decision-making challenge encountered by a Brazilian public agency
linked to the Executive Branch, specifically in the justice and public security sector. The
core issue involved determining whether specific technological solutions qualified as
Information and Communication Technology (ICT) solutions. This classification is crucial
because it directly impacts procurement policies, regulatory compliance, and the allocation
of financial and technological resources.

The lack of transparent and standardized criteria for this classification process led to
inconsistencies in decision-making, which created operational inefficiencies and adminis-
trative challenges. Different sectors within the agency often interpreted the classification
differently, resulting in subjective and sometimes conflicting decisions. For example, some
departments considered items such as UPS devices or multimedia kits as non-ICT solu-
tions, while others included them under the ICT category. This variability in interpretation
caused delays, increased the bureaucratic complexity, and undermined the transparency of
procurement decisions.

Currently, decision-makers in the agency rely primarily on individual judgment for
ICT classification without using a structured decision support tool. As a result, the process
remains susceptible to inconsistencies, inefficiencies, and potential legal uncertainties.
The Binary AHP model provides a systematic and transparent framework to address
these challenges by structuring decision-making criteria and reducing subjectivity in the
classification process.

We followed a structured methodology in this case study to apply the Binary AHP
model. First, we defined the two opposing alternatives ”YES” (qualifies as ICT) and
“NO” (does not qualify as ICT) as the decision options. Next, we established the decision
criteria and subcriteria based on official documents and expert consultation. We conducted
pairwise comparisons using Saaty’s numerical scale and calculated the priority vectors for
each alternative. We then inverted the process to enhance the comparability by generating
priority vectors for the alternative classification (“NO”). This approach allowed us to
compare the decision scenarios directly and ensure a more structured and objective analysis.
The following subsections detail the hierarchical structuring of the model, the pairwise
comparison process, and the results obtained from the Binary AHP application.

4.1. Structuring the Hierarchical Model

We developed a hierarchical decision model based on the Binary AHP framework
to ensure a structured and objective classification process. This model systematically



Algorithms 2025, 18, 320 9 of 20

assessed whether a given technological solution qualified as an ICT solution according
to predefined criteria. The hierarchical structure consisted of three levels: (1) Decision
determining whether a given solution qualified as ICT; (2) evaluation criteria and subcriteria
factors used to assess the solution’s relevance to ICT; and (3) decision alternatives, i.e., the
two possible classification outcomes: yes (ICT solution) and no (non-ICT solution).

We began structuring the model by conducting a document content analysis and
reviewing official regulations, policies, and procurement guidelines related to ICT classifica-
tion. This analysis identified the key criteria and subcriteria that justify an ICT classification.
Additionally, input from subject matter experts ensured that the model captured relevant
decision factors and aligned with existing administrative and legal frameworks. Based on
these findings, the decision criteria were established to reflect the essential characteristics
of ICT solutions, such as data-processing requirements, software and hardware dependen-
cies, cybersecurity implications, and technological functionalities. Each criterion was then
divided into subcriteria to provide a more detailed evaluation framework.

Figure 2 presents the resulting hierarchical structure of the decision model and illus-
trates how the decision goal, criteria, subcriteria, and classification alternatives interrelate.
This structured approach enables decision-makers to systematically compare alternatives
using pairwise comparisons, ensuring greater transparency and consistency in ICT clas-
sification. This hierarchical model forms the foundation for applying the Binary AHP
methodology, which we elaborate on in the subsequent sections, including the pairwise
comparison process, consistency evaluation, and final classification results.

4.2. Issuance of Opinions and Evaluations

The Binary AHP method required us to conduct pairwise comparisons to evaluate the
relative importance of each criterion and subcriterion. In this process, we collected expert
opinions from five professionals with expertise in ICT classification, public procurement,
and decision analysis. We used the experts’ assessments to construct comparison matrices,
which served as the basis for prioritizing the decision factors.

To ensure the consistency and reliability in the evaluation process, each expert pro-
vided pairwise comparisons for the criteria and subcriteria using Saaty’s numerical scale.
This scale, ranging from 1 to 9, enabled the experts to express their judgments regarding
the relative importance of two elements at a time. We structured the comparisons to assess
the influence of each criterion on the ICT classification decision by considering aspects such
as data-processing requirements, cybersecurity implications, technological integration, and
operational dependencies.

After collecting the pairwise comparisons, we aggregated and normalized the results
to generate priority vectors for each criterion and subcriterion. These priority vectors
represented the relative weights assigned to each decision factor, which ensured that the
most critical elements exerted a greater influence on the final classification. Table 6 presents
an example of a pairwise comparison matrix for one of the main criteria and illustrates the
structure and evaluation of the comparisons.
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Table 6. Example of pairwise comparison matrix (between criteria). A sample matrix illustrating the
relative importance assigned to different criteria in the ICT classification process.

Criteria 1 2 3

1 1 ¼ ½
2 4 1 2
3 2 ½ 1

CR: 0.0000
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After we completed the pairwise comparisons, we normalized the comparison matrix
to ensure all the values appeared on a consistent scale. Table 7 presents the normalized
pairwise comparison matrix, where each value resulted from dividing the original matrix
elements by the sum of their respective columns. This step ensured that the weight
distribution between the criteria remained proportionally adjusted.

Table 7. Normalized pairwise comparison matrix (between criteria). The normalized version of the
pairwise comparison matrix, which ensured values were expressed on a proportional scale.

Criteria 1 2 3

1 0.14 0.14 0.14
2 0.58 0.58 0.58
3 0.29 0.29 0.29

CR: 0.0000

After constructing the comparison matrices, we calculated the Consistency Ratio (CR)
to ensure the logical coherence of the expert evaluations. A CR below 0.10 indicates that
the judgments remain consistent and support reliable decision-making. If the CR exceeded
this threshold, experts reviewed and refined their assessments to improve the consistency.
Following the normalization process, the analysis computed the priority vector for each
criterion by calculating the arithmetic mean of each row in the normalized matrix. Table 8
presents the priority vector matrix, which shows the relative importance of each criterion
in the classification decision.

Table 8. Priority vector matrix (between criteria). The priority vector for each decision criterion,
calculated as the arithmetic mean of the normalized matrix values.

Criteria Priority Vector

1 14.29%
2 57.14%
3 28.57%

After completing this process, we obtained normalized priority vectors, which served
as the input for the final decision analysis. These values were then applied in the Binary
AHP framework to enable a structured comparison of the yes and no classification alter-
natives. The following sections detail the results of this evaluation and analyze the global
priority vectors for both options. With the criteria priority weights established, pairwise
comparisons were conducted for the subcriteria under each main criterion. At this level,
the process applied the same pairwise comparison, normalization, and priority vector
calculation steps. Table 9 presents an example of a pairwise comparison matrix for the
subcriteria under Criterion 1.

Table 9. Pairwise comparison matrix (alternatives of Criterion 1). Comparison of the subcriteria
under Criterion 1, showing the relative importance assigned to each factor.

Criteria 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Priority Vector

1.1 1 3 5 2 4 7 1 29.11%
1.2 1/3 1 2 1 2 5 1/2 13.24%
1.3 1/5 1/2 1 1/3 1/2 2 1/4 5.65%
1.4 1/2 1 3 1 2 5 1/2 14.72%
1.5 1/4 1/2 2 1/2 1 2 1/4 7.53%
1.6 1/7 1/5 1/2 1/5 1/2 1 1/7 3.07%
1.7 1 2 4 2 4 7 1 26.45%

CR: 0.01019
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The same procedure was repeated for the other criteria and subcriteria, generating
the corresponding pairwise comparison matrices and priority vectors. Tables 10 and 11
provide additional examples of these comparisons for Criteria 2 and 3. After finalizing all
the pairwise comparisons, we calculated the Consistency Ratio (CR) to verify the logical
coherence. The results were then used in the Binary AHP framework, enabling a structured
comparison between the yes and no alternatives.

Table 10. Pairwise comparison matrix (alternatives of Criterion 2). Comparison matrix for the
subcriteria under Criterion 2, reflecting their relative importance.

Criteria 2.1 2.2 2.3 2.4 Priority Vector

2.1 1 5 5 9 65.97%
2.2 1/5 1 1 2 13.54%
2.3 1/5 1 1 2 13.54%
2.4 1/9 1/2 1/2 1 6.95%

CR: 0.00052

Table 11. Pairwise comparison matrix (alternatives of Criterion 3). Comparison matrix for the
subcriteria under Criterion 3, establishing relative priorities.

Criteria 3.1 3.2 3.3 3.4 Priority Vector

3.1 1 1/3 4 1/4 13.91%
3.2 3 1 7 1/2 32.55%
3.3 1/4 1/7 1 1/6 5.16%
3.4 4 2 6 1 48.38%

CR: 0.05072

Table 12 presents the computed VPG values, demonstrating the weight distribution
across all the subcriteria.

This priority ranking determined the relative influence of each subcriterion and en-
sured that more significant factors received higher weights. The decision-makers used these
weights to determine whether a solution qualifies as ICT or non-ICT by applying a defined
threshold to guide the classification. The global priority vector was crucial in enhancing the
transparency and consistency in the decision-making. By relying on quantitative, evidence-
based comparisons rather than subjective judgment alone, the decision-makers ensured
that each evaluation remained objective. By structuring the decision hierarchy this way, the
Binary AHP framework helped standardize the ICT classification across the public agencies
and reduced the discrepancies in procurement decisions.

As discussed in the next section, we refined the classification process by developing
an inverse priority vector, which enabled a direct comparison between the ICT and non-
ICT classifications. This procedure provided comprehensive validation of the decision
framework and further strengthened the reliability of the proposed model.
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Table 12. Computation of the global priority vector (VPG) based on the AHP weights. The global
priority vector values obtained by multiplying the criterion and subcriterion priority vectors.

Criteria Subcriterion VPC VPS VPG

The solution sought to
meet the following need
(intended for exclusive

use by the MJSP)

1.1. Priority area in the
strategic plan and aligned

with the general IT strategy

0.14

0.29 0.04

1.2. Priority area in the
strategic plan 0.13 0.02

1.3. Final area 0.06 0.01

1.4. Average priority area in
the strategic plan and

aligned with the general IT
strategy

0.15 0.02

1.5. Average priority area in
the strategic plan 0.08 0.01

1.6. Middle area 0.03 0.01

1.7. The following will be
donated to organizations

outside the MJSP
0.26 0.04

Accurate IT solution after
deployment

2.1. Because it generates
data, including personal
data, which needs to be
collected, stored, and/or

processed, it requires
attention to cybersecurity

0.57

0.66 0.38

2.2. To maintain or support
software and hardware 0.14 0.08

2.3. To maintain or support
software or hardware 0.14 0.08

2.4. No IT need 0.07 0.04

Does the solution
involve multimedia,

telecommunications, or
engineering services?

3.1. The solution involves
multimedia

0.29

0.14 0.04

3.2. The solution involves
telecommunications 0.33 0.09

3.3. The solution involves
engineering 0.05 0.01

3.4. The solution does not
involve these services 0.49 0.14

Total - - 3.00 1.00

4.3. Definition of Priority Vectors Opposed to ICT

We conducted an inverse analysis to validate the decision-making framework by
defining priority vectors for the alternative classification (i.e., non-ICT). This step ensured
that the Binary AHP methodology remained consistent when we applied it to opposing
alternatives—ICT and non-ICT classifications—without requiring an entirely new evalua-
tion process. The inverse priority vector approach enabled the decision-makers to analyze
how the classification changed when considering the same evaluation criteria from the
opposite perspective. This methodology ensured that the decision framework remained
balanced, unbiased, and adaptable to different classification contexts.
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In the reversal process, we maintained the original decision hierarchy and inverted the
weight distribution so that the criteria that favored the ICT classification now supported
the non-ICT classification, while the criteria that previously weakened the ICT classification
now strengthened the non-ICT alternative. This approach eliminated redundancy because
it prevented the need for a separate decision model and allowed for a comprehensive
evaluation of both possibilities.

Table 13 displays the inverted pairwise comparison matrix between the main criteria,
which was recalculated for the non-ICT classification alternative. This table also presents
the updated priority vector and consistency ratio for the criteria in the non-ICT scenario.
In contrast, Table 14 provides the recalculated pairwise comparison matrix for the subcri-
teria under Criterion 1, specifically for the non-ICT classification. This table details the
priority vectors for each subcriterion and the corresponding consistency ratio, reflecting
the evaluation of alternatives within this specific criterion.

Table 13. Inverted pairwise comparison matrix (between criteria). Comparison matrix recalculated
for the non-ICT classification alternative.

Criteria 1 2 3 Priority Vector

1 1 4 2 14.29%
2 1/4 1 1/2 57.14%
3 1/2 2 1 28.57%

CR: 0.0000

Table 14. Inverted pairwise comparison matrix (alternatives of Criterion 1). Recalculated pairwise
comparisons for the subcriteria under Criterion 1 in the non-ICT classification.

Subcriterion 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Priority Vector

1.1 1 1/3 1/5 1/2 1/4 1/7 1 4.13%
1.2 3 1 1/2 1 1/2 1/5 2 9.14%
1.3 5 2 1 3 2 1/2 4 21.62%
1.4 2 1 1/3 1 1/2 1/5 2 8.05%
1.5 4 2 1/2 2 1 1/2 4 16.10%
1.6 7 5 2 5 2 1 7 36.46%
1.7 1 1/2 1/4 1/2 1/4 1/7 1 4.50%
CR: 0.01019

This process ensured the robustness of the decision-making model, as the priority
weights remained consistent when classifying a solution as either ICT or non-ICT. Directly
comparing the two sets of priority vectors increased the transparency, reliability, and
applicability of the Binary AHP model. By using inverted priority vectors, we strengthened
the validation process and confirmed that the classification logic remained sound from
both perspectives. This method provided a structured approach to verify the classification
decisions, which ensured that the outcomes did not favor a particular alternative and that
the model remained fair and objective across different classification contexts.

Following the same procedure, we recalculated pairwise comparisons for the subcri-
teria of each criterion under the non-ICT classification. Tables 15 and 16 present the
results for Criteria 2 and 3, respectively, illustrating the inverse weight distributions.
Table 17 summarizes the criteria values after the inversion, as determined by applying the
AHP methodology.
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Table 15. Inverted pairwise comparison matrix (alternatives of Criterion 2). Recalculated pairwise
comparisons for the subcriteria under Criterion 2 in the non-ICT classification.

Subcriteria 2.1 2.2 2.3 2.4 Priority Vector

2.1 1 1/5 1/5 1/9 4.95%
2.2 5 1 1 1/2 24.07%
2.3 5 1 1 1/2 24.07%
2.4 9 2 2 1 46.91%
CR: 0.00052

Table 16. Inverted pairwise comparison matrix (alternatives of Criterion 3). Recalculated pairwise
comparisons for the subcriteria under Criterion 3 in the non-ICT classification.

Subcriteria 3.1 3.2 3.3 3.4 Priority Vector

3.1 1 3 1/4 4 22.25%
3.2 1/3 1 1/7 2 9.36%
3.3 4 7 1 6 61.83%
3.4 1/4 1/2 1/6 1 6.55%
CR: 0.05072

Table 17. Values of the criteria after the inversion, as defined by the application of the AHP.

Subcriteria VPC VPS VPG Consistency

1.1. Priority area in the strategic
plan and aligned with the general

IT strategy

0.57

0.04 0.02

0.01

1.2. Priority area in the
strategic plan 0.09 0.05

1.3. Final area 0.22 0.12

1.4. Average priority area in the
strategic plan and aligned with

the general IT strategy
0.08 0.05

1.5. Average priority area in the
strategic plan 0.16 0.09

1.6. Middle area 0.36 0.21

1.7. The following will be
donated to organizations outside

the MJSP
0.04 0.03

2.1. Because it generates data,
including personal data, which

needs to be collected, stored,
and/or processed, it requires

attention to cybersecurity
0.14

0.05 0.01

0.00

2.2. To maintain or support
software and hardware 0.24 0.03

2.3. To maintain or support
software or hardware 0.24 0.03
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Table 17. Cont.

Subcriteria VPC VPS VPG Consistency

2.4. No IT need 0.47 0.07

3.1. The solution
involves multimedia

0.29

0.22 0.06

0.05

3.2. The solution
involves telecommunications 0.09 0.03

3.3. The solution
involves engineering 0.62 0.18

3.4. The solution does not involve
these services 0.07 0.02

Total - 3.00 1.00 -

This inverse prioritization process validated the Binary AHP model because it con-
firmed that the classification logic remained consistent when we applied it to both ICT and
non-ICT alternatives. We have already established and presented the priority weights for
the ICT scenario (see Table 12). In the following section, we focus on a direct comparison
between the computed weights for both classifications.

4.4. Final Classification

The final classification results (Table 18) show that the Binary AHP model successfully
differentiated the ICT and non-ICT solutions based on the assigned priority scores. When
the ICT score exceeded the non-ICT score, the solution was classified as ICT; when the
non-ICT score was higher, the solution was classified as non-ICT. The solutions with strong
technological dependencies, such as cloud computing, software, and digital certificates,
consistently received higher ICT scores. In contrast, peripherals, accessories, and services
that did not directly contribute to the ICT infrastructure obtained higher non-ICT scores.

This quantitative classification approach removed the ambiguity and subjective in-
consistencies, which ensured that the procurement decisions followed a structured and
transparent evaluation framework. The results confirmed that the Binary AHP methodol-
ogy effectively classified the technological solutions and provided an objective basis for
public sector procurement process decision-making.

Table 18. Final classification of ICT and non-ICT solutions. Comparison of ICT and non-ICT priority
scores to determine the final classification of technological solutions.

Demands ICT Non-ICT Result

Translation software 89% 56% ICT
Computers 23% 12% ICT

SAS investigation software 47% 15% ICT
Radio communication systems 10% 14% Non-ICT

Canva software license 46% 25% ICT
Electronic security and

monitoring systems 60% 18% ICT

Intelligence solution for parliaments 61% 11% ICT
SEI—updates for the interagency

bus module 46% 25% ICT



Algorithms 2025, 18, 320 17 of 20

Table 18. Cont.

Demands ICT Non-ICT Result

Notebooks 46% 16% ICT
Wireless keyboard acquisition 4% 28% Non-ICT

Black wireless mouse mobile 1850
U7Z-00008 MFT Microsoft 5% 19% Non-ICT

Procurement of wildcard digital certificate 46% 25% ICT
Antivirus 57% 12% ICT
Biometrics 46% 25% ICT

CCTV camera 47% 23% ICT
Digital certificate 47% 13% ICT

Firefighting 1% 12% Non-ICT
Computer and notebook 47% 37% ICT

Scanner 12% 31% Non-ICT
Public cloud 59% 9% ICT

IT course/training 5% 16% Non-ICT
Software for donation 47% 15% ICT

Vehicle tracker 52% 18% ICT
Computer and notebook for donation 9% 22% Non-ICT
External hard drive and flash drive for

donation 9% 42% Non-ICT

Multifunction printer for donation 1% 12% Non-ICT
Microsoft datacenter licenses 56% 17% ICT

Switches 56% 16% ICT
Artificial intelligence (research) 47% 9% ICT

Peripherals (headphones, headset, keyboard,
webcam, hard drive, etc.) 8% 34% Non-ICT

Software development 50% 7% ICT
Radio/radio communication 57% 22% ICT

Printing service 0% 21% Non-ICT
Tablet/notebook/ultrabook 58% 21% ICT

Telephony 6% 12% Non-ICT
Network server 48% 19% ICT

5. Comparative Analysis
A comparative analysis of the Binary AHP method with traditional AHP and other

multi-criteria decision-making (MCDM) approaches revealed significant advantages in
binary decision contexts. Conventional AHP requires the comparison of multiple alter-
natives, which creates a structural limitation when we apply it to purely binary (yes/no)
decision scenarios. In contrast, Binary AHP addresses this limitation while retaining the
core strengths of traditional AHP, such as clear hierarchical structuring and systematic
pairwise comparison, by adapting its implementation to dichotomous choices.

Unlike TOPSIS, which evaluates alternatives by measuring their distances from ideal
solutions, Binary AHP directly incorporates two opposing alternatives within a single,
coherent decision framework, eliminating the need to assess multiple intermediate options.
When comparing Binary AHP with the Best-Worst Method (BWM), which requires consen-
sus between experts on the best and worst criteria, Binary AHP offers greater flexibility
to accommodate divergent expert opinions on critical aspects in complex decision envi-
ronments, such as the public sector. Furthermore, while the FUCOM method streamlines
the weighting process by minimizing the total deviation from consistency in the pairwise
comparisons, Binary AHP provides the additional advantage of validating decision robust-
ness through the transposed comparison matrix. This feature enables cross-verification and
significantly enhances the confidence in the outcome.



Algorithms 2025, 18, 320 18 of 20

By allowing the evaluation of the decision from both perspectives (yes/no), Binary
AHP ensures a more balanced and impartial analysis than traditional methods typically
provide. By enabling a direct comparison of two mutually exclusive alternatives and
incorporating mechanisms for verifying consistency and symmetry, Binary AHP offers
a transparent and reproducible framework for binary classification problems.

6. Conclusions
This paper introduces a Binary AHP-based decision support model for binary classi-

fication in the context of ICT procurement in the public sector. We adapted the Analytic
Hierarchy Process (AHP) to enable a structured and reproducible classification of techno-
logical solutions as ICT or non-ICT. The Binary AHP framework organizes the decision
process through a hierarchical structure, pairwise comparisons, and consistency analysis,
that aim to reduce subjectivity and increase logical consistency.

We resolved inconsistencies in ICT classification by applying the model to a case
from a Brazilian public agency. The global priority vector, which was derived from expert
evaluations, provided the basis for classification. The analysis with the inverse priority
vector supported the robustness of the model by confirming a balanced weight distribution
between alternatives. The results show that solutions dependent on software, data process-
ing, and security received classifications as ICT, while accessories, peripherals, and services
unrelated to technology received classifications as non-ICT.

Public administrators can incorporate the Binary AHP model to support ICT clas-
sification decisions. Its use may contribute to greater uniformity and transparency in
procurement and regulatory activities. The model also provides a documented decision
trail that supports audits and reviews. Its structure enables integration with existing ICT
governance and procurement systems.

This study had some limitations. The case study was restricted to a single public
sector context, which may limit the direct transferability of the model to other domains
without adaptation. Although structured and validated for consistency, the model relies on
expert judgments, which may still introduce some subjectivity. Another limitation is the
requirement that all questions be binary since the model explicitly targets dichotomous
decision problems. This constraint may restrict its applicability in scenarios where the
decision criteria or alternatives do not naturally conform to a binary structure.

Future research could extend the Binary AHP model to other binary classification
contexts, such as policy decisions, project approvals, or risk assessments. Researchers could
also explore integrating Binary AHP with other decision-making methodologies or with
machine learning techniques to automate parts of the process and enable real-time decision
support. Comparative analyses in different organizational and regulatory environments
would help evaluate the model’s adaptability and identify necessary modifications. Longi-
tudinal studies could examine the stability of the model’s classifications as technological
and regulatory landscapes evolve.
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