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ABSTRACT

The increasing number of cybersecurity reports poses a challenge to efficiently retrieving and sharing Cyber
Threat Intelligence. However, publicly available cybersecurity datasets for Natural Language Processing
(NLP) remain scarce, hindering progress in automated intelligence production. To tackle this challenge,
this article presents Yet Another Cybersecurity Database (YACSDB), a dataset designed to enhance Named
Entity Recognition (NER) using Structured Threat Information Expression (STIX) entities for interoper-
ability. Our pipeline extracts STIX Domain Objects from unstructured reports, leveraging Google’s Gemini
and Bidirectional Encoder Representations from Transformers (BERT) model to assist in labeling and re-
duce resource needs. The dataset uses Inside–Outside–Beginning (IOB) notation to facilitate fine-tuning
in sequence tagging tasks. Reports were selected for representativeness across different years. To the best
of our knowledge, it is among the largest cybersecurity NER datasets with temporal information anno-
tated by a single machine-assisted annotator. To evaluate the dataset, we fine-tuned seven BERT models to
demonstrate its effectiveness for NER. The results emphasize the importance of domain-specific datasets in
cybersecurity NLP and highlight key challenges. YACSDB serves as a benchmark for model comparison,
solution development, and knowledge graph generation. It is publicly available to foster future research in
cybersecurity NLP.

RESUMO

O número crescente de relatórios de cibersegurança representa um desafio para a recuperação e o compar-
tilhamento eficientes de Inteligência de Ameaças Cibernéticas (CTI). No entanto, conjuntos de dados de
cibersegurança publicamente disponíveis para Processamento de Linguagem Natural (PLN) permanecem
escassos, dificultando o avanço na produção automatizada de inteligência. Para enfrentar este desafio,
este artigo apresenta o Yet Another Cybersecurity Database (YACSDB), um conjunto de dados projetado
para aprimorar o Reconhecimento de Entidades Nomeadas (REN) utilizando entidades Structured Threat
Information Expression (STIX) para interoperabilidade. Nosso pipeline extrai Objetos de Domínio STIX
de relatórios não estruturados, aproveitando os modelos Gemini do Google e Bidirectional Encoder Rep-
resentations from Transformers (BERT) para auxiliar na rotulagem e reduzir a necessidade de recursos.
O conjunto de dados emprega a notação Inside–Outside–Beginning (IOB) para facilitar o fine-tuning em
tarefas de etiquetagem de sequências. Os relatórios foram selecionados visando a representatividade ao
longo de diferentes anos. Pelo nosso conhecimento, este é um dos maiores conjuntos de dados de REN em
cibersegurança com informações temporais, anotado por um único anotador assistido por máquina. Para
avaliar o conjunto de dados, realizamos o fine-tuning de sete modelos BERT para demonstrar sua eficácia
para REN. Os resultados enfatizam a importância de conjuntos de dados específicos de domínio em PLN
de cibersegurança e destacam desafios importantes. O YACSDB serve como um benchmark para compara-
ção de modelos, desenvolvimento de soluções e geração de grafos de conhecimento. Ele está publicamente
disponível para fomentar pesquisas futuras em PLN de cibersegurança.
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1 INTRODUCTION

The current cybersecurity landscape is characterized by an escalating threat environment, exemplified
by sophisticated ransomware attacks targeting critical infrastructure and large-scale data breaches affect-
ing thousands (9). The expansion of digital systems and interconnected technologies increases the attack
surface, creating many opportunities for malicious actors to exploit vulnerabilities. This growth can be
noted from the year-over-year increase in vulnerability discoveries (10). This is the scenario that acquired
the attention of multiple stakeholders, including academic researchers, cybersecurity practitioners, and
threat actors themselves. As a consequence, many organizations regularly publish cybersecurity reports
that provide analysis of emerging threats, attack vectors, and defense strategies.

Cybersecurity is an expanding domain in which the high incidence of unstructured data presents chal-
lenges for analysis. Consequently, treating this data demands large volumes of diverse data (11). Particu-
larly, advances in Natural Language Processing (NLP) enhanced the automation of information extraction
from cybersecurity reports (12), which is exploited in this specialized domain.

Traditional NLP techniques have been employed for different goals in the cybersecurity domain. This
scenario changed with the creation of groundbreaking architectures, such as Transformers (5), which en-
ticed the development of state-of-the-art Large Language Models (LLMs) that have reshaped numerous
NLP tasks. These models enable machines to extract deep, context-aware information with high accuracy.
For cybersecurity analysts, these advances facilitate the automation of data processing (12) and enable
analysis using standardized languages (13).

Within specialized domains, Bidirectional Encoder Representations from Transformers (BERT) (7)
has demonstrated excellent performance even with limited resources. The model’s capacity for fine-tuning
across diverse NLP tasks leverages transfer learning, requiring smaller datasets for domain-specific appli-
cations. This approach has been explored in specialized fields, as with SciBERT (14) for scientific texts,
BioBERT (15) for biomedical text processing, and FinBERT (16) for financial domain applications. Their
results show potential for cybersecurity applications, yet the development of domain-specific BERT for the
cybersecurity domain is limited.

There are two straightforward strategies for adapting an LLM model for a domain. The first approach
involves pre-training the model on a domain-specific corpus. In this approach of Domain Adaptation
Pre-Training (DAPT) (16), models learn specialized linguistic patterns and domain knowledge that may
differ from general-purpose datasets. This is particularly important in the cybersecurity domain, where
words may have different semantics than usual. However, DAPT requires many computational resources
and large corpora, which may be difficult to arrange. Within the cybersecurity domain, some researchers
delved into this and implemented different models, such as CyBERT (12) and SecureBERT (17). The
second strategy involves fine-tuning for a specific task using labeled datasets within the targeted domain.
This generally employs supervised learning and, although it needs a great amount of data, it still requires
substantially less than what is needed for DAPT. While it is true that models may not fully benefit from
their pre-training in specific domains, this is not a concern for cybersecurity, as there are DAPT models
available.
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As technological infrastructure continues to evolve, new information sources emerge. Social media
platforms generate a large amount of cybersecurity content; therefore, Open-Source Intelligence (OSINT)
grows in importance and plays a key role in Cyber Threat Intelligence (CTI). One key objective of CTI
frameworks is the sharing of information regarding existing or evolving cyber attacks, thereby allowing
preventive measures (11). Nonetheless, much of the shared data comes in different formats and contains
unstructured data (18), posing a challenge for consumption. Named Entity Recognition (NER) techniques
play an important role in this data.

Training an LLM for NER requires large labeled datasets to learn subtle patterns in languages. Al-
though many large textual corpora are employed in LLM pre-training, most of them contain text whose
meaning may differ in the cybersecurity domain (19). Anyhow, the volume of cybersecurity text available
is high. However, despite the extensive amount of cybersecurity reports, publicly available NLP datasets
in the cybersecurity domain remain scarce, as it is noted in studies (20, 21, 12, 9, 22, 23).

This research aims to address this data gap. We present a methodology for the generation of labeled
datasets and introduce YACSDBNER, a public dataset for Named Entity Recognition in the cybersecurity
domain. The dataset is structured around the STIX language to provide CTI in a standardized language to
allow efficient sharing of information.

1.1 OBJECTIVES

This research’s main goal is to address the scarcity of publicly labeled datasets in cybersecurity NLP
applications to enable the employment of supervised learning strategies and fair comparison of existing
models. Taking into consideration the identified gaps in the NER task applied to this domain, the research’s
main question is: How to design and efficiently build a dataset for NER in the cybersecurity domain?

To better understand the problem, this question was broken down into three other research questions:

1. RQ1. What are the main goals to which the datasets are designed in the cybersecurity domain?

2. RQ2. Which are the common constraints in the dataset generation?

3. RQ3. How to efficiently build the dataset?

There are many NER objectives in cybersecurity; therefore, we identified and analyzed different goals
in existing research. Once the goals were identified, we selected key named entities related to STIX Domain
Objects, as they represent key concepts that a cybersecurity analyst may encounter when describing a
threat. After it, aspects of the corpus representativeness, as well as its format to align with its application
to BERT models, were taken into consideration. Following it, we developed a semi-automated labeling
process to leverage different LLMs to generate high-quality annotated datasets.

2



1.2 RESEARCH CONTRIBUTIONS

This study advances the landscape of datasets for NLP in cybersecurity and contributes to broadening
research in this domain. Our main contributions are outlined as follows:

• Development of a novel labeling pipeline that integrates Bidirectional Encoder Representations from
Transformers (BERT) and Gemini models to preprocess, analyze, and compile cybersecurity reports
into a comprehensive annotated dataset;

• Introduction of Yet Another Cybersecurity Database for Named Entity Recognition (YACSDBNER),
a publicly available dataset comprising annotated text spans in IOB notation designed for NER of
STIX entities;

• Comprehensive evaluation of YACSDBNER performance accross the main domain-adapted BERT-
based models in cybersecurity.

• Comparative analysis of seven BERT-based approaches for NLP in the cybersecurity domain, pro-
viding insights into the models’ performance and establishing benchmarks for future research in the
domain.

YACSDBNER is available on GitHub <https://github.com/boutdatansec/YACSDB>.

1.3 OUTLINE

The remainder of the paper is organized as follows. First, Chapter 2 sets the theoretical framework and
explores related work on the NER task in cybersecurity and available datasets. Building on this foundation,
Chapter 3 describes the pipeline to achieve the final dataset. Chapter 4 details the setup for evaluating the
dataset and presents the findings and discussion over the results. Finally, the conclusion of this study is
included in Chapter 5 along with future works.

3
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2 BACKGROUND AND RELATED WORKS

The dynamic, complex nature of the cybersecurity landscape requires the development of robust meth-
ods to automate the acquisition of threat intelligence. This chapter introduces the groundwork for un-
derstanding the methods of Natural Language Processing and Deep Learning applied to the cybersecurity
domain.

We initiate by detailing the intelligence cycle, which is the backbone of this study. The section details
the main sources of intelligence to better comprehend what Cyber Threat Intelligence (CTI) is. Follow-
ing this, we explore prevalent CTI standards and frameworks, including the Cyber Kill Chain, Diamond
Model, and MITRE ATT&CK, MAEC, CAPEC, and STIX, which provide a structured understanding of
cyber threats and the entities that define them. Subsequently, we investigate the evolution of techniques
in Natural Language Processing (NLP), delving into Deep Neural Networks’ capabilities, and clarifying
how these techniques enable machines to comprehend and process human language. The following section
presents a review of Named Entity Recognition in cybersecurity, examining the methodologies employed
in existing NER models in the cybersecurity domain. Finally, the chapter concludes with a comprehen-
sive review of available datasets for NER in cybersecurity, assessing their characteristics, limitations, and
suitability for training and evaluating robust NER systems. Through this detailed exploration, this chapter
aims to establish a solid theoretical and practical foundation for the subsequent research and development
in named entity recognition for cyber threat intelligence. We initiate by detailing the intelligence cycle,
which is the backbone of this study. The section details the main sources of intelligence to better com-
prehend what Cyber Threat Intelligence (CTI) is. Following this, we explore prevalent CTI standards and
frameworks, including the Cyber Kill Chain, Diamond Model, and MITRE ATT&CK, MAEC, CAPEC,
and STIX, which provide a structured understanding of cyber threats and the entities that define them. Sub-
sequently, we investigate the evolution of techniques in Natural Language Processing (NLP), delving into
Deep Neural Networks’ capabilities, and clarifying how these techniques enable machines to comprehend
and process human language. The following section presents a review of Named Entity Recognition in cy-
bersecurity, examining the methodologies employed in existing NER models in the cybersecurity domain.
Finally, the chapter concludes with a comprehensive review of available datasets for NER in cybersecurity,
assessing their characteristics, limitations, and suitability for training and evaluating robust NER systems.
Through this detailed exploration, this chapter aims to establish a solid theoretical and practical foundation
for the subsequent research and development in named entity recognition for cyber threat intelligence.

2.1 INTELLIGENCE CYCLE

Intelligence is actionable information intended to guide decisions and change outcomes. The Brazilian
Intelligence Agency defines it as the production of knowledge in order to support more informed decision
making by its users (24). To achieve its objective, actions of data collection and analysis are performed,
which allow its comprehension. The information gathered in this process must be actionable by the user
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Figure 2.1: The Intelligence Process (1).

to make decisions (2). A similar definition of Intelligence can be understood as the product of analyzed
information about the operational environment to anticipate future situations and inform decisions (1).

The objectives of Intelligence must be aligned with the user’s needs to be valuable. The Intelligence
cycle is the process to ensure that the results meet the requirements. It consists of six interrelated steps (1)
that are shortly described as follows:

1. Planning and direction: development of plans and goals to support the mission;

2. Collection: data acquisition and related activities to address the intelligence requirements;

3. Processing and exploitation: conversion of raw collected data into a usable format to be consumed
by the user;

4. Analysis and production: intelligence product from the compilation, correlation, and refinement of
the gathered information and other intelligence received;

5. Dissemination and integration: delivery of the intelligence to the end user on the necessary means;

6. Evaluation and feedback: continuous assessment of the intelligence process to adjust any step.

The Intelligence Cycle is a customer-oriented process. Every stage must aim to satisfy the end user
requirements (10). The execution is not a strict waterfall process, where one step only starts when the
previous has ended, but rather an integrated and collaborative process with timely feedback amongst stages,
as seen in Figure 2.1. This adaptive structure allows it to follow the customer priorities and requirements
and even reevaluate them if needed.

There are three different levels of intelligence. This distinction is made to attend to different decision
process levels. Each level has different goals, sources, customers, and formats. Typically, the levels are
divided into strategic, tactical, and operational.
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Figure 2.2: Levels of Threat Intelligence (2).

The levels are hierarchical to provide different levels of information. The hierarchy order is different
depending on the context, which will be split into two for the sake of clarification. In military doctrine, the
intelligence levels are related to warfare levels and are ordered, from higher to lower, strategic, operational,
and tactical (1). Strategic Intelligence is directly related to the national objectives and long-term interests.
Operational Intelligence provides intelligence related to major operational objectives and analysis of the
operational environment. Tactical Intelligence supports the planning and execution of engagements and
missions.

From a business perspective, the levels can be ordered strategic, tactical, and operational, with a possi-
ble technical level. The categorization depends on temporal relevance and abstraction level, which can be
characterized as in Figure 2.2. In this definition, Strategic Intelligence is consumed by high-level strate-
gists within an organization to guide business decisions and help to understand the impact of their choices.
Tactical Intelligence supports managers and heads of areas to execute the strategy and achieve the ob-
jectives in a medium-term time horizon. Operational Intelligence focuses on specific issues of process
execution of daily operations. Technical Intelligence is related to the direct treatment of raw data to rapidly
share intelligence of immediate impact in daily activities, which can be part of the Operational Intelligence
cycle.

One approach to studying Intelligence is by examining its disciplines, or intelligence sources. The
list of basic disciplines may vary among some authors. Traditionally, we can define the following: Open-
Source Intelligence (OSINT), Human Intelligence (HUMINT), Signals Intelligence (SIGINT), Geospatial
Intelligence (GEOINT), Measurement and Signature Intelligence (MASINT), and Technical Intelligence
(TECHINT) (1, 25). These disciplines have parallel activities with different emphasis for each.

Among the fundamental intelligence disciplines, OSINT is one of the most accessible and readily
available intelligence disciplines, because its collection and analysis do not require advanced technology
and extensive resources (25). Given these characteristics, we will further explore its understanding.
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2.1.1 Open-Source Intelligence

The usage of the acronym OSINT can be traced to 1990, though authors have noted that it has been
present for centuries. To differentiate the mere observation of facts in the world from OSINT, we will
adopt the definition that aligns it with other intelligence disciplines and the intelligence cycle. Open-
Source Intelligence is "the methodical collection and exploitation of information from publicly available
sources to fulfill an intelligence requirement" (26).

Historically, the rise of OSINT is most clear through these lenses with the expansion of public newspa-
pers and radio broadcasts (26). With the development of the Internet and computer networks, cyberspace
has become an important information environment, which is part of the acknowledged cyber domain (27).

Many activities that already existed in the physical world take advantage of the existing technology
to create a new cyber-enabled version. This has driven the surge of new technologies and environments
that are sources of information. The rise of social media importance in the cyber domain greatly mod-
ified the scenario of OSINT, which has been pointed as a second generation of OSINT (28). Besides
the cyber-enabled activities, cyber capabilities evolved to a point of entire operations being executed in
cyberspace (27), thus justifying what can be called Cyber Intelligence. Large amounts of data are gener-
ated daily on platforms such as X (formerly Twitter), Facebook, and Instagram, as well as on companies’
newsletters, individual blogs, and public articles. Collection and analysis are both accessible and complex
in this scenario. To adapt to it, new methodologies and technologies have been developed, as well as the
aggregation of areas like big data, data mining, software development, and data science.

OSINT in cyberspace is widely leveraged by governments, law enforcement, and intelligence services
to investigate and fight against cybercrime and organized crime (29). Nevertheless, private organizations
also take great advantage of it, as many use digital systems and communication. Understanding threats to
defend systems from cyberattacks is the main goal of Cyber Threat Intelligence (CTI).

2.1.2 Cyber Threat Intelligence

The intelligence cycle conducted to counter threats in cyberspace against an organization is mentioned
as Cyber Threat Intelligence. It is a subset of the Cyber Intelligence that assesses possible threats to
counter or respond to them (30). It is an intelligence focused on the adversary to provide intelligence
products concerning hostile cyber organizations and cyber forces capabilities (31). The primary objective
is, thus, acquiring knowledge about adversaries and their motivations, intentions, and methods to protect
critical assets (32).

Most of the cyber activity is done by private organizations (27). Hence, the private sector interest
in CTI has grown throughout time. Businesses rely more on digital systems and, therefore, expand their
attack surface. CTI empowers organizations to defend against emerging threats and adapt to the evolving
cyberthreat landscape.

The sources of CTI include both private and open-source vendors’ threat reports. Threat information
is shared by industry, academic, and private research peers to counter the evolving cyberthreat scenario.
This collaborative effort is essential to tackle the imbalance of defense against adversary attacks (33) that

7



range from phishing to sophisticated state-sponsored cyber espionage (34). While information sharing is
important, efficient sharing is a challenge. Private vendors may offer feeds with structured information to
be readily consumed, but many open-source reports are published in different formats with unstructured
data (18). Many standards for sharing have been proposed to address this problem.

2.2 CTI STANDARDS AND FRAMEWORKS

The creation of standards aims to enhance interoperability between systems to increase the efficiency
of knowledge sharing. Timely intelligence is a must from the defense perspective; however, it can be
hindered if communication is not done properly.

Many standards have been created to tackle different problems in CTI, reason they have different usage
and semantics. We will further cover relevant standards in the domain and their uses.

2.2.1 Cyber Kill Chain

The Cyber Kill Chain (35) is a phase-based attack model developed by Lockheed Martin. It proposed
a seven-step model that initially described intrusion attacks as a chain of activities. This kill chain is how
adversaries proceed in order to achieve the intended impact. The disruption of any of the steps would
interrupt the entire process, hence achieving the defense objective.

The model is a risk management approach that gathers information about adversaries, their capabilities,
and objectives to address the cyberthreat risk and support decisions regarding the organization’s defense.
It allows an organization to better allocate resources considering its knowledge of the adversary.

The Cyber Kill Chain is defined as the seven steps: reconnaissance, weaponization, delivery, exploita-
tion, installation, command and control, and actions on objectives. The analysis of the kill chain can drive
the defensive courses of action of the attacked organization.

2.2.2 Diamond Model

The Diamond Model (3) is a formal framework of intrusion analysis. The model is complementary
to the Cyber Kill Chain, broadening the view of an intrusion to external relationships. It is generally
represented by its Diamond Event graphic depiction in Figure 2.3 that can be described as an adversary
deploying a capability over infrastructure against a victim to produce a result.

The main importance of this model is that it provides a generic and flexible, yet formal, structure to
encompass the essential concepts of intrusion analysis. It does not provide an ontology, but it provides the
fundamentals for one.
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Figure 2.3: The Diamond Model and its core features and relationships (3).

2.2.3 MITRE Standards, Languages and Frameworks

MITRE is a not-for-profit organization based in the United States of America that develops technical
guides in cybersecurity and other areas. It has fostered many standards, knowledge bases, languages, and
frameworks to support diverse cybersecurity domains. The first one to be described is MITRE ATT&CK.

Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) (36) is a public knowl-
edge base developed by MITRE to document and categorize Tactics, Techniques, and Procedures (TTP) of
real-world adversaries. It provides a structured framework for analyzing cyber threats, enabling security
teams to perform threat modeling, detection development, incident response, and consistent communica-
tion, within other activities. Similar to the Cyber Kill Chain, the framework is structured to reflect the
adversary’s attack life cycle as observed in the data.

ATT&CK is a behavioral model, where the tactics are the adversary’s goals during the attack, the
techniques are the means the adversary uses to achieve the goals, and the procedures are specific imple-
mentations of techniques as they were used by adversaries. It is divided into three technology domains:
Enterprise, which includes traditional networks and cloud systems, Mobile, and ICS, for industrial control
systems (36). In Enterprise version 17.1, there are 14 tactics and 245 techniques described in ATT&CK.
The tactics are Reconnaissance, Resource Development, Initial Access, Execution, Persistence, Privilege
Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Command and
Control, Exfiltration, and Impact.

Beyond describing TTPs, ATT&CK has a repository with report examples with its usage, description
of common Threat Actors, malware, and tools, mitigation, and other resources. The knowledge base is
widely used across organizations.

Malware Attribute Enumeration and Characterization (MAEC™) (37) is a standardized language
developed by MITRE to describe malware and its analysis. It provides a structured format to share infor-
mation about malware attributes, behaviors, and impacts. This information can be leveraged to enhance
detection, correlation, and response to incidents involving malware. As part of MITRE’s environment,
it enables interoperability among threat intelligence platforms as well as integration with other standards
such as STIX and CybOX.
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Common Attack Pattern Enumerations and Classifications (CAPEC™) (38) is a publicly avail-
able catalog developed by MITRE of known attack patterns used by adversaries. By sharing this kind
of information, the catalog allows cybersecurity analysts to understand approaches taken by adversaries
and how the weakness of applications may be exploited. Capturing attack patterns is an important step in
cyberthreat analysis as it represents how an adversary exploits. It relates to TTP as the latter describes a
high-level goal from the entire attack life cycle.

Each entry has a description of the attack mechanisms, a severity classification, relationships with
attack patterns, prerequisites for its occurrence, resources required, and references to other frameworks
as ATT&CK, CWE, and CVE. The usage of CAPEC empowers threat modeling and defensive planning,
allowing cybersecurity professionals to assess vulnerabilities and develop mitigation strategies.

Cyber Observable eXpression (CybOX™) (39) has been a standardized language developed by
MITRE to represent cyber observable events, which are properties that can be detected in an operational
cybersecurity context. It enables a structured way of characterizing low-level technical details, as file
hashes, domains, IP instances, and network connections, among others, to be automatically shared across
tools and systems. Its usage is complementary to broader standards by comprehending fine-grained details
over observed events and artifacts. The standard was later integrated into STIX in version 2.0.

2.2.4 STIX

Structured Threat Information Expression (STIX) (8) is a standardized language developed by
MITRE and maintained by OASIS for representing and sharing cyber threat intelligence (CTI) in a machine-
readable format. It is largely adopted by cybersecurity tools and platforms, which allows an effective
collaboration among organizations and sectors (40). STIX encompasses a set of cyberthreat concepts to
enable a detailed description of those threats, including TTP, Indicators of Compromise (IoC), and other
technical features related to adversaries, as well as a broader view of campaigns, incident reports, and the
relationship between Threat Actors.

STIX language is comprehensive and extensible, so it can comprise complex data on threats. It con-
sists of three main objects as part of its STIX Core Objects: STIX Domain Objects (SDO), STIX Cyber-
Observables Objects (SCO), and STIX Relationship Objects (SRO). SDOs are Higher Level Intelligence
Objects, which are common concepts an analyst would need to describe a CTI. SCO comprises the former
CybOX language to describe technical details. SRO represents any relation between two STIX objects.

There are 19 classes of SDO defined. Their descriptions are in Table 2.1. For SCO, there are 19
classes defined: Artifact, Autonomous System, Directory, Domain Name, Email Address, Email Message,
File, IPv4 Address, IPv6 Address, MAC Address, Mutex, Network Traffic, Process, Software, URL, User
Account, Windows Registry Key, Windows Registry Value Type, and X.509 Certificate. Relationship
objects, SRO, have two defined objects: Relationship and Sighting. Each SDO and SCO has a list of
relationships listed in the object definition; the user may use one of them or any user-defined relation.

One straightforward usage of STIX is to create knowledge graphs of CTI. In version 2.1, STIX uses
JSON notation to facilitate the consumption of the information directly by systems. SDO and SCO can
represent nodes connected by SRO, which can be the edges. Figure 2.4 depicts a fictional example of a mal-
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Table 2.1: STIX Domain Objects and their Descriptions, adapted from (8)

STIX Domain Object Description
Attack Pattern A type of TTP (Tactics, Techniques, and Procedures) describing

ways adversaries attempt to compromise targets.
Campaign A grouping of adversary behavior describing its malicious activi-

ties over a period against a specific set of targets.
Course of Action A recommendation or action to mitigate, respond to, or prevent

threats.
Grouping A collection of STIX Objects with a shared context, but without

requiring a relationship between them.
Identity A characterizing object that defines individuals, organizations,

systems, or groups.
Incident Yet to be defined by OASIS.
Indicator A pattern used to detect suspicious or malicious activity. It may

be defined in terms of SCO.
Infrastructure It describes systems, services, or any physical or virtual resources

used by threat actors.
Intrusion Set A grouped set of adversary behavior and resources used repeat-

edly across multiple attacks believed to belong to a single organi-
zation. It is a superset of campaigns and activities that indicate a
Threat Actor.

Location A specific physical or geopolitical location.
Malware A type of TTP describing malicious code, should it be a program,

a payload, or another.
Malware Analysis A specific assessment of malware samples, providing details on

their behavior, capabilities, and indicators.
Note A textual annotation to provide context that cannot be represented

by STIX Objects.
Observed Data Represents artifacts related to cybersecurity entities using SCO.
Opinion An evaluation of the information that was produced by another

entity.
Report A set of CTI describing the details and context of one or more

topics.
Threat Actor An individual, group, or organization conducting malicious activ-

ities.
Tool A legitimate software, script, or utility that can be used in cyber-

attacks.
Vulnerability A weakness in software or hardware can be exploited for mali-

cious means.
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ware analysis using an OASIS STIX visualization tool 1. This example has two SDO – a malware analysis
and a malware, named "Guildma payload" – and two SCO – a file, named "guildma.exe", and a directory.
The relationships among them are described in the edge. The source code of the STIX bundle depicted
in Figure 2.4 is in the appendix. The knowledge graph representation helps both machine processing and
analyst comprehension.

Figure 2.4: A STIX bundle of a fictitious malware analysis.

While there is a set of pre-defined objects, STIX is extensible, so it is possible to describe any context.
For instance, if one is to describe an attack using Bluetooth channel, they may define an SCO for the
Bluetooth Address using STIX Extension Definition notation using any needed property. An extension
example can be seen in Listing 2.1.

Listing 2.1: Extension Definition for x-bluetooth-address SCO

1 {

2 "id": "extension-definition--ba6d32f9-3f99-4cc5-a779-af118b424777",

3 "type": "extension-definition",

4 "spec_version": "2.1",

5 "name": "Bluetooth Address SCO Extension",

6 "created": "2025-05-25T12:00:00.000Z",

7 "description": "Custom SCO to represent Bluetooth MAC addresses",

8 "extension_types": ["new-sco"],

9 "schema": "https://example.com/schema/x-bluetooth-address/v1/",

10 "version": "1.0",

11 "created_by_ref": "identity--e5f87884-f08c-440e-b9e3-9e3819f292f8"

12 }

1<https://oasis-open.github.io/cti-stix-visualization/>
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2.3 NATURAL LANGUAGE PROCESSING

The field of information retrieval has significantly advanced in NLP with the evolution of techniques,
from traditional text analysis like Term Frequency-Inverse Document Frequency (TF-IDF) and bag-of-
words to Deep Neural Networks (DNNs) (9). The beginning traces back to machine translation research
that sought to enhance translation between two languages using the capacity of modern computers (41).
The possibility of it has shown to be promising, though challenges have arisen. This section will go through
the adoption of NLP in cybersecurity and its techniques.

The initial approaches primarily relied on rule-based systems and statistical models. They were limited
in usage, and the calculation could be computationally intensive. Rule-based approaches set handcrafted
patterns and regular expressions to retrieve characteristics and known entities in text. Statistical methods
use probability theory and statistical models to analyze text, such as N-gram models and TF-IDF. The first
approach is deterministic and more dependent on the knowledge about the languages, while the second is
data-driven and adaptive, which makes it more flexible for NLP.

The area delved into different applications than translation, such as document classification and entity
extraction, using known algorithms. Researchers have applied classical machine learning classifiers such
as Naive Bayes (NB) and Support Vector Machine (SVM) to classify documents, but their performance de-
pends on domain-specific feature extraction. Feature engineering would require significant manual effort,
setting constraints for scalable use. The quality and relevance of the features directly affect the model’s per-
formance. Thus, when computing capacity increased, deep learning methods established a new standard,
leading to more flexible and scalable models.

2.3.1 Deep Neural Networks

Previous statistical methods struggle with long-range dependencies, rely on manual feature engineer-
ing, and fail to adapt meanings to context. Deep Neural Networks (DNN) address these issues by learning
patterns and keeping memory in long contexts. Subsequent approaches based on neural network archi-
tectures such as Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTM), and
Convolutional Neural Networks (CNNs) established a new standard for NER.

The simplest type of neural network is a perceptron, a single layer of weights applied to input features
that can be represented as

y = wTx

where w = [w0, w1, . . . , wd] and x = [1, x1, . . . , xd] are augmented vectors of weights and inputs,
respectively taking in consideration the bias weight and d is the number of features of the model (4). When
an activation function f is applied to it, it defines a hyperplane dividing the input space into two and
creating a binary classifier. This paves the notion for DNN, which are sets of parallel perceptrons stacked
into interconnected layers. While a single layer of perceptrons can approximate linear functions, multilayer
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perceptrons can implement nonlinear discriminants. When the network has more than one hidden layer –
the layers that are neither the input nor the output –, it is called deep neural network.

Neural networks have specialized variants that excel in certain problem domains. Convolutional neural
networks (CNN) take advantage of data that have a known topology with local structure (4), where closer
elements are more strongly related than further ones. While it is common in image processing, where
the data is commonly a matrix, CNN can be applied to NLP due to the relation among close words in a
sentence, being useful for classifying documents.

Recurrent neural networks (RNNs) are specialized to handle sequential data. In this kind of DNN,
perceptrons do not have the constraint of being parallel, so one input can be dependent on another one.
This creates a state for a hidden unit, acting as a form of memory (4).

In NLP, the input data is a text to be processed, and these deep learning models process text word by
word in a left-to-right manner, mimicking human reading, using past information to predict the next one.
An RNN can retain information for as many states as one layer has layers. A way of understanding it is to
expand it as a front-forward equivalent neural network, such as in Figure 2.5

Figure 2.5: In the left, a Recurrent Neural Network; in the right, its equivalent expanded neural network (4)

RNNs still struggle with longer context due to the vanishing gradient problem (42). Long Short-Term
Memory (LSTM) networks are a type of RNN that improves this by introducing memory mechanisms to
retain information over long sequences. The LSTM introduces memory cells and gating mechanisms to the
network. Memory cells allow the information to be kept over time unless it is explicitly altered. Gates are
sigmoid layers that work as switches to control which information will be altered or not. Those functions
enhance dealing with long-term dependencies and contextual meaning.

CNN, RNN, and LSTM are fundamental models for NLP. Along with them, text embeddings devel-
oped as well, taking advantage of advances in neural networks. Embeddings are a core part of NLP, so
unstructured text can be processed by models.
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2.3.2 Text Embeddings

Embedding refers to the representation of text elements in a continuous vector space. It maps tokens,
which can be words or parts of them, into dense vectors that capture the semantic meaning and relation-
ships. The activity of retrieving the tokens is called tokenization.

Tokenization is the process of breaking down raw text into smaller, meaningful units called tokens.
These tokens can be words, subwords, characters, or even symbols, depending on the tokenization strategy.
It is a preprocessing step that transforms unstructured text into a structured format suitable for computa-
tional models.

Since natural language is inherently ambiguous and unstructured, tokenization bridges the gap between
raw text and numerical input needed in machine learning models. Once a text is tokenized, each token is
converted into a numerical vector before it is processed, may it be by statistical methods or neural networks.
The embedding is, therefore, applied to the token, mapping it to a dense vector.

Word2Vec (43) is an embedding technique based on a shallow neural network trained to predict word
contexts in large text corpora. The embedding groups words with similar meaning close together in the
vector space, capturing the semantic similarity among words. It has set a groundbreaking technique, be-
cause it permitted generalization across words based on the learned similarity. Even so, this model does not
adapt the meaning of a word in different contexts since each word is assigned only one vector. Word2Vec
faces challenges with polysemy.

GloVe (44) and FastText (45) are embeddings that brought innovations and enhancements, yet they
still apply static vectors and do not handle the meaning of words in context adequately. Embeddings from
Language Models (ELMo) (46) leveraged bidirectional LSTM (Bi-LSTM) to generate a contextualized
word embedding. It improves the ability to understand meanings in context. ELMo employs two separate
LSTM networks, one that processes left-to-right and another that does it right-to-left. ELMo generates
context-sensitive embeddings that capture the meaning of a word based on its usage within a sentence. It
does so by computing the weighted combination of all hidden layers from the BiLSTM.

Contextual embeddings have set a pioneering standard in the field of NLP. Researchers leveraged neural
networks’ capacities and developed strategies that can tackle the polysemy problem. Considering the
fundamental problem of machine translation in NLP, these embeddings are used to map texts of an input
language to an encoder, which transmits the context vector to the decoder, and is then transformed into
the output language using the target embedding. Following models modified the basic encoder-decoder
architecture to improve the performance in tasks such as text generation or text classification by using only
one part of it. The large language model (LLM) Bidirectional Encoder Representations from Transformers
is one of these, and it is used as an embedding for state-of-the-art solutions, but one has to understand the
Transformers first.

2.3.3 Transformers

Transformers (5) is a model architecture based on the attention mechanism. It employs a neural network
without recurrence or convolution, differentiating from RNN and CNN. Instead, it relies solely on the
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attention mechanism, which is a method to capture the relation between the parts of the input and the parts
of the output. It allows assigning different weights to each input element depending on the current token,
focusing on the elements that are more important for each element.

When the attention relates the input to itself, it is called self-attention mechanism. Each element of
the sequence attends to other elements within the same sequence, so an element is computed among all
the elements at the same time. It helps to capture the semantics of a term within the specific context
of the sequence, improving in comparison to left-to-right and right-to-left methods. By doing this, it
captures dependencies regardless of the position and distance of the element. This strategy handles long-
term dependencies more effectively while capturing the contextual semantics.

The attention function can be defined in terms of its core elements: a query Q, a key K, and a value
V , which are vectors typically obtained via learned linear projections. These vectors contain the adaptable
weights for each input element to set the context vector. Given a sequence X = [x1, x2, ..., xn], for
X ∈ Rn×d, the attention function is

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.1)

where d is the input dimension and dk is the dimension of the key and query vectors. As it is seen, it is
used a dot-product attention with a scaling factor. The application of the softmax function ensures that the
weights are normalized.

The self-attention in the Transformer architecture improves not only the capturing of dependencies
and the contextual representation, but also computing performance. The dot-product operation on vectors
allows parallel computation across tokens, which improves training speed and scalability of models. The
Transformer uses a multi-head attention, which are linear projections of the attention function that are later
concatenated. Each projection is independent and computed in parallel. Once the paradigm shifted from
sequential to attention-based parallel processing, NLP achieved an unprecedented performance, shaping
future modeling.

The Transformer architecture consists of 6 layers of encoders and decoders stacked. The encoder has
one self-attention sub-layer and one position-wise feed-forward sub-layer. The decoder has one masked
self-attention sub-layer, one attention sub-layer connected with the encoder, and one position-wise feed-
forward network sub-layer. One layer of encoder-decoder is depicted in Figure 2.6.

To better understand how the self-attention works in Transformers, Figure 2.7 shows the output of the
last layer of encoders in relation to the word “it” in the sentence “The animal didn’t cross the street because
it was too tired”. It can be seen that the attention mechanism focuses more on the words “The animal” for
the encoding, reflecting the objective of capturing the relation among terms.

“Attention is all you need” proposed the Transformer architecture for machine translation tasks, but
it has paved the use in other modalities of input and output. On language representation models, the
Transformer has been adapted to leverage the encoder capability.
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Figure 2.6: The illustration of the sub-layers of encoders and decoders (5).

2.3.4 BERT

Bidirectional Encoder Representations from Transformers (BERT) (7) is a language representation
model pre-trained on deep bidirectional representations. The model is designed to improve fine-tuning,
reducing the need to adapt the model to tasks, which makes it a more general approach. It allows fine-tuning
to a range of tasks, only training a single output layer from the start, reducing the amount of modifications
on parameters, thus reducing training cost.

BERT uses an adapted version of Transformers, removing the decoder part. This choice fundamentally
differentiates it from GPT (47), which uses the decoder. While the decoder keeps attention in an auto-
regressive, left-to-right manner as previous approaches of DNN, the encoder attends to all tokens with
bidirectional context. GPT architecture tackles text generation problems, justifying its preference for the
decoder; meanwhile, BERT addresses semantic understanding for tasks such as text classification, question
answering (QA), named entity recognition (NER), and others.

The original paper defines two versions of BERT that specify three variables: the number of layers (L),
the hidden size (H), and the number of self-attention heads (A). The layers are Transformer encoder blocks.
The hidden size is the dimension of the output, that is, the dimension of the embedding. The self-attention
head count refers to the multi-head attention sub-layer in the Transformer encoder block. BERT models’
sizes are:

BERTBASE : (L=12, H=768, A=12, Total Parameters=110M)

BERTLARGE : (L=24, H=1024, A=16, Total Parameters=340M)
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Figure 2.7: Self-attention mechanism focus in relation to the word “it” (6).

BERT is designed to handle both single sentences and pairs of sentences in a single sequence. To
achieve it, it uses two special tokens: a classification token ([CLS]) that starts all sequences and is used in
classification tasks, and a separator token ([SEP]) that ends all sentences, therefore splitting two sentences
when present. These tokens are part of the token embedding, which is the WordPiece embedding, with a
vocabulary of 30,000 tokens. Along with it, BERT employs one embedding that indicates to which sentence
one token belongs, and one embedding to indicate the position of the token. The final representation is the
sum of the three embeddings, resulting in the input embedding.

The model introduces an alternative pre-training objective. It employs "masked language model"
(MLM), based on Cloze task (48), which requires filling the blank on a sentence with the word that best
aligns with the context, as well as "next sentence prediction" (NSP), which assesses whether one sentence
logically follows another in a text.

For the masked language model task, unlabeled texts are selected, and 15% of the tokens are masked
at random. They are replaced by the special mask token ([MASK]) and the model has to predict this token.
Because this token does not appear when fine-tuning, the masking strategy to mitigate this problem is to
actually mask the selected token 80% of the time, and keep it unchanged or replace it with any random
token the rest of the time. With this task, BERT learns the context from all the tokens.

The following pre-training task is next sentence prediction. It is generated from unlabeled texts, di-
viding them into two spans of text. For the training, 50% of the time the sentence will be the actual next
sentence, while the remaining time it will be substituted by a random sentence from the corpus. This train-
ing aims to enhance the model’s understanding of relationships between sentences for tasks with a similar
arrangement, such as QA.

Fine-tuning the model will update all parameters end-to-end. The difference from task to task will be
adjusted on inputs and outputs. For sequence tagging tasks, for instance, the output tokens are fed into an
output layer, which will outcome the resulting vectors. Classification problems’ results are output in the
[CLS] representation.
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The original model paper presented the results of fine-tuning in 11 NLP tasks, which will not be
extensively covered. For Named Entity Recognition, fine-tuning BERT expects to input one sentence
and output the final hidden representation to a classification head, as seen in Figure 2.8. The model is
fine-tuned in CoNLL-2003 NER (7); the details can be seen in the preprint version (49). The classification
layer is non-autoregressive and does not use Conditional Random Fields (CRF). WordPiece cased version
is used for embedding, and only the first subtoken of a word is used for prediction.

Figure 2.8: Arrangement of input and output of fine-tuning BERT on different tasks (7).

Robustly optimized BERT approach (RoBERTa) (50) proposes changes in BERT’s pre-training and text
encoding while using the same core architecture. RoBERTa finds that the original model is undertrained,
for which it considers a larger set of text corpora. Moreover, the size of training batches, the size of
sequences, and the masking strategy are modified. Optimization parameters are mostly unchanged. The
training objectives are also modified by removing NSP since RoBERTa experiments achieve better results
having NSP loss removed. Lastly, the input representation is scrutinized, choosing GPT-2 (51) Byte-Pair
Encoding (BPE) adaptation. BPE uses a byte-level representation rather than Unicode to avoid increasing
the vocabulary size and still deals better with out-of-vocabulary words than word-level representation. With
these adjustments, RoBERTa outperforms the original BERT in tested benchmarks.

One important accomplishment of BERT and the following models based on it is their transfer learning
capacity. Pre-training with a self-supervised strategy in large corpora allows models to acquire general
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knowledge of the language, its structures, patterns, and intrinsic meaning. This is quite useful for transfer-
ring knowledge in downstream tasks. Furthermore, domain-adaptive pre-training (DAPT) (52), in which
further self-supervised training is performed in a domain-specific corpus, takes advantage of knowledge
transfer in low-resource domains. That has been demonstrated in biomedical (15), financial (16) and cy-
bersecurity (17) fields.

BERT architecture established a foundation on which many models were developed. Along with it, the
transformers also enhanced autoregressive models, especially in the text generation task, as seen in GPT
and GPT-2. Research has shown that these models do perform well in named entity recognition tasks,
even without fine-tuning (53). As models scaled up, for instance, as seen in PaLM (54), which has 540B
parameters, so did their capacity. This is further exploited in multimodal models, in which inputs different
from text are also used.

Multimodal models train on diverse datasets, enhancing knowledge variety. These models exhibit
great results in many tasks, including NLP. One family of models that sets the state-of-the-art in language
modeling is Gemini.

2.3.5 Gemini

Gemini (55) is a family of generative multimodal models. The models are trained jointly in datasets of
image, audio, video, and text to improve general capability and understanding and reasoning performance.
It leverages Transformer decoders with improvements in the architecture, such as multi-query attention.

The models are natively multimodal, meaning that training is performed in mixed data and multilingual.
They can handle interleaved sequences of different input types while outputting as both image and text.
Three different sizes of models were made available: Ultra, the largest of them, targeting the capability
to deal with high complexity tasks; Pro, a version optimized for performance in terms of cost; and Nano,
designed for running in low-resource devices by distilling larger Gemini models. The smallest model,
Nano-1, has 1.8B parameters. All models use the SentencePiece tokenizer.

For this study, we will consider only its text-to-text capability, since we are interested in its application
for NER. Gemini is evaluated in many text benchmarks, such as MMLU (56), which is a multitask consist-
ing of 57 subjects split into four categories: humanities; social science; science, technology, engineering,
and mathematics (STEM); and other, covering a broad range of knowledge domains. The results in text
domains show indirectly promising capabilities in named entity recognition.

Gemini 1.5 (57) scaled the long-context from the previous version. It introduces two versions: Gemini
1.5 Pro and Gemini 1.5 Flash. Its main breakthrough is augmenting the context windows from 32k tokens
to 10M tokens in the Pro version. The models have a mixture-of-experts (MoE) architecture with a learned
routing function to select the path to be taken by the input. The 1.5 Flash model performs better than the
1.0 Pro model in most benchmarks, even though it is smaller and more efficient than the 1.0 Pro version.

Autoregressive models generate coherent output, i.e., coherent text. Despite not being initially de-
veloped for classification problems, as discriminative models are, the enhancement in capability showed
that they perform quite well by adapting their usage. One strategy is to fit the objective by reformulating
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the task in the prompt. Setting the NER task as a natural language generation problem allows the model
to classify the input (58). The model ingests a prompt – the user input – with instructions to shape the
problem. This instruction fine-tuning will be further exploited.

2.4 NAMED ENTITY RECOGNITION IN CYBERSECURITY

In this section, we review studies related to the Named Entity Recognition task performed in cyber-
security. Methods used range from traditional NLP techniques to LLM. The cybersecurity realm is wide
with many subdivisions, which can be seen in the many different objectives of studies. At the end of the
section, the studies are summarized.

Rahman et al. (13) conducted a literature review on text mining for CTI. The main objective of the
research is to set a starting point for researchers on the use of mining CTI from unstructured text. It does
so by looking what are the sources for CTI collection, what are the primary purposes for mining CTI, and
which are the means to execute it. An initial cut found 28,484 publications from 2000 to 2020. A set
of inclusion and exclusion criteria is applied, selecting 38 papers for further analysis. They only include
English papers that can be publicly reached, meaning bias must be accounted for in the results.

The study points out that they found seven sources of CTI, threat reports being the primary source
of CTI, representing close to 37%. These reports are technical publications from specialized sources.
They contain information about the attacker’s TTP and IoCs discovered, and are generally exploited for
the extraction of these two features. Some present tools for automation, allowing gathering IoC in bulk.
Nonetheless, hacker forums, Twitter (now named X), and security blogs are also valuable. These sources
are explored in other ways, such as topic identification and mining from natural languages.

Regarding the purposes, seven types have been identified, though four of them cover most of the rea-
sons: threat event identification, threat topic analysis, IoC extraction, and Tactics, Techniques, and Proce-
dures (TTPs) extraction. Threat event identification and threat topic analysis are the most present purposes,
which show motivation to proactively enhance defense against possible future attacks. Those are related to
Twitter feeds as a source. When observing studies for IoC extraction and TTPs extraction, studies tend to
use threat reports, as it is expected to have technical information related to attackers. It is noted that studies
do not cover both IoC and TTP extraction jointly.

The authors arrange the approaches in more general categories, in which they found that the most
frequent are semantic relationships among CTI keywords, keyword identification, and topic classification.
These are related to NLP because the sources are from unstructured text in general.

TTPDrill (59) is one of the studies analyzed by Rahman et al. that developed a tool for the extraction
of TTPs. It focused on creating a threat-action ontology and extracting structured TTP from unstructured
reports. Given the initial lack of a machine-readable format for TTPs, the authors introduced an ontology
based on MITRE ATT&CK and CAPEC frameworks, comprising seven distinct classes.

The methodology involved a multi-step approach. Initially, a scraper was developed, and an SVM clas-
sifier was trained to distinguish relevant security articles from advertisements. The classifier utilized three
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features: the article’s word count, the density of security-related verbs, and the number of security-related
nouns. Before NLP processing, common objects identified by a set of predefined regular expressions were
substituted with a generic name. Later, these names were replaced with the original term. The text was
then parsed to identify the dependencies, and the model used a TF-IDF with bm25 model to map the can-
didates into threat actions, structuring them into STIX format for sharing. Only known attack patterns and
techniques are kept, so they can be mapped into STIX 2.1 format.

TTPDrill processed 17,000 Symantec reports and extracted threat information from them. The authors
used 30 reports to set the thresholds of similarity by establishing an empirical value from the observation
of accuracy metrics. Later, 50 reports were manually annotated as ground truth to measure the model’s
effectiveness. The work is a valuable reference for addressing the automation of TTP extraction.

Research in NLP applied to cybersecurity also leveraged traditional techniques to find correlations
between security named entities. An RDF-CRF model was proposed by Yi et al. (23) to extract security
named entities using regular expressions and a known-entity dictionary to improve performance. The
regular expressions composed a rule-based extractor to locate specific entities, while the dictionary-based
extractor utilized known-entity lists. Afterwards, the study employed the CRF extractor on selected features
to exploit the correlation between those entities and improve the recognition performance.

The authors acknowledged the scarcity of large publicly available datasets for extracting cybersecurity
named entities. To tackle this limitation, they constructed a dataset by collecting data from security forums,
vendor bulletins, and blog articles. This dataset was manually annotated using a majority vote mechanism
from the analysis of three annotators. This made up the ground truth dataset of 14,000 marked texts. There
are 26 entities arbitrarily selected using BMESO notation.

The effectiveness of the RDF-CRF model was compared in two ways. Firstly, it was analyzed together
with the statistical models Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM),
and CRF itself. The evaluation is divided per entity classes, and the CRF model achieved an overall high
performance. Following it, the effectiveness of the model is evaluated by comparing it to two state-of-the-
art methods at the time. The experiment evaluated an LSTM-CRF model and an FT-CNN-BiLSTM-CRF
model, as neural network methods often have high performance in complex tasks. The RDF-CRF model
was able to outperform these baselines.

TIMiner (11) is a framework for extracting CTI from social media data. The study addresses two
challenges: the automated extraction of IoC and the classification of CTI in domain tags from social media.
TIMiner aims to enable personalized CTI sharing to five different domains, which are Industrial Control
System (ICS), Internet-of-Things (IoC), finance, government, and education. The authors developed a
CNN-based domain recognizer over text spans embedded with Word2Vec (43) model.

The authors collected threat-related descriptions from various social media. They developed TI_spider,
a system of distributed crawlers that monitored 75 vendor bulletins, collecting more than 118,000 threat-
related descriptions from 2002 to 2018. Five researchers manually labeled 15,000 threat descriptions for
the final dataset.

The method for hierarchical IoC adopted a comprehensive strategy to effectively identify the terms.
At first, indicators with a well-known structure are retrieved with regular expressions. Following it, a
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BiLSTM+CRF model is employed for NER. Lastly, a top-5 word similarity algorithm identified unknown
IoCs, taking into consideration the consistently growing number of these entities.

Sauerweinand and Pfohl’s systematic review (9) aimed to identify approaches of NLP and ML to
extract TTP from unstructured text and evaluate which methods are more effective to accomplish the task.
The study took papers from 2009 to 2020, yielding an initial count of 5,307 papers. After the selection of
papers that were useful to address the research questions, 26 of them met the criteria. These papers were
evaluated regarding two characteristics: which NLP techniques were used and which ML model was used.

The study found that Support Vector Machine (SVM) and Naive Bayes (NB) were the most frequent
machine learning models for classification tasks. These methods were preceded by traditional NLP pro-
cessing of tokenization, POS tagging, IoC replacement, lemmatization, one-hot encoding, and binary rele-
vance transformation.

The authors noted the lack of training datasets for the evaluation of these techniques and highlighted the
need for publicly available datasets as baselines. They generated one dataset from the MITRE ATT&CK
knowledge base, as manual labeling was deemed to be too time-consuming. It was observed that the dataset
was imbalanced, posing a challenge for evaluation.

TCENet (Threat Context Enhanced Network) was the classifier of the framework TIM (TTPs Intelli-
gence Mining) (60). It proposed a pipeline of extraction, embedding, classification, and exportation for
two intelligence products: a Sigma attack detection and a STIX Bundle.

The study incorporated the Transformer-based model BERT in its description feature embedding. Sen-
tenceBERT was employed in the TCENet model. This model consisted of two neural networks: one CNN
and one BiLSTM with an attention mechanism. The dataset was built from crawling 10,761 reports of 5
security vendor blogs. The overall accuracy was based on six TTPs, and it outperformed the BERT-CLS
model, though it did not specify if it was the base or large version. The authors indicated that pre-trained
models perform better than static word embedding.

In the study conducted by Alves et al. (61), eleven BERT models were evaluated on classifying sen-
tences according to the corresponding MITRE technique. The models were variations of BERT, RoBERTa,
DistilBERT, and DistilRoBERTa, both cased and uncased. It was also considered the models SecBERT and
SecRoBERTa, which are addressed later.

The dataset was MITRE’s public repository of examples. The data were sentences that illustrated one
technique. There were 466 out of 576 techniques exemplified in the dataset. The authors established a
minimum count of five sentences to be considered representative. Based on this, 9909 sentences were
selected, comprising 253 techniques and sub-techniques. The study also observed the imbalance of the
dataset, as the class with the most examples had 371 instances, while the least had only five.

Among the models, RoBERTa Large and BERT Large performed better when using all 253 techniques
and sub-techniques. Though TCENet shows better accuracy, it only uses a subset of the classes.

The adaptation of BERT models for a specific domain is generally beneficial, it is reported by Fin-
BERT (16), which is tailored for the financial domain. The exposure of models to the domain-specific
texts, such as financial, may alter the advantage of pretraining.
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FinBERT evaluated models both with and without domain-specific vocabulary, and the model with
base general vocabulary achieved the best result in almost all datasets. It’s also been noted that training
BERT-like models on small datasets can lead to instability in their performance.

The result shown in FinBERT enforces the possible results in the cybersecurity domain. This approach
was explored in many studies, as well as fine-tuning for specific tasks. As there are many different subdo-
mains in cybersecurity, this adaptation may vary. Studies investigating tailored versions for cybersecurity
are further explored.

RuCyBERT (62) explores the fine-tuning of BERT models in the cybersecurity domain in the Russian
language. The study compares the quality of NER using multilingual BERT, RuBERT – a Russian-tuned
model –, and RuCyBERT – a fine-tuning of RuBERT in cybersecurity reports. RuCyBERT outperforms
the others in classifying cybersecurity domain entities, but RuBERT performs better on generic entities like
location and organization. The authors also present a new version of the Sec_col corpus, augmented with
861 unstructured texts related to the domain.

Ameri et al.’s CyBERT (20) classifies cybersecurity feature claims from ICS based on its documenta-
tion. CyBERT shows better accuracy in this task compared to ELMo and ULMFiT models. The authors
created the training set from 19,793 documents, which resulted in circa 215,000 sentences. The classifier
was trained on 6,763 sentences.

Ranade et al.’s CyBERT (12) is a domain-adapted BERT on a large cybersecurity corpus with an
extended vocabulary to include domain-specific words. CyBERT was downstreamed into multi-class clas-
sification and NER tasks. The authors noted the lack of large-scale public cybersecurity texts for NER, and
three annotators manually labeled a dataset with 66% agreement to determine the most accurate labels. La-
bels were a set of seven entities. The model was compared to BERT only qualitatively, indicating CyBERT
produced more suitable responses.

SecBERT2 and SecRoBERTa3 are models stated to be pre-trained on cybersecurity text sources: APT-
notes, Stucco-Data, CASIE, and SemEval-2018 Task 8. Its vocabulary has been adapted to the corpora.
Though it does not have any publications regarding the training method and evaluations, its popularity on
Hugging Face, an open-source platform for Machine Learning, caught our attention, and it was further
evaluated in this study.

SecureBERT (17) is a RoBERTa model focused on CTI and automation. The choice of a smaller
model is due to its lower training costs. The author claims that the cybersecurity domain has less diversity
than general language, so a smaller model should suffice for the task. The dataset for training has 1.1
billion words from many sources. Two versions of SecureBERT are evaluated on NER using Malware-
TextDB (63), showing better performance than RoBERTa-base and SciBERT.

STIXnet (21) is a modular framework to extract entities and relationships in STIX format. After ex-
tracting the text from the input, the pipeline first extracts the entities. It processes the input on three differ-
ent submodules: IOC Finder, which is based on regular expressions; Knowledge Base (KB), which has a
database from a private company over years of manual annotation; and rcATT (64) for recognizing TTPs.

2<https://huggingface.co/jackaduma/SecBERT>
3<https://huggingface.co/jackaduma/SecRoBERTa>
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After merging the results, the relationships are extracted using two techniques: a rule-based approach that
leverages spaCy dependency parser output to find the verb linking two entities and classify it based on its
similarity to an SRO, and an approach based on SentenceBERT embedding, which calculates the cosine
similarity to STIX relationships embeddings. The dataset employed for evaluation was self-generated from
manual annotations of descriptions of threat actors from the MITRE ATT&CK framework.

CySecBERT (19) introduces a BERT model adapted to the cybersecurity domain by further pre-training
it on the domain and then fine-tuning it for three tasks: NER, general relevance classification, and CTI
classification. For the pre-training phase, the authors propose the task of word similarity as a variation
of MLM, where the model should predict whether two words are similar, along with a dataset clustering
task. The dataset was compiled from four sub-corpora: blog data, arXiv articles, the National Vulnerability
Database (NVD), and Twitter posts. It sums up to 4.3 million entries. The dataset repository includes
original references and the crawler, so it’s possible to reproduce it, though it may have minor deviations
from the original. For NER, only three classes unrelated to CTI were searched: Software Naming, Software
Version, and Attack Complexities, and the authors note the lack of datasets for the task.

KnowCTI (33) introduces a method for generating a threat intelligence graph. It employs Graph At-
tention Networks that are trained in both NER and relation extraction at the same time. BERT model is
used as an embedding for the graph node. Five cybersecurity graduate students annotated the training data,
4,896 instances for text classification, and 8,872 instances for CTI extraction. KnowCTI was compared
with four different models, both neural networks and Transformer-based, showing better performance.

The two systematic reviews analyzed provide information on the extraction of CTI until 2020. They
conclude that traditional NLP techniques and Machine Learning algorithms are mostly applied to unstruc-
tured texts to extract cybersecurity entities. It draws attention that the Transformer architecture and BERT
models are not present in the analyzed studies, even though their release dates are 2017 and 2019, respec-
tively. We also analyzed studies within the scope of these goals and summarized our findings in Table 2.2.
Although domain-adapted BERT models have achieved the state-of-the-art in different domains, namely
SciBERT (14), BioBERT (15), and FinBERT (16) in their respective domains, the BERT model seemed
to be employed in a complementary strategy in the cybersecurity domain. Therefore, we analyzed studies
involving the adaptation of BERT models to cybersecurity tasks, as seen in Table 2.3.
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2.5 DATASETS FOR NER IN CYBERSECURITY

In this section, we analyze the landscape of datasets for named entity recognition in the cybersecurity
domain. The lack of publicly available datasets was addressed in many studies (9, 20, 12, 21, 22). It is
important to note that this includes different goals, for instance, the extraction of IoC and the extraction of
TTP.

FEW-NERD (65) was a large-scale manually annotated dataset designed for few-shot NER. This was a
general-purpose dataset; still, there were key takeaways on building multiclass datasets. FEW-NERD con-
sisted of 188,238 sentences labeled in a hierarchy of 8 coarse-grained classes and 66 fine-grained classes.
Manual annotation required extensive resources, applying 70 trained annotators and 10 experienced ex-
perts, spending close to 32 hours per annotator, with 76% agreement. The study proposed four models
with BERT as a backbone for the few-shot NER task. Compared to other datasets, BERT achieved promis-
ing results, though it struggled on FEW-NERD, which is suggested to be due to the larger number of
types.

General-purpose NER algorithms have long been studied. However, it may not achieve similar re-
sults when applied to the cybersecurity domain (66). Though deep learning models can leverage transfer
learning, it cannot be assured that they sustain it across different domains. This motivates the creation of
domain-specific corpora for named entity recognition.

MalwareTextDB (63) introduced a dataset built from annotated malware reports using the MAEC vo-
cabulary. The reports were taken from APTnotes, a publicly available repository that consisted of 39
reports and 6,819 sentences on Advanced Persistent Threat groups. Though the repository contained 384
reports as of writing, the authors used 39 of them from the year of 2014.

DNRTI (67) was a public dataset with over 300 reports annotated in IOB notation for 13 threat
intelligence-related entities. The dataset was employed to analyze four SOTA models (68). The paper
tested Transformer models, such as BERT and XLNet, with the dataset, showing they perform better than
the Bi-LSTM model for NER on the dataset. For this task, DNRTI has been adapted to 11 entities.

The need for a CTI corpus for training AI-based cybersecurity systems was also discussed in Hanks et
al. (69). The authors created a publicly available dataset for NER for arbitrary entities on their ontology.
Six human annotators classified 1,339 sentences. The texts were obtained from scraping popular vendor
blogs. The total amount of unlabeled text is 380 articles totaling 25,000 sentences.

APTNER (18) was a dataset for NER tasks on the CTI domain. It complied with STIX 2.1 to facilitate
downstream research tasks in CTI. It contained 10,984 sentences, which resulted in 39,565 entities. The
authors proposed 21 entities, 7 SDO and 13 SCO, plus an "other" class, labeled in BIOES format. The
workforce was composed of 30 undergraduate and 4 graduate students for labeling and 2 graduate students
for verification. The dataset was evaluated by comparing six models, DNNs and BERT, in the NER task,
resulting in the best performance of BERT+BiLSTM+CRF.

In Siracusano et al. (22), a dataset comprised of 204 publicly available reports of 62 different sources
was presented. It also provided aCTIon, a solution based on generative LLM to retrieve STIX objects.
It was evaluated on the gpt-3.5-turbo model focused on Malware, Threat Actor, Target, and Attack
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Pattern entities. The collection had roughly 36,100 entities and 13,600 relations. The study noted the
inherent cost of performing manual annotations by expert CTI analysts. The lack of a benchmark for
many CTI tasks was highlighted as well. Many solutions to entity extraction were proposed, but addressed
different problems. Though the paper addressed the necessity of open large datasets, the dataset itself was
not found, and the link to it was hidden for anonymity, as stated.

Deka et al. (70) introduced AttackER, a dataset for cyber-attack attribution. This dataset was labeled
for NER using STIX version 2.1. It consisted of a subset of 14 entities from 18 SDO and 4 entities
adapted to allow a more detailed description. A total of 2,640 sentences were annotated from the initial
217 documents. Two annotators performed the labeling task with 83.8% of agreement. AttackER was used
on the NER task using BERT and generative models. Three of the BERT models were finetuned previously
in the cybersecurity domain. SecureBERT achieved the best result on the F1-score. For generative models,
the author raised considerations on the ground truth and misalignment. These models showed promising
results on zero-shot learning.
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3 METHODOLOGY

Using LLM models is the main method explored in recent studies for NER in the cybersecurity domain,
as seen in section 2.4. The SOTA methods mentioned involved LLM at some point in their pipeline.
When considering BERT models, pre-training these models requires large amounts of text, which poses
a limitation for this approach. However, BERT can benefit from DAPT and further downstream, which
involves less but labeled specialized texts.

To explore this latter option, we addressed the lack of publicly available datasets, as observed in our
review (9, 20, 12, 21, 22), by generating a dataset suitable for training BERT models. This chapter de-
scribes the process for generating a dataset for NER in the cybersecurity domain. First, design decisions
are detailed regarding the source input and the output format. Subsequently, the dataset generation pipeline
is elaborated, beginning with the preprocessing step. The following subsection presents a preliminary anal-
ysis of the data and discusses further design decisions. In sequence, the classification process is explained,
alongside the manual review of the data. Finally, the generated dataset is described.

3.1 DATASET GENERATION

When creating a dataset for NER, design decisions must be made to ensure its effectiveness for training
purposes. It should be specified what the primary objective is, which source of data will be used, which
ontology or standard will be used for tagging, and which format will be employed. This approach ensures
that the dataset will be well-suited for training NER models that can effectively support the classification
task. After clearly defining the problem, we applied a systematic approach for generating the dataset
consisting of five steps: collection, data preparation, evaluation, annotation, and review. This process is
depicted in Figure 3.1.

Figure 3.1: Dataset generation process.

We observed different goals in NER studies of section 2.4. STIXnet (21) extracted IoC and lever-
aged rcATT (64) for recognizing TTPs. Siracusano et al. (22) retrieved STIX objects that were mainly
threat-related entities and one for TTP. KnowCTI (33) focused on extracting a knowledge graph with their
proposed ontology containing threat-related entities, IoC, and TTP, as well as the relations among them.

There is a complication when comparing the results of the studies because of a deficiency of bench-
marks. Different classification problems need different datasets, for instance, for sequence tagging, NER,
RE, and knowledge graph generation tasks. Since NER is a preceding problem for the others, it was
addressed.
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There is an extensive landscape of CTI standards, as seen in section 2.2. This is observed on the
available datasets, where many schemas and ontologies were proposed. So choosing a common language is
an important decision for the project design. We selected the STIX language due to its consistent reference
in studies.

The first scope of the dataset was labeling SDO as the coarse-grained classes. The token tagging format
was used because converting to word or span tagging from it is straightforward, which facilitates broader
usage of the dataset. Analyzing the classes present in STIX SDO, Attack Pattern is related to TTP and
is usually described in a multi-word span; moreover, it may overlap with other classes. The single-class
problem was initially addressed, which justifies investigating the Attack Pattern in future work.

When analyzing cybersecurity reports, they frequently do not encompass all objects. This study focuses
on retrieving information related to the threat. The following SDOs were excluded. Course of Action,
which may be present on reports related to vulnerabilities, but is out of scope. Grouping works as a meta-
object before the finished intelligence product; therefore, before the production of the report. Incident is a
stub object not defined on STIX version 2.1. Infrastructure would be listed as an Indicator. Intrusion Set
expects more than one consistent event, while there are reports describing it, there is no objective criterion
to differentiate it from campaigns, which will be considered in the study. Malware Analysis expresses one
specific analysis of a sample that will be described in the intelligence product and was excluded to avoid
redundancy. Note is a subjective annotation; therefore, it is out of scope. Observed Data is more related to
raw data; on reports, it is expected to be Indicators. Opinion falls in the same category as Note. The texts
analyzed are of type Report, meaning all the extracted objects would be related to a Report object.

After excluding objects that aren’t relevant to the data, the set of entities sought to be extracted is:
Attack-Pattern, Campaign, Identity, Indicator, Location, Malware, Threat-Actor, Tool, and Vulner-
ability.

Another key design decision is the dataset format. There are many common tagging formats for rep-
resenting multi-word named entities (71). One way of representing is assigning each named entity token a
tag composed of a prefix and a class, while the remaining tokens of the span are assigned a special class.
The purpose of this scheme is to add relative position information for each token. A common set of prefixes
used is described in Table 3.1.

Table 3.1: Common annotation prefixes

Prefix Meaning Description
B Beginning Represents the first token an entity.
I Inside Represents any token within a multi-token entity besides the first.
E or L End or Last When present, represents the last token of a multi-token entity.
O Outside Represents a token that is not part of any named entity.
S or U Single token or Unit When present, represents a single token entity.

The tagging schemas are different combinations of the prefix in Table 3.1, and using each one yields
different performance (71). There is no clear evidence of a better representation for NER in an English
cybersecurity corpus; therefore, the IOB notation was arbitrarily selected. In this notation, single token
entities along with the first token of multi-token entities are assigned the "B-" prefix, any token besides
these in multi-token entities is assigned "I-", and the remaining non-entity tokens are assigned "O".
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There are many sources of unstructured cybersecurity texts. The goal is to build a comprehensive
enough dataset. Instead of relying on the selection and collection of sources, we selected a well-known
single collection of sources. VX-underground is a website about malware and cybersecurity containing a
series of reports on APTs split by year. Sources may be security vendors’ blogs, CERT incident reports, X
(former Twitter) posts, private researchers’ reports, and others.

The pipeline that implements the process in Figure 3.1 for building YACSDB has four steps: collection
and preprocessing, processing and analysis, classification process, and manual review. A visual depiction
of the process is illustrated in Figure 3.2.

Figure 3.2: YACSDBNER generation pipeline.

3.2 COLLECTION AND PREPROCESSING

The first step of the pipeline consisted of scraping the reports from the VX-underground repository,
extracting the text from files, cleaning data, and selecting sentences, as seen in Figure 3.3.

There were 2,164 reports listed from 2010 to 2023, which were scraped using Python, Selenium, and
BeautifulSoup. Due to duplication, broken links, or empty files, the total number of files retrieved was
2,068 files in PDF format.
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Figure 3.3: Reports collection and data preparation

After acquiring the reports, their texts were retrieved employing the module fitz from PyMuPDF1. The
selected output for text extraction was natural reading sort.

Some reports contained Unicode characters that would interfere with BERT embedding, such as Arabic
or Cyrillic script, and some symbols. The paragraphs containing these characters were stripped to avoid in-
putting partial sentences. Each paragraph was split into sentences using spaCy’s2 English general-purpose
large model. Only sentences with verbs were considered for this step. We retrieved 314,323 unprocessed
sentences, of which 263,066 remained valid for analysis.

3.3 PROCESSING AND ANALYSIS

In the second stage of the pipeline, presented in Figure 3.4, the objective was to select a subset of the
valid reports for further classification. The reports must be representative of real-world reports to enhance
the modeling of the problem. Another requirement is to have sufficient instances of each class, as data
scarcity negatively impacts the model training (72). These requirements pose a challenge: how to know if
the analyzed report attends to the criteria?

The approach chosen for this initial problem was to handle the entity identification task, a binary clas-
sification of tokens. Our premise was that a high entity count in a report has a higher likelihood of having
more instances of each class. Therefore, we want to model real-world entity density by observing the found
entity density. A naïve approach is proposed, employing a large generative model as a discriminator.

Inspired by AttackER (70) results using generative models in NER tasks, we exploited a zero-shot
learning approach on the Gemini Flash 1.5 model to assess the quality of the reports regarding class cov-
erage. Zero-shot classification in generative models is a method by which the instruction is crafted with

1<https://pymupdftest.readthedocs.io/en/stable/intro.html>
2<https://spacy.io/>
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Figure 3.4: Evaluation step.

explicit information about the classes and task to be performed. It is a type of prompt engineering to
leverage the model’s capability in text tasks.

The strategy consisted of role-playing a cybersecurity expert to direct the model to a cybersecurity
context. Besides, the output format was delimited to allow easier parsing. To mitigate hallucinations, the
classes were restricted to a fixed set, a specific output was determined for cases where no entities were
found, and the order of entities was enforced. The instruction utilized in the zero-shot classification is
illustrated in Listing 3.1.

Listing 3.1: Instruction for zero-shot classification

1 You are a cybersecurity expert. You are going to extract STIX Domain Objects from

cybersecurity reports.

2 Only output a the entity found on the text followed by its STIX SDO classification

on the format entity:classification.

3 Output it as a list separated by a new line.

4 Don't filter duplicates, output all the entities in the same order they appear in

the text.

5 The text may not have any entity, in which case you will output only "None".

6 The classes you will use for classification are the following:

7 intrusion-set

8 location

9 attack-pattern

10 identity

11 tool

12 malware

13 campaign

14 indicator

15 vulnerability

16 threat-actor

Gemini models show good performance in finding entities, such as in the MMLU task (57). For this
preliminary metric, the identification of the entity suffices, even if the model misclassifies them. The
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objective is to evaluate the texts based on the number of STIX entities found as a previous metric, based on
our premise of a higher likelihood of label coverage. Each valid sentence from a report was used as input.
Due to the nature of the content being related to threat reports, safety thresholds configuration of dangerous
content (HARM_CATEGORY_DANGEROUS_CONTENT) and as well as the configuration regarding
hate speech (HARM_CATEGORY_HATE_SPEECH) were set not to block (BLOCK_NONE). To handle
hallucination, each entity was cross-checked within the text, and only found entities were considered. The
total number of reports that successfully extracted entities was 1,924. The total number of entities retrieved
from the selected classes after sanitization was 233,899.

3.3.1 Reports descriptive statistics and analysis

A detailed characterization of the reports with found entities is provided. We present key descriptive
statistics that helped in the decision-making of the dataset design. It was set that the goal of the initial
dataset was to understand the landscape of cybersecurity reports. To achieve this objective, the data was
curated to minimize the presence of outliers and enable the exploration of the inherent properties of the
most representative reports.

The text length ranged from 10 characters to 196, 840 in the longest report. While there was a large
difference between the shortest and the longest, the text length distribution had a great positive skewness,
with a mean length of 16, 921.2 and a median of 12, 706. The 90th percentile is close to 33, 000, which is
characterized by the long tail on Figure 3.5a. Figure 3.5b shows a close to zero skewness when it is taken
into consideration only reports smaller than 21, 000 characters, which is approximately the 75th percentile.

(a) Full set (b) Under 21,000 characters

Figure 3.5: Distribution of reports’ length (character count).

The number of reports available per year is displayed in Table 3.2. It can be noted that the years until
2014 had a low number of examples, while 2022 had a spike in reports. The mean count of reports from
2015 to 2023 is approximately 200. It is not known the reason for the lower count of reports in the first
years, for instance, whether it was a problem in collection.

From the observation of the number of valid entities in Gemini’s output in Figure 3.6, it can be noted a
positive correlation between the number of entities and the length of the reports. Additionally, the relation-
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Table 3.2: Initial number of reports per year

Year Reports Year Reports Year Reports
2010 5 2015 136 2020 184
2011 14 2016 140 2021 162
2012 24 2017 117 2022 437
2013 45 2018 162 2023 282
2014 31 2019 185

ship indicates a linear trend with high variability. We delve deeper into the analysis of these characteristics
to address the representativeness of the reports.

Figure 3.6: Ratio of Entities per Text Length (EPTL) versus text length.

A preliminary metric was proposed to enable assessing the expected quality of the reports regarding
representativeness and label coverage. The extracted entities per 1,000 characters (EPTL) is a ratio of
entity density with the assumption of positive correlation with the label coverage. The analysis of this
metric allows the comparison between reports, regardless of their size.

As there are more instances of smaller texts, a greater variability for these texts can also be observed
in Figure 3.7. Yet, there is an observed trend for the entity density to be concentrated in the range of 0 to
25. A yearly breakdown, presented in Figure 3.8, indicates a growing saturation in the range of 5 to 10.

An initial selection of the reports was done to allow a manageable amount for the first version of the
dataset. Hence, we aim to optimize processing efficiency and maximize report variety. Longer reports
had a rather uniform entity density. As the initial goal is not a document-level task, reports smaller than
21,000 characters were selected. The number of instances in the first years was substantially lower than in
more recent years. It is not known the reason for this, for instance, if it was a problem in collection, which
brings a question of whether those were representative. Taking into consideration that older data might
bring an outdated bias, we selected only reports after 2014. A close examination of the entity density of
some outliers showed a set of documents that were primarily composed of IoC listings. It was observed
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Figure 3.7: Ratio of Entities per Text Length (EPTL) versus text length.

Figure 3.8: EPTL distribution by year.

that selecting reports with an EPTL value ranging from 5 to 20 covered enough variety. After applying all
criteria, the initial version of the dataset comprises 1,127 candidate reports, as detailed in Table 3.3. This
is a stratified sampling, considering the proportion of instances per year.

Table 3.3: Number of reports per year

2015 2016 2017 2018 2019 2020 2021 2022 2023
Reports 73 76 77 106 120 95 85 300 195
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3.4 CLASSIFICATION PROCESS

In the classification step, we propose an LLM-assisted methodology for building the dataset for NER.
The classification task was performed with the assistance of pretrained LLM models within the dataset, as
depicted in Figure 3.9. We leveraged Gemini and BERT models by gradually enhancing their adaptation
to the cybersecurity domain. The primary objective was to assist cybersecurity experts in labeling with
limited resources.

Figure 3.9: Assisted classification step.

Fine-tuning LLM is computationally expensive; thus, the Parameter-Efficient Fine-Tuning (PEFT)
method is preferred to downstream these models (73). Bearing this in mind, Gemini models provide
support to fine-tune them and, while it is not clearly stated in their documentation, the method used for this
is likely Low-Rank Adaptation (LoRA)3 (74).

To fine-tune Gemini, a training set of input-output pairs should be submitted for the specific task. For
a zero-shot prompt approach, similar to the Section 3.3, the input examples should mirror the instructions
that will be provided for inference, enabling the model to internalize these patterns. Google recommends
providing a minimum of 100 examples for fine-tuning in a classification task and up to 500 for a summa-
rization task4.

Since there is a scarcity of labeled data, we adopted a pseudolabeling strategy. Pseudolabeling is a
semi-supervised learning method where a model trained on a small label set is used to generate labels for
an unlabeled dataset. Afterwards, labels with high confidence are used for further training.

The pseudolabeling can be described as the following iterative process. At each iteration n, the model
Mn is initialized from the final last state of the preceding model Mn−1. Next, Mn is fine-tuned on dataset
Dn. This dataset Dn comprises pseudolabels that were generated by Mn−1 on an unlabeled sample set Xn.
Let Mn,θ denote the specific instance of the Gemini or BERT model at iteration n with parameters θ, and
let L represent the loss function applied to Mn on Dn. The fine-tuning process can be expressed as shown
in Equation 3.1.

3 <https://medium.com/google-cloud/fine-tuning-gemini-best-practices-for-data-hyperparameters-and-evaluation-65f7c7b6b15f>
4<https://ai.google.dev/gemini-api/docs/model-tuning#size-recommendation>
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Mn = argmin
θn

n∑
i=1

L(Mi−1,θi−1
, Di−1) (3.1)

The central issue of applying pseudolabeling to fine-tune Gemini is that it does not output the proba-
bility of each token; hence, it is not possible to assess the confidence of the classification. Only the average
log probability, which is the average log probability of all tokens, is accessible. To overcome this matter, a
BERT model was also fine-tuned similarly as follows.

The initial base model for training M0 was gemini-1.5-flash-001-tuning. This model was
trained in our initial dataset D0, derived from STIXnet’s evaluation dataset (21), which contained 52 APT
reports with 1,407 entities. The dataset did not fully comply with STIX SDO; thus, we made minor
adaptations to this dataset so it strictly aligned with SDO. Since this dataset was going to be used in
BERT’s training as well, the texts were divided into spans of at most 128 tokens using the BERT tokenizer,
which resulted in 152 tagged spans.

Each entry was preprocessed before feeding it to the model. The source span was concatenated to an
instruction template, shown in Listing 3.2, to be used as training input. The training output is the list of
named entities and their classes, one per line.

Listing 3.2: Instruction template for training

1 Task: You are a cybersecurity expert. Extract STIX 2.1 Domain Objects.

Your task is Named Entity Recognition.

2 Format: <label>:<entity>

3 One entity per line.

4 Labels: location, identity, tool, malware, campaign, indicator,

vulnerability, threat-actor

5 Text:

We executed three successive rounds of fine-tuning on the Gemini model. At each round, a small
unlabeled sample was selected for inference. By doing this, the performance of model Mn gradually
enhanced, and only a small number of errors needed to be fixed. Therefore, it minimized any error that
might be propagated. This iterative process built an initial ground truth with enough number of instances
as recommended by Google. The resulting dataset contained 416 spans. Hyperparameters used are in
Table 3.4 and all models had the temperature set to 0.3. We started with a low learning rate for model M1

to avoid overfitting, as the initial dataset was small, and the texts showed some similarity.

Table 3.4: Training parameters used in Gemini fine-tuning

Parameter M1 M2 M3

Epoch Count 5 10 10
Batch Size 4 4 4
Learning Rate 0.001 0.0005 0.0005
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Along with Gemini, a set of BERT models was trained in the same fashion over the same datasets.
BERT resulting score for each label was used as prediction confidence. To assess the results of both
Gemini and BERT models, their outputs were ingested in LabelStudio5, an open-source data labeling tool.

The complete iteration process is depicted in Figure 3.10. The last Gemini model M3 and the fine-
tuned BERT model were applied to a subset of 380 reports from the candidates. The resulting dataset was
then evaluated.

Figure 3.10: Iterative training of the models.

3.5 MANUAL REVIEW

The last stage of the pipeline is the manual review. This step mitigates the risk of propagating errors.
Additionally, it inserts the critical analysis of the annotator with experience in the field. In a complex
domain such as cybersecurity, it allows for verifying the outputs of text with ambiguous semantics.

LabelStudio enabled direct comparison of the models’ results. The inference of both models was input
to the tool. Along with it, entities found across multiple reports had their labels checked to assert the
correctness. When the models diverged in their labeling, the annotator selected the most appropriate label.

5<https://labelstud.io/>
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Figure 3.11: Review step.

The annotator had 10 years of experience in cybersecurity. Spans without entities are removed to favor
higher label density. The F1-score for the Gemini M3 model alone yielded an F1-score of 0.904.

3.6 YACSDBNER

YACSDBNER is composed of two parts. The first small set is the reviewed STIXnet’s evaluation
dataset used as the initial training dataset. Since it was manually reviewed to comply with SDO and also
used in training, this dataset was incorporated into the corpus. The second, larger part is the dataset built
from the manual review of the proposed labeling methodology.

The key characteristics of the dataset are summarized in Table 3.5. The sentence count was obtained
using the spaCy model, as detailed in Section 3.2. Spans were limited to a maximum of 128 tokens using
the BERT tokenizer. The total number of classes considered all labels, with both ’B-’ and ’I-’ prefixes and
the ’O’ class, adding up to 17 classes, whereas the total entities count considered the 8 SDO entities, taking
into account Subsection 2.2.4 and Section 3.1 regarding Attack Pattern. Figure 3.12 presents an example
of an annotated sentence in the dataset.

Table 3.5: YACSDBNER description

Sentences 24,878
Spans 8,169
Total Entities 15,140
Number of Classes 17
Source Reports 422
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Figure 3.12: An annotated sentence.
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4 EXPERIMENTS

The experiments that were carried out are presented in this chapter. The first experiment sets the base-
line for the remainder of the study. By observing the results of fine-tuning BERT models in a cybersecurity
dataset, the main goal of the study, we established the design of the following steps. This analysis sup-
ported the strategy for the experiment with Gemini models. Based on the available information at the time,
the best-performing Gemini model was selected from different training strategies.

The main experiment is to employ the YACSDBNER dataset on fine-tuning of different models. De-
tailed results enabled the comparison among them as well as to assert possible limitations of the dataset.
Each model is scrutinized to understand the outcomes.

4.1 BERT FINE-TUNE EXPERIMENT

Before engaging the classification task with Gemini, an initial assessment was performed with BERT
models applied to STIXnet’s evaluation dataset. The dataset only had 152 spans, which is substantially low
when considering the studies in Section 2.4. Such a small dataset most probably would lead the model to
overfit. Nevertheless, this small assessment could provide insights for a first design.

BERT is the baseline model for many studies. For this study, we also selected the BERT base cased
model as a baseline for the initial dataset. Along with it, we also selected SecBERT and SecureBERT to
allow comparison. The models were loaded from the Hugging Face Transformers package.

Two different approaches to train BERT were taken into consideration. In the first instance, the training
loop code was developed to ensure a basic start. The process involved running the training function on
all batches for the chosen number of epochs. Afterwards, the model was put in training mode so the
weights could be adjusted, the accuracy of inferences was computed for active labels, backpropagation
was performed, and optimization was applied. The second method consisted of employing Hugging Face’s
Trainer class. This class implements the training using the passed parameters.

The results for this assessment are illustrated in Figure 4.1. The models were trained for five epochs
with a learning rate of 1e−5 and a train batch size of 4. The model with the lower train loss was a BERT
base cased model trained with Trainer. Therefore, this setup was later explored in a classification task.

4.2 GEMINI EXPERIMENT

Before proceeding with the classification task of Section 3.4, three different approaches were tested.
Though the iteratively trained model M3 was expected to have good performance, a cautious investigation
was deemed necessary.
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(a) Custom implementation (b) Hugging Face’s Trainer implementation

Figure 4.1: Training loss curve for BERT fine-tuning in STIXnet’s dataset.

Once we had a large enough dataset for training Gemini, two additional models were trained on this
dataset. The first model, Mall,4, was trained on the entire dataset in a single job, utilizing the same hyper-
parameters as model M3, detailed in Table 3.4. Similarly, the second model, Mall,8, was also trained in the
entire dataset in a single phase, employing the same hyperparameters as M3, except the batch size, which
was set to 8.

(a) M1 (b) M2 (c) M3

Figure 4.2: Mean loss for models from Table 3.4.

(a) Mall,4 (b) Mall,8

Figure 4.3: Mean loss for models training in the whole dataset.
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Figure 4.2 presents the mean progression for the models trained through an iterative process. The iter-
ative approach aimed to gradually enhance performance while mitigating overfitting on the small training
dataset. Conversely, Figure 4.3 depicts the mean loss curve for the models trained on the complete training
dataset. The last value of the mean loss for each model is shown in Table 4.1.

Table 4.1: Mean Loss for Gemini Models

Model Mean Loss
M3 0.075
Mall,4 0.423
Mall,8 1.116

Model M3 seems to benefit from its iterative approach and converges to a lower loss. Additionally,
there is a slight difference in train stability among the models. Since lower loss generally indicates a more
accurate prediction, and training stability points to more consistent learning, model M3 was selected to be
employed in the classification task of Section 3.4.

4.3 YACSDBNER EXPERIMENT

This experiment was conducted to assess the quality of the dataset for fine-tuning and benchmarking
models. To assess the utility of the dataset for NER, we fine-tuned seven BERT-like models on this task.
The laboratory environment consisted of a Google Colab Python 3 environment with an NVIDIA T4 GPU.

We split the dataset into a 70:15:15 ratio for training, validation, and testing sets. As a baseline, we
employed BERTfrozen, a BERT base cased model with frozen weights where only the classifier head was
trained. This practice enables us to compare how the BERT model performs in this specific task before and
after fine-tuning, isolating the contribution of the training. Additionally, we evaluated a standard BERT
base cased model without any self-supervised DAPT. These models were compared against CyBERT (12),
CySecBERT (19), and SecBERT, which are three DAPT BERT versions, as well as against SecRoBERTa
and SecureBERT (17), which are two DAPT RoBERTa versions. All these models are domain-adapted to
cybersecurity datasets.

For NER, the simplest arrangement is to apply a simple classifier head Linear(768 → 17) on top of
each model, following the original BERT (7) approach. These models were fed with identical training,
validation, and testing datasets. To run the fine-tuning, we employed Hugging Face’s Trainer, as in Sec-
tion 4.1, passing the same hyperparameters: 5 epochs, a training batch size of 8, a validation batch size of
2, and a learning rate of 1e− 05. All other parameters were set to their default values.

4.4 RESULTS AND DISCUSSION

The models’ computed metrics are presented in Table 4.2. These are the outcomes of training with the
YACSDBNER dataset. BERTfrozen results highlight the complexity of the cybersecurity domain and the
need for adaptation specifically to this domain. Furthermore, when comparing its performance to other
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Table 4.2: BERT models results

Precision Recall F1-score
BERTfrozen 0.136 0.000* 0.001
BERT 0.767 0.806 0.786
CyBERT (12) 0.578 0.629 0.603
CySecBERT (19) 0.567 0.630 0.597
SecBERT 0.552 0.519 0.535
SecRoBERTa 0.572 0.528 0.549
SecureBERT (17) 0.750 0.791 0.770

*value is small, but not zero

models, it indicates that this dataset is suitable for NER. Since each was computed from the same starting
point, this dataset can serve as a benchmark for evaluating them.

The general-purpose BERT outperformed all DAPT models in all metrics. Its results were closely
followed by the SecureBERT model, which is a RoBERTa model. The performance of the remaining
DAPT models was notably suboptimal.

Both SecBERT and SecRoBERTa were pretrained on the same dataset. These models have close per-
formance, with a slight advantage to the RoBERTa model. Even so, they have the lowest F1-score in
Table 4.2. CyBERT and CySecBERT are adapted from BERT models, yet all these four models achieve
similar precision scores.

To help understand the results, further metrics are analyzed. The performances of BERT and Secure-
BERT are much alike during evaluation, as depicted in Figure 4.4. SecureBERT has even a negligibly
lower loss and a higher F1-score than BERT in the evaluation step, indicating the models have comparable
results.

(a) Loss curves (b) F1-score curves

Figure 4.4: Evaluation scores.

A confusion matrix visually represents the performance of classification models. In multi-class classi-
fication, it offers insights into classification errors and potential areas for model improvement. Predicted
labels are aligned with the columns, while the true, expected labels correspond to the rows. Figure 4.5
illustrates the confusion matrices generated by the suboptimal models, whereas Figure 4.6 presents the
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confusion matrix for SecureBERT. It is important to note that the order of the labels is not consistent across
these figures.

At first, an imbalance is observed among classes. Underrepresented classes are harder to model, which
leads to unpredictable behavior. For instance, the class "B-campaign" is most classified as "B-identity" by
SecBERT, "B-threat-actor" by SecRoBERTa, and "B-malware" by SecureBERT, while CyBERT handles
it the best. SecureBERT shows some confusion between "B-indicator" and "B-malware". The models
consistently have trouble with the "B-malware" class, and misclassify it as "B-threat-actor", "B-tool", "B-
indicator", and "B-identity". Interestingly, mistakes occur in similar amounts for suboptimal models. The
"B-tool" class is most often attributed to "B-indicator", and "B-threat-actor" to "B-malware".

(a) CyBERT (b) CySecBERT

(c) SecBERT (d) SecRoBERTa

Figure 4.5: Confusion Matrices

Nevertheless, this comparison also underlines a significant opportunity for improvement in the model
adaptation process within the cybersecurity domain.
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Figure 4.6: SecureBERT’s Confusion Matrix

4.4.1 Discussion

While there are different goals for applying NLP in the cybersecurity domain, the analyzed research in
cybersecurity related to NER shows much interest in identifying IoCs, TTPs, and CTI entities, as observed
in Table 2.2. The findings are similar to the results of Rahman et al (13). Also, these are the main topics of
datasets from Table 2.4.

RQ1. What are the main goals to which the datasets are designed in the cybersecurity domain?

The principal objectives of datasets in the cybersecurity domains align with tasks of IoC extraction,
TTP classification, and cybersecurity-related entities extraction.

Nevertheless, the publicly available datasets are scarce, even though there are many cybersecurity
texts. This is noted in most research and is frequently associated with the high need for resources for the
annotation task. When the annotation is performed, usually a small team is employed. Considering this
scenario, we formulate this answer.

RQ2. Which are the common constraints in the dataset generation?

The high need for time and human resources is a common constraint in dataset annotation. The anno-
tation task takes a long time to complete, and most teams may not have enough specialists for the duration
of the task.

To address these constraints, the labeling pipeline presented in Section 3.1 leveraged Gemini as a naïve
pre-evaluation tool for the report selection, yet this selection introduced the bias of this model. Most
common named entities, which are present in tasks it evaluates, such as MMLU, may not represent the
performance for cybersecurity-related named entities, introducing bias towards general named entities.
This comparison can be easily conducted with YACSDBNER.
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The experiments in Section 4.2 evaluated the strategies for the assistant Gemini model, indicating that
an iterative fine-tuning, as run to train M3, achieved better metrics than training on the whole dataset at
once, yielding an F1-score of 0.904. The iterative training resembled curriculum learning (75) by gradu-
ally introducing representative reports in pseudolabeling. This result does not imply good generalization,
considering that pseudolabeling can propagate errors within the dataset and introduce a confirmation bias.
The iterative process helps mitigate those issues; moreover, cross-validation strategies, such as k-fold, can
further improve this mitigation. This scenario is particularly true when it comes to the class imbalance,
which was observed in Figures 4.5 and 4.6.

The assisted labeling process maximized the annotator’s effort, which can be quantitatively assessed to
establish a robust procedure to estimate resource needs for labeling a corpus. Approximately 25,000 sen-
tences were annotated with a single annotator. The process, as regards resource employment, accomplishes
a notable deed when compared to APTNER (18), which required 36 annotators with different skill levels
to label nearly 11,000 sentences. An even larger dataset, such as Few-NERD (65), employed 70 annotators
and 10 experienced experts, making this is resource-intensive task.

RQ3. How to efficiently build the dataset?

We propose that our LLM-assisted methodology, exploiting an iterative training, is efficient to create a
labeled dataset.

However, the annotation process introduces bias that must be considered. Given the selected emphasis
on higher entity density in the dataset, training strategies should consider employing measures to mitigate
potential overfitting. Higher entity density does not tackle the class-imbalance problem. The scarcity
of data, therefore, of instances of low-represented classes, impacts the models’ performance, increasing
misclassification (76). Introducing artificial instances and noise could improve the generalization capability
of the models.

YACSDBNER presents advantages over existing public datasets for cybersecurity NER tasks. Mal-
wareTextDB (63) focuses specifically on malware analysis; however, CTI relies on up-to-date information,
and this dataset comprises older reports and does not encompass key STIX entities. DNRTI (67) improves
representativeness compared to MalwareTextDB, but it still omits SDOs. Hanks et al (69) provides a pub-
lic corpus without annotations, requiring additional effort for NER. APTNER (18) is a valuable resource
with labels for indicators; however, sources and dates of reports are neglected, and a workforce of 36 an-
notators poses practical limitations, which makes an LLM-assisted annotation more accessible. Finally,
AttackER (70) includes fewer sentences and annotated entities compared to YACSDBNER.

Moreover, these datasets can advance NLP in the landscape if employed alongside. Aligning the classes
in them using a common language, such as STIX, addresses the scarcity of data in the cybersecurity do-
main. Furthermore, NER would benefit from a comparison among the datasets to assess quality in terms
os representativeness and label coverage.

The performance of fine-tuned models highlights the challenges of supervised NER in the cybersecurity
domain. The number of classes may be a limitation for BERT models, as it was observed in general-purpose
settings (65). Conversely, the results achieved by BERT reinforce the advantages of downstreaming in a
domain. However, the observed suboptimal performance of DAPT models warrants further investigation.
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This finding draws parallels with results in Zanella and Toussaint (77) in the biomedical domain, where
certain models did not outperform BERT when employing linear classifiers. Notably, SecureBERT, a
RoBERTa-based model, incorporates larger vocabulary modifications – representing 0.35% of total tokens,
compared to approximately 0.03% for CyBERT – and benefits from pre-training on a larger corpus than
both CyBERT and CySecBERT. Benchmarking with the YACSDBNER dataset allowed a direct compari-
son of models, suggesting that SecureBERT’s adaptation strategy is better suited for this specific task. The
remainder DAPT models may have underperformed due to a mismatch between the linguistic style of their
pretraining corpus and that of the YACSDBNER reports.

Nonetheless, the overall performance of these DAPT models should also be assessed in light of the
total dataset size and the distribution of entities in the task. Performing cross-validation is also desirable
for more sound results. This study did not intend to maximize these models’ performance; hence, an
investigation into the best set of hyperparameters, as well as tagging notation, could greatly improve their
performance.
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5 CONCLUSION

We introduce YACSDBNER, a publicly available dataset for Named Entity Recognition in the cyber-
security domain, structured around the STIX language. The dataset comprises 24,878 sentences from 422
cybersecurity reports in IOB format. Design choices for the dataset were based on a comprehensive review
of state-of-the-art architectures for the Named Entity Recognition task for many different goals in cyber-
security. YACSDBNER is designed for the extraction of STIX Domain Objects task, enabling easy CTI
sharing and supporting the construction of knowledge graphs.

Our dataset addresses key limitations observed in existing datasets by having up-to-date reports and a
STIX common language. In addition, we describe a semi-automated annotation pipeline with Gemini that
leverages a fine-tuned autoregressive LLM combined with a fine-tuned BERT model on an iterative label-
ing process. This process enabled the annotation of a cybersecurity corpus using a few annotators, which
can reduce annotation costs and promote community-driven dataset enhancement. Lastly, YACSDBNER

addresses the lack of benchmarks for NER models, which made models hard to compare, therefore sup-
porting the development of new models as well as their evaluation.

The dataset is applied for fine-tuning seven BERT-based models. By doing this, it is possible to observe
its effectiveness in the task it was built for: cybersecurity NER. Results support the use of YACSDBNER as
a benchmark. A deeper analysis of DAPT BERT models in the cybersecurity domain is deemed necessary,
as most of them had suboptimal outcomes. It was also noted that the SecureBERT domain adaptation
strategy benefited the most from our dataset. YACSDBNER advances the landscape of NER datasets
in the cybersecurity domain, enabling tasks such as the extraction of structured knowledge graphs from
unstructured text.

5.1 FUTURE WORKS

Many opportunities unfold from the results. For future work, we propose to further extend the labeling
process to the remainder of the reports and investigate the impact of the dataset size on the performance of
the models. Furthermore, the dataset would greatly benefit from comparing it to the existing datasets and
defining points of improvement in NER tasks.

With this foundational research, a diagnostic study will be undertaken to investigate the suboptimal
performance observed in DAPT models, encompassing a comparative analysis with other Transformer-
based architectures beyond BERT. Moreover, the development of strategies that leverage the available
public datasets jointly will be explored.
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I. STIX BUNDLE EXAMPLE

Listing I.1: STIX bundle from Figure 2.4

1 {

2 "type": "bundle",

3 "id": "bundle--49728cb0-964f-4300-b6ff-4d5fd5cf147c",

4 "spec_version": "2.1",

5 "objects": [

6 {

7 "type": "marking-definition",

8 "id": "marking-definition--e7e6db3f-3a54-4982-a723-09cb78d8bc91",

9 "created": "2025-05-25T00:00:00Z",

10 "definition_type": "statement",

11 "definition": {

12 "statement": "STIX Bundle Example. "

13 }

14 },

15 {

16 "type": "malware",

17 "spec_version": "2.1",

18 "id": "malware--ce59d4e9-96a2-4d98-92db-132b82e6c671",

19 "created": "2025-05-25T00:00:00Z",

20 "modified": "2025-05-25T00:00:00Z",

21 "name": "Guildma payload",

22 "malware_types": [

23 "remote-access-trojan"

24 ],

25 "is_family": false,

26 "sample_refs": [

27 "file--fbc452e0-1469-41ac-bbcb-00f9f04f37a7"

28 ]

29 },

30 {

31 "type": "malware-analysis",

32 "spec_version": "2.1",

33 "id": "malware-analysis--8749378b-9e64-4a63-a291-b059d7294e88",

34 "created": "2025-05-25T00:00:00Z",

35 "modified": "2025-05-25T00:00:00Z",

36 "product": "MadeUpAnalyzer",

37 "analysis_engine_version": "6.4.2",

38 "analysis_definition_version": "20250525-001",

39 "analysis_started": "2025-05-25T00:00:00Z",

40 "analysis_ended": "2025-05-25T00:00:00Z",

41 "result": "malicious"

42 },

43 {

44 "type": "relationship",
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45 "spec_version": "2.1",

46 "id": "relationship--b9b4907f-fd6e-43c7-8a3a-397fbce7ad0e",

47 "created": "2025-05-25T00:00:00Z",

48 "modified": "2025-05-25T00:00:00Z",

49 "relationship_type": "analysis-of",

50 "source_ref": "malware-analysis--8749378b-9e64-4a63-a291-b059d7294e88",

51 "target_ref": "malware--ce59d4e9-96a2-4d98-92db-132b82e6c671"

52 },

53 {

54 "type": "file",

55 "spec_version": "2.1",

56 "id": "file--fbc452e0-1469-41ac-bbcb-00f9f04f37a7",

57 "hashes": {

58 "MD5": "a92e5b2bae0b4b3a3d81c85610b95cd4",

59 "SHA-1": "5374e08903744ceeaedd8f5e1bfc06b2c4688e76"

60 },

61 "size": 77312,

62 "name": "guildma.exe",

63 "parent_directory_ref": "directory--38545efb-e159-4e44-943b-06a71a2f7b93"

64 },

65 {

66 "type": "directory",

67 "spec_version": "2.1",

68 "id": "directory--38545efb-e159-4e44-943b-06a71a2f7b93",

69 "path": "C:\\Program Files\\Diebold\\Warsaw\\"

70 }

71 ]

72 }
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