Proposta de uma arquitetura DevSecOps € os

impactos nos controles do PPSI (Programa de

Privacidade e Seguranca da Informacao): Um
estudo de caso

Tharcisio Mendonga
PPEE
Universidade de Brasilia - UNB
Brasilia, Brasil
tharcisio.mendonca@aluno.unb.br

Resumo—Este artigo propde uma arquitetura automatizada
de DevSecOps em ambiente de nuvem, a partir de um estudo de
caso, com 0 objetivo de avaliar seus impactos sobre os controles
do Programa de Privacidade e Seguranca da Informacao (PPSI)
e as boas praticas do CIS Controls v8. De natureza aplicada e
exploratoria, a pesquisa foi validada por meio de um laboratorio
experimental que integrou pipelines de integracio e entrega
continuas (CI/CD) com GitHub Actions, Docker, Kubernetes,
SonarQube, Trivy, Zaproxy, Prometheus, Grafana e Trend Micro
Workload Security, em infraestrutura provisionada na nuvem da
DigitalOcean. A arquitetura promove a incorporacao sistematica
da seguranca desde as fases iniciais do ciclo de vida do software,
assegurando automacfo, rastreabilidade e governanca continua.
Os resultados demonstram ganhos significativos em padronizacio
de ambientes, qualidade e seguranca do cédigo, eficiéncia ope-
racional e observabilidade, além de evidenciar a contribuicio da
arquitetura para o fortalecimento da maturidade em DevSecOps
e para a conformidade institucional com o PPSI e o CIS Controls
v8. A pesquisa oferece uma arquitetura replicavel voltado a
instituicoes piublicas de ensino, pesquisa e saide, contribuindo
para o avanco da governanca digital e da resiliéncia cibernética.

Index Terms—DevSecOps, Seguranca da Informacao, PPSI,
CIS Controls v8, CI/CD

I. INTRODUCAO

As institui¢cdes publicas de ciéncia e tecnologia em satde
exercem papel estratégico na consolidagdo do Sistema Unico
de Saide (SUS) e na promog¢do da inovagdo cientifica e
tecnoldgica [1]. A crescente digitalizacdo de processos e
servicos intensificou a dependéncia de infraestruturas em
nuvem e aplicacdes web, ampliando o volume de dados
sensiveis sob gestdo. Nesse cendrio, a protecdo da informacio
e a conformidade com politicas de seguranga tornaram-se
requisitos fundamentais para assegurar a continuidade dos
servicos e a confianca da sociedade. Entretanto, observa-se
que a maturidade em seguranga digital nessas instituicdes
ainda ¢é incipiente, marcada por processos fragmentados e
baixa automacdo, o que limita a eficiéncia operacional e a
capacidade de resposta a incidentes.

Prof. Dr®° Robson de Oliveira Albuquerque

PPEE

Universidade de Brasilia - UNB

Brasilia, Brasil
robson@redes.unb.br

Nas ultimas décadas, o avanco das metodologias 4geis e
o uso de infraestrutura em nuvem transformaram profunda-
mente o ciclo de desenvolvimento de software, exigindo maior
integracdo entre equipes de desenvolvimento e operacdo. O
movimento DevOps emergiu como resposta a essa demanda
[2], promovendo automacio, colaboragdo e entrega continua.
Contudo, a auséncia de praticas de seguranca integradas desde
as fases iniciais do ciclo de vida do software (SDLC) revelou
limitagdes significativas em termos de confiabilidade e confor-
midade [3]. Para mitigar essas lacunas, a literatura recente tem
enfatizado a evolucdo do DevOps para o DevSecOps, que in-
corpora seguranga como elemento transversal e automatizado
em todas as etapas do pipeline [4].

Estudos como os de Constante [4], Thota [5] e Alghawli e
Radivilova [6] evidenciam o potencial da automacao de testes
de seguranga, da andlise estdtica e dindmica de cddigo, e da
integracdo de infraestrutura como cédigo (IaC) em ambientes
de CI/CD. Outros trabalhos, como Rangaraju et al [7] e
Verdet e Silva [8], destacam o papel emergente da inteligéncia
artificial e da observabilidade continua na detec¢do de ameacas
e no reforco da conformidade. Em paralelo, frameworks de
referéncia, como o CIS Controls v8 e 0 OWASP DevSecOps
Maturity Model (DSOMM), t€m orientado a implementacio
de controles técnicos e processuais voltados a maturidade em
seguranga. No contexto governamental brasileiro, o Programa
de Privacidade e Seguranca da Informacdo (PPSI) tornou-se
um instrumento essencial para alinhar praticas institucionais
as exigéncias da Lei Geral de Protecdo de Dados (LGPD) e
as boas praticas internacionais de governanga da informagao.

Apesar dos avangos observados, a literatura ainda carece de
estudos aplicados que avaliem como a ado¢do de arquiteturas
automatizadas de DevSecOps impacta diretamente os controles
de seguranca e privacidade em institui¢des publicas, especial-
mente em ambientes de nuvem privada. A maior parte das
abordagens documentadas concentra-se em contextos corpo-
rativos ou industriais, com foco em padroniza¢do de pipelines
e automacdo de verificacdes técnicas, mas sem examinar sua

relagdo com programas de conformidade e governanca da
informacgdo. Além disso, observa-se uma lacuna na integracao
entre mecanismos técnicos de seguranca continua e dire-
trizes institucionais de privacidade e protecio de dados, o
que limita a capacidade de organiza¢des publicas evoluirem
para niveis mais altos de maturidade em DevSecOps. Ha,
portanto, uma necessidade de estudos que correlacionem
préticas técnicas automatizadas com frameworks normativos,
fornecendo evidéncias sobre os beneficios e desafios dessa
integracao.

Diante dessas lacunas, este trabalho tem como objetivo pro-
por uma arquitetura automatizada de DevSecOps em nuvem,
capaz de integrar seguranga, privacidade e governanga ao ciclo
de vida de desenvolvimento de software, avaliando seus impac-
tos sobre os controles do PPSI e as boas praticas do CIS Con-
trols v8. A pesquisa adota uma abordagem aplicada e explo-
ratdria, apoiada na constru¢do de um laboratdrio experimental
que implementa pipelines de integracdo e entrega continuas
com GitHub Actions, Docker, Kubernetes, SonarQube e Post-
greSQL.A proposta contribui para o avanco do conhecimento
cientifico e aplicado em seguranga no contexto DevSecOps, ao
apresentar uma arquitetura replicivel destinada a institui¢des
publicas que buscam fortalecer sua maturidade tecnoldgica
e postura de seguranga da informagdo. O estudo baseia-se
em um caso pratico conduzido em um 6rgao publico voltado
ao ensino, a pesquisa e a saude publica, configurando uma
referéncia para a adogdo de préticas integradas de seguranca,
automacdo e governanga digital.

O artigo estd estruturado da seguinte forma: a Secdo II des-
creve a metodologia e o delineamento experimental; a Secdo
IIT revisa os trabalhos relacionados; a Sec¢dao IV apresenta o
estudo de caso e a arquitetura proposta; a Secdo V analisa
os resultados obtidos; e a Secdo VI discute as conclusdes e
direcdes para trabalhos futuros.

II. METODOLOGIA

No contexto cientifico, a pesquisa pode ser classificada
de acordo com diferentes critérios. Entre eles, é possivel
diferenciar tipos de pesquisa de acordo com sua natureza,
objetivos ou procedimentos técnicos [9].

A presente pesquisa adota natureza aplicada, pois visa gerar
conhecimento direcionado a solucdo de problemas préticos
[9], especificamente o desenvolvimento de uma arquitetura
automatizada de DevSecOps em uma instituicdo publica de
ensino, pesquisa e saude.

Quanto aos objetivos, classifica-se como exploratéria, uma
vez que busca compreender e avaliar os impactos da adocao
do DevSecOps nos controles do Programa de Privacidade e
Seguranca da Informacdo (PPSI), proporcionando uma visio
inicial e abrangente sobre o tema.

Em relacdo a estratégia metodoldgica, a pesquisa € bi-
bliografica, documental e de estudo de caso.A pesquisa bi-
bliogrifica envolveu a andlise de artigos, teses, livros e
publicagdes indexadas, com buscas conduzidas em bases como
Scopus, IEEE Xplore, Web of Science, ResearchGate e ACM
Digital Library. Foram utilizados os termos “devsecops and

cloud” e “devops and cloud”, aplicando-se critérios de in-
clusdo e exclusdo, priorizando trabalhos mais citados, com
maior fator de impacto e mais recentes.

A pesquisa documental apoiou-se em normas, politicas e
controles relacionados ao PPSI e ao CIS Controls v8, forne-
cendo o arcabougo normativo para andlise. O estudo de caso
serd conduzido em uma instituicao publica voltada ao ensino,
a pesquisa e a saude publica, possibilitando a validacdo da
proposta em um ambiente real e multidisciplinar. Ao término, a
arquitetura desenvolvida serd testada em laboratério, e seus re-
sultados serdo analisados quanto aos impactos nos controles do
PPSI (Programa de Privacidade e Seguranca da Informagdo).

III. TRABALHOS RELACIONADOS

Este capitulo apresenta os principais estudos sobre o tema,
abordando praticas, ferramentas e modelos que integram
seguranga ao ciclo de desenvolvimento ao DevSecOps.

A. Etapas DevSecOps

Os aspectos de seguranga do DevSecOps abrangem a res-
ponsabilidade compartilhada pela seguranga, a automacio de
processos de segurancga, a integracdo continua de testes de
seguranga, a implementacdo de medidas de seguranga proati-
vas e a colaboracio entre as equipes. O principio fundamental
¢ a “mudanca para a esquerda”(’shift left”), que consiste em
integrar a seguranca nas fases iniciais do SDLC, em vez de
considera-la apenas como uma verificacdo final [2], [4], [10].

Alghawli e Radivilova desenvolveram um modelo de
seguranca DevSecOps voltado para um cluster de nuvem
resiliente, combinando ferramentas e metodologias automati-
zadas. A proposta incluiu um algoritmo de avaliag@o de risco
quantitativa em tempo real, baseado na metodologia FAIR, e o
uso do Método de Andlise Hierdrquica (AHP) para selecionar
o provedor de nuvem mais adequado entre AWS, Azure
e GCP. A arquitetura foi implementada com Infraestrutura
como Cddigo (Terraform) e pipeline CI/CD com Jenkins. Os
resultados indicaram a AWS como provedora mais adequada,
e os testes comprovaram a eficicia do modelo, com célculo
automatizado de risco financeiro (US$ 5.434,54) em menos de
um segundo durante a simulacdo de uma vulnerabilidade em
um bucket S3. [6].

O framework OWASP DevSecOps Guideline enfatiza a
importancia de incorporar a seguranca em todas as fases
do ciclo de vida do software [11]. Os principais objetivos
alcancados com as andlises e os testes propostos no modelo
DevSecOps sao:

o Identificar vulnerabilidades de software precocemente
(61, [71, [10]

¢ Reduzir riscos de seguranca e de negdcios. [6], [8], [10]

e Acelerar a velocidade do desenvolvimento com feedback
oportuno [10]

o Garantir a conformidade regulatéria [10]

o Construir uma cultura de seguranga [7]

¢ Melhorar a postura de seguranca de aplicativos e infraes-
trutura [10]

o Diminuir o tempo e o custo de corre¢do de problemas de
seguranca

O DevSecOps expande os conceitos centrais do DevOps
ao incorporar a seguranca em cada fase do SDLC [3].
Isso abrange planejamento, codificagdo, construcdo, teste,
implantagdo, operagdo e monitoramento, conforme apresen-
tado na figura 1.

REMEDIAR

Figura 1. Etapas DevSecOps (adaptado de Pessol [12]

Com base nos trabalhos relacionados [3]-[5], [11], [13]-
[15], form mapeadas algumas ferramentas para cada etapa,
conforme tabela I:

Tabela I
FASES DO DEVSECOPS E PRINCIPAIS FERRAMENTAS E CONTROLES
Fase do Objetivo Ferramentas Tipo de
CI/CD Principal DevSecOps Controle
.. .. Jira, Confluence, Planejamento de backlog
. Definir requisitos, :))
Planejamento Hiscos e politicas de ThreatModeler, seguro, modelagem de
(Plan) §é ur}m E ” OWASP Threat Dragon, ameacas, definicdo de
segurang GitHub Projects politicas e conformidade
Garantir cédieo GitHub / GitLab / Controle de versao,
Codificacio seouro des de%) Bitbucket, Visual revisdo de cédigo,
(Code) seg . Studio Code, GitLeaks, deteccdo de segredos,
desenvolvimento . P P
SonarLint, Semgrep andlise estatica local
Jenkins, GitHub Actions,
~ . GitLab CI/CD, Trivy CI, andlise SAST e
Construcao |Compilar e empacotar . -
(Build) com seeuranca Azure DevOps, SCA, verificacdo de
g < SonarQube, Snyk, dependéncias e containers
Dependency-Check
DAST - andlise dinamica
Validar seeuranca OWASP ZAPROXY, de aplicagdes, varredura
Testes . 8) g Burp Suite, Nikto, de vulnerabilidades em
funcional e légica . =
(Test) d licaca Gauntlt, Trivy, execugdo, testes
4 aplicagao Checkov, KubeLinter automatizados de
seguranga no pipeline
leera(;ao/~ ArgoCD, Spinnaker, Helm, C'D. seguro, assinatura
Implantaciao |Entregar software T . digital, controle de
) erraform, Ansible, .
(Release/ seguro e rastredvel . . segredos, infraestrutura
HashiCorp Vault, Cosign Py
Deploy) como c6digo
Oneracio Monitorar e manter Prometheus, Grafana, Observabilidade,
perac N ELK Stack, Splunk, Wazuh, monitoramento de logs e
(Operate) o ambiente seguro . . >
Sysdig Secure, Falco alertas, runtime security
Monitoracao
e Melhoria . . Grafana Loki, Datadog, Meétricas, auditorias,
. Aprendizado continuo L
continua e resposta a incidentes ELK, OpenTelemetry, incident response,
(Monitor e P Jira Service Management |melhoria continua
Feedback)

B. Padrées de seguranca e maturidade em pipelines DevSe-
cOps

Constante et al. propuseram uma abordagem sistematica
para integrar requisitos de padrdes de seguranca em pipelines
DevOps, voltada especialmente para ambientes industriais
altamente regulados, como os Sistemas de Controle Industrial
(ICS) [4]. O estudo aborda o conflito entre conformidade com
normas rigorosas, como a IEC 62443-4-1, e a manutencio de
curtos tempos de entrega, conforme apresentado na figura. 2. A
andlise demonstrou que 31% das atividades do padrdo podem
ser totalmente automatizadas, enquanto 38% ainda exigem
intervenc@o humana. Praticas como testes de seguranca (SVV)
e gerenciamento de atualizacdes (SUM) apresentaram alto po-
tencial de automacdo, ao passo que especificacio de requisitos
(SR) e criagdo de diretrizes de seguranca (SG) permanecem
majoritariamente manuais. A avaliacio com profissionais da
industria confirmou a utilidade da arquitetura para construir e
avaliar pipelines compativeis com padrdes de seguranga.

Pinto propde o desenvolvimento de um software de apoio
a adocdo da metodologia DevSecOps, integrando desenvol-
vimento, seguranga e operacdes de forma automatizada. A
solucdo, fundamentada em revisdo de literatura e nas melhores
préticas de seguranga, incorpora andlises SAST, DAST e SCA,
além de automacdo de infraestrutura e versionamento, visando
aumentar a transparéncia, reduzir o tempo de desenvolvimento
e aprimorar a qualidade e a seguranca das aplicacdes [3].
Aplicada inicialmente no Tribunal Regional do Trabalho da
21% Regido, a proposta contribui para disseminar a cultura
DevSecOps e oferece um modelo replicavel para outros érgaos
publicos.

C. Integragdo de Infraestrutura como Codigo (laC) em pipe-
lines CI/CD para automagcdo em Nuvem

Thota destaca o desafio de incorporar seguranca em ambi-
entes de desenvolvimento nativos da nuvem, que sdo rapidos e
ageis. A pesquisa utilizou uma abordagem mista, combinando
revisdo de literatura, andlise de casos reais (Google Cloud
e Microsoft) e experimentos praticos em um pipeline CI/CD
baseado em Kubernetes [5]. Foram integradas ferramentas de
SAST, DAST, scanners de dependéncias e [aC para avaliar sua
eficiacia. Os resultados mostraram alta precisdo na deteccio
de vulnerabilidades — 92% para SAST e mais de 80% para
IaC —, embora com sobrecarga de desempenho de 12-18%
no tempo de execugdo. O estudo também destacou desafios
de complexidade das ferramentas, falsos positivos (9%) e
resisténcia cultural dos desenvolvedores, concluindo que a
automacdo de seguranga é essencial e transformadora para o
DevSecOps, equilibrando velocidade e seguranga [5].

Verdet e Silva realizaram um estudo empirico sobre a
adocdo de préaticas de seguranca em Infraestrutura como
Cédigo (IaC), considerando os riscos de vulnerabilidades
introduzidas por configuracdes incorretas em ferramentas
como o Terraform. A pesquisa categorizou 287 politicas de
seguranga para AWS, Azure e GCP, com base em padrdes
da inddstria, e analisou 812 projetos de cddigo aberto no
GitHub utilizando a ferramenta Checkov [8]. Os resultados

Continuous Improvement and Feedback

//

/
e

AN

SM

Security Management

N

(

7

Management of security-related issues
\ DM

N

SR

Security
Requirements
Svv

q Secure
Secure Design q
D Implementation

Secure Verification and
Validation Testing

Third-party
component
verification
(part of sM)

o

~®

Code base
(Source,
Libraries)

/

@
Customer
expresses

Test M
(Binary)

Test Release
I
I

Security Guidelines Sy Ui
G Management
SuMm
@

can use !

.
| functionality
i
I

Pre- Production-
production mirror
(Binary) (Binary)

Production
(Binary)

need
Backlo
(User stories)

N
Continuous Integration >

Continuous Delivery >
N

| @ vy
@ b Operate
I
need
= Analytics PN
(Logs) ‘\ (

‘ Continuous Deployment

Customer
Continuous Feedback J

Figura 2. Pipeline DevOps em conformidade com o padrdo de seguranga IEC 62443-4-1 (tradug@o nossa) [4]

mostraram que as politicas de controle de acesso s@o as mais
implementadas, enquanto as de criptografia em repouso sio
frequentemente negligenciadas. Além disso, foi identificada
uma correlacao positiva entre a popularidade dos repositorios
(nimero de estrelas) e a adocdo de praticas de segurancga,
indicando que projetos mais reconhecidos tendem a manter
configuragdes de infraestrutura mais seguras [8].

Rangaraju et al. investigaram a integracdo de estratégias
de Inteligéncia Artificial (IA) no framework DevSecOps para
fortalecer a seguranca em ambientes de nuvem. O estudo
destaca o DevSecOps como uma mudanga cultural que une
desenvolvimento, seguranca e operacdes, enquanto a IA am-
plia suas capacidades ao possibilitar detec¢ao avancada de
ameacas, gestdo proativa de riscos e respostas automatizadas
[7]. Os autores demonstram como algoritmos de IA podem
analisar grandes volumes de dados em tempo real, identificar
anomalias e adaptar-se a ameagas emergentes. A pesquisa
também detalha a aplicacdo da IA nas fases de Integracdo
Continua (CI), Entrega Continua (CD) e Infraestrutura como
Cdédigo (IaC), além de discutir desafios técnicos e éticos da
implementagdo, propondo boas praticas e recomendacdes para
uma adocdo eficaz.

D. Relagdo DevSecOps com Framework PPSI — Programa de
Privacidade de Seguranca da Informagdo

O Programa de Privacidade e Seguranca da Informacdo
(PPSI) € crucial para os 6rgdos do Governo Federal, visando
elevar a maturidade e a resiliéncia em privacidade e seguranga
da informacdo. Ele estabelece diretrizes e controles para pro-
teger dados e sistemas de informa¢do, aumentando a confianga
dos cidadios nos servicos digitais [16]. A ndo conformidade
com o PPSI pode acarretar diversos impactos negativos para
a organizacdo, incluindo:

o Sancdes financeiras: Multas por descumprimento das

regulamentacdes de privacidade e seguranca, como a
LGPD, que o PPSI visa apoiar [16]

« Danos a reputagdo: Perda de confianca dos cidadaos e de
outras partes interessadas devido a falhas na protegdo de
dados e seguranga dos sistemas

o Responsabilidade legal: Acdes judiciais e outras con-
sequéncias legais decorrentes de incidentes de seguranga
e violagdes de privacidade [2]

« Interrup¢do de servigos: Incidentes de seguranga podem
levar a indisponibilidade de sistemas e servigcos criticos
[8].

o Perda de dados: Violagdes de seguranca podem resultar
na perda ou roubo de informag¢des confidenciais [8], [10]

o Escrutinio regulatério: Maior supervisdo e auditorias por
parte dos drgaos reguladores [2], [10]

A integracdo de controles de segurancga e privacidade nos
pipelines reforca a efetividade do PPSI, garantindo confor-
midade com normas de governanca e principios de confi-
dencialidade, integridade e disponibilidade. Essa abordagem
automatiza verificagdes de compliance, reduz vulnerabilidades,
fortalece controles de acesso e aprimora a rastreabilidade de
riscos, alinhando-se 8 LGPD. Assim, as instituicdes aumentam
a eficiéncia operacional e mantém o compromisso ético e legal
com a protecdo de dados sensiveis. Dessa forma, ao adotar esta
arquitetura automatizada de DevSecOps em um ambiente de
nuvem privada, busca-se obter os seguintes beneficios:

o Melhoria na deteccdo e resposta a ameagas cibernéticas
[17].

¢ Reducdo de vulnerabilidades e riscos de seguranca [10].

o Aceleragdo do ciclo de vida do desenvolvimento com
seguranga [2], [17]

o Conformidade continua
seguranga [2], [10]

o Redugdo no nimero de incidentes de seguranca [7]

com regulamentagdes de

A correlacdo do DevSecOps com os controles do PPSI pode
ser estabelecida conforme tabela II:

Tabela II
RELACAO DO OWASP DEVSECOPS GUIDELINE COM CONTROLES DO PPSI

Framework "OWASP DevSecOps Guideline”

Framework ”PPSI”

Correlacao entre Frameworks

Andlise de Requisitos de Seguranca e

Modelagem de Ameagas Control 16: Seguranca de Aplicacdes

A modelagem de ameacas e a andlise de requisitos de
seguranga estdo incluidas no controle de seguranca de
aplicacdes e nos processos de desenvolvimento seguro

Andlise de Cédigo Estdtico (SAST) e

Andlise de Composigdo de Software (SCA) Control 16: Seguranga de Aplicagdes

Ferramentas de analise estatica e dinamica verificam
praticas de codificagdo seguras e o gerenciamento de
componentes de terceiros faz parte da seguranga

Control 3: Protecao de Dados
Varredura de Segredos
Control 5: Gestao de Contas

Control 4: Configuracdo Segura de Ativos Institucionais e Software

A protecdo de dados sensiveis, configuracio segura e
gestdo de contas abordam a varredura de segredos.

Andlise de Configuragio de IaC

Control 4: Configuracdo Segura de Ativos Institucionais e Software

A configuragao segura de ativos contempla o uso de
versionamento e IaC.

Control 16: Seguranca de Aplicacdes
Varredura de Contéineres

Control 2: Inventdrio e Controle de Ativos de Software
Control 7: Gestao Continua de Vulnerabilidades

A seguranca de contéineres € tratada por controles de
configuracio, inventdrio e gestdo de vulnerabilidades.

Testes de Seguranga Dindmicos (DAST) Control 16: Seguranca de Aplicagdes

Ferramentas dinamicas sdo usadas para testes de
seguranca em aplicacdes.

Testes de Seguranca Interativos (IAST) Control 16: Seguranca de Aplicacdes

Andlise estatica e dinamica é combinada para o ciclo de
vida da seguranca de softwares.

Testes de Seguranca de API Control 16: Seguranca de Aplicagdes

A seguranca de APIs ¢ integrada ao desenvolvimento
seguro e a verificagdo no c6digo

Testes de Penetracdo Control 18: Testes de Invasdo

Testes de invasdo simulam agdes de invasores e estdao
ligados a auditorias.

Testes de Seguranca de Tempo

de Execucido (RASP) Control 16: Seguranca de Aplicagdes

Control 13: Monitoramento e Defesa da Rede

Protecao em tempo de execugao esta presente no
monitoramento de rede e na seguranga de aplicacdes

Auditorias de Seguranga Control 8: Registros (Logs) de Auditoria

Control 18: Testes de Invasdo

Control 30: Avaliagdo de Impacto, Monitoramento e Auditoria

Auditorias verificam a eficicia das medidas de protegao
e sdo associadas a logs e testes de invasao.

Monitoramento de Seguranga

Control 7: Gestao Continua de Vulnerabilidades

Control 13: Monitoramento e Defesa da Rede

Control 1: Inventdrio e Controle de Ativos Institucionais
Control 30: Avaliagdo de Impacto, Monitoramento e Auditoria

Monitoramento envolve defesa de rede, gestdao de
vulnerabilidades, inventério de ativos e auditoria,
incluindo o uso de SIEM

Treinamento e Conscientizacdo
em Seguranca

Control 16: Seguranca de Aplicagoes

Control 14: Conscientizagdo e Treinamento de Competéncias sobre Seguranca|Controles especificos garantem treinamento e
Control 23: Conscientiza¢do e Treinamento

conscientizacdo em ciberseguranca, privacidade e
codifica¢do segura.

Melhoria continua

Pipeline CI/CD Github Actions

(® Seguranga (SIEM/XDR) / Observabilidade (Métricas) (@

ClI (Integragao Continua)

SAST

1

1

1

1

i

CD (Entrega/Implantagao Continua) :
i

1

DAST :
i 1

1

Imagem 1 Deploy . Deploy
Docker _{ Staging Aprovagao Produgao

e/

1
1
i
1
1
1
i
1
1
1
1
1
1
1
! 3) @
Docker
Plan Git ol Teste
)
1
1
1
1
1
1

Notificagdo / Roolback

Figura 3. Arquitetura DevSecOps proposta (Elaborado pelo autor)

IV. PROPOSTA DA ARQUITETURA

A proposta apresenta uma arquitetura de pipeline Dev-
SecOps que utiliza tecnologias amplamente adotadas na
indastria, como Docker, Kubernetes, GitHub Actions e So-
narQube, com o objetivo de incorporar seguranga e automacao
em todas as etapas do processo. Além disso, foram considera-
das as solugdes tecnoldgicas ja adotadas pela institui¢do onde
o estudo de caso serd realizado, de modo a garantir aderéncia
ao ambiente existente e maior viabilidade prética da proposta.

Conforme apresentado na figura 3, a arquitetura estd divida
em fases e contempla ambientes de homologa¢do (staging) e

producdo, propondo praticas que vao desde o versionamento
seguro do cédigo até o monitoramento continuo em runtime,
a partir de pipelines CI/CD. Ao detalhar cada fase, busca-se
demonstrar como a integracdo de ferramentas e metodologias
pode reduzir riscos, aumentar a confiabilidade das entregas
e fortalecer a postura de seguranca organizacional. A seguir,
apresentam-se as fases da arquitetura, acompanhadas das fer-
ramentas utilizadas e das acdes previstas em cada etapa:

1) Planejamento e Versionamento: Definir requisitos,
politicas e riscos de seguranca antes do desenvolvimento.

Ferramenta:

o GitHub: Push e Pull Request (PR) na brach main (Cédigo
para producdo)

Acoes:

o Defini¢do de estratégia de branching:
main (produ¢do), develop (homologacdo), feature/*, hot-
fix/*.

o Configuracio de branch protection rules:
PR obrigatério, revisdo dupla, status checks obrigatérios
(build + SonarQube).

o Seguranga no repositério:
Commit signing (GPG) para autenticidade.
Dependabot para alertas de dependéncias vulneraveis.

o Integracdo com Issues/Projects para rastrear backlog de
seguranca e funcionalidades.

o Criacdo da Worflow para execug¢do da pipeline via Github
Actions

Saidas:

o Cddigo versionado, com baseline de seguranca aplicado.

o Requisitos de seguranca documentados.

« Backlog priorizado.

o Estrutura de repositério e controle de acesso configura-
dos.

2) Codificacdo (Code): Garantir cédigo limpo, seguro e

rastreavel desde o inicio.

Ferramenta:

o GitHub — versionamento, code review e integracdo com
ferramentas de seguranca.

o SonarQube (SAST) — andlise estdtica do cédigo, iden-
tificando vulnerabilidades, mas praticas e falhas de
seguranca antes da compilagdo.

Acoes:

« Build da aplicagdo:

Multi-stage Dockerfile (fase build + fase runtime slim).
Validacdo de Dockerfile com Hadolint.

o Testes automatizados:

o Integracdo — containers efémeros no GitHub Actions.

o SonarQube Scan:

Quality gate configurado (minimo de 80% cobertura de
testes, 0 vulnerabilidades criticas).
Relatérios salvos como artefatos no pipeline.

Saidas:

« Controle de versodes rastredvel no GitHub.

o Cddigo seguro e validado (sem vulnerabilidades criticas).

e Relatorios SAST (SonarQube).

3) Construgdo (Build): - Criar artefatos de build e imagens

de contéiner seguras.

Ferramentas:

o Docker — empacotamento e isolamento de aplicacdes em
contéineres.

Acoes:

o Build de imagem com tags:
app:1.0.0 (semantica) + app:commit-sha + app:latest.

« Politicas de aprovacdo:

« Publicag@o no repositério de imagens

Saidas:

o Criag@o da imagem docker
o Imagem publicada no repositério

4) Testes (Test): - Validar a seguranca da imagem em

execucdo e do ambiente.

Ferramenta:

o Trivy (SCA) — andlise de vulnerabilidades em imagens
Docker, bibliotecas e dependéncias de cédigo aberto.
Acoes:
¢ Scan de imagem Docker com Trivy.
o SCA (dependéncias):
Trivy verifica pacotes/bibliotecas vulnerdveis (CVEs).
Saidas:

e Imagem Docker validada e livre de vulnerabilidades
criticas.

o Relatérios SCA (Trivy).

o Artefatos prontos para teste e implantagao.

5) Liberacdo e Implantacdo (Release/Deploy): Realizar

deploy automatizado e seguro da aplicag@o.

Ferramentas:

o OWASP ZAP (ZAPROXY) (DAST) — executa testes
dindmicos simulando ataques reais contra a aplicacdo em
execugao.

Acoes (Staging/Homologacao):

o Aplicacdo de manifests Kubernets

o Namespaces Staging

e DAST (Dynamic Application Security Testing): detecta
vulnerabilidades como inje¢des, autenticacdo fraca e
exposi¢do de dados sensiveis.

Aprovacao (Manual):

o Responsdveis: Lider de desenvolvimento (Qualidade) e
Seguranga da Informacgdo

o Relatorios SonarQube.

¢ Scans de imagem Trivy.

e Logs dos testes DAST/performance.

o Registro formal da aprovagdo (evidéncias armazenadas).

Acoes (Produciao):

e Aplicacdo de manifests kubernets

o Namespaces Producao

o Observabilidade: Prometheus (métricas), Grafana (dash-
boards)

Saidas:

o Aplicag¢do implantada com politicas de seguranga defini-
das.

o Infraestrutura como cédigo rastredvel.

o Relatérios DAST com vulnerabilidades classificadas.

o Corregdes priorizadas antes do deploy.

o Aplicagdo validada em producio.

6) Operacdo (Operate): Monitorar os ambientes, garantir

conformidade e detectar incidentes.

Ferramentas: Trend Micro Workload Security — protegdo

em tempo de execucdo (runtime security).

Acoes:

o Monitorar cargas de trabalho em execugdo (VMs, contai-
ners, pods).

o Detectar vulnerabilidades e comportamentos andmalos.

o Aplicar correcdes automdticas e politicas de conformi-
dade.

Saidas:

o Logs e alertas de seguranca centralizados.
o Ambiente protegido contra ameacgas em tempo real.
o Relatérios de conformidade e vulnerabilidades.

7) Monitoragdo e Melhoria continua: Obter visibilidade
continua e promover melhoria do ciclo DevSecOps.
Ferramentas:

o Prometheus — coleta de métricas de desempenho e even-
tos.

o Grafana — visualizag@o de dashboards e alertas.

Acoes:

o Observabilidade completa:
Logs centralizados
Métricas de performance e seguranca (Prometheus).
Dashboards em Grafana.

o Alertas automaticos.

e Seguranca continua:
TrendMicro Workload detecta execugdes ndo autorizadas.
Revisao periddica de imagens no registry.

« Feedback loop:
Incidentes e vulnerabilidades viram issues no backlog.
Reforco da cultura de seguranga no ciclo.

Saidas:

o Dashboards e alertas de seguranga operacionais.
« Indicadores de desempenho e seguranca (KPIs).
o Acgdes corretivas e melhorias para o ciclo seguinte.

V. IMPLEMENTACAO DA ARQUITETURA

Este capitulo apresenta o processo de implementacdo da ar-
quitetura DevSecOps proposta, tomando como base o cendrio
real do estudo de caso. Inicialmente, descreve-se o ambi-
ente atual e seus principais desafios; em seguida, realiza-
se a avaliacdo de maturidade utilizando o modelo OWASP
DSOMM, identificando lacunas e oportunidades de melhoria.
Por fim, detalha-se a implementacdo préitica da arquitetura,
demonstrando como suas etapas, ferramentas e controles foram
integrados para validar o modelo em ambiente de nuvem.

A. Cendrio atual

Uma instituicio centraliza sua oferta de tecnologia para suas
diversas unidades internas por meio de uma infraestrutura de
nuvem privada. Uma parcela significativa dos servigos dispo-
nibilizados consiste na provisdo e gerenciamento de aplicacdes
e websites. Essa arquitetura é sustentada por um modelo
de Infraestrutura como Servico (IaaS), no qual a equipe de
TI dessas unidades é responsdvel por gerenciar 0s recursos
computacionais subjacentes — como servidores virtuais, ar-
mazenamento e redes — sobre os quais as plataformas CMS
sdo instaladas e gerenciadas por essas unidades, semelhante
ao apresentado na figura 4.

Internet 4 Data Center\

Servidor a(alicag.ao

o)

&)
_3 Portal B <E - <fto - — _ 'vla
Al---- - —> sTee ap
,'7 <E“s€tp - &8

o aa
Al - _ Y,

Figura 4. Cendrio atual do estudo de caso

Este modelo, embora flexivel, apresenta desafios de
padronizagdo, seguranga e manutencdo em escala, uma vez
que cada site pode ter suas proprias configuragdes, plugins
e ciclos de atualizagcdo. Além do mais, podemos destacar os
principais problemas:

1) Cada aplicacdo precisa ser instalada diretamente no

servidor (fisico ou virtual).

2) O sistema operacional precisa ter as dependéncias (bi-
bliotecas, pacotes, frameworks, versdes de linguagem)
compativeis com cada aplicacio.

3) A configuracdo é manual e altamente suscetivel a erros
(ex: conflitos de versdes, “funciona na minha méaquina
mas ndo no servidor”).

4) Escalabilidade é limitada: replicar o ambiente exige
reinstalacdo ou clonagem complexa de servidores.

5) Atualizagdes e rollback sdo trabalhosos: € necessario
mexer diretamente em pacotes e configuracdes de
produgdo.

6) Nao € escaldvel — Deploy manual via SFTP nio acom-
panha o crescimento e exige intervengdo humana.

7) Nao é seguro — Desenvolvedores tém acesso direto a
producdo; credenciais podem vazar; auséncia de DevSe-
cOps (pipeline automatizado).

8) Nao ¢é resiliente — Uma vulnerabilidade em uma
aplicacdo pode comprometer todo o ambiente (efeito
domind).

9) Naio ¢ rastredvel — Alteracdes ndo t€m versionamento
nem auditoria formal.

10) Nio segue boas préticas modernas — Faltam controles
de CI/CD, infraestrutura como cédigo (IaC), pipelines
de seguranca (SonarQube, SAST/DAST), segregacio de
ambientes e Zero Trust.

11) Dependéncia excessiva de equipes especificas — O
processo depende de um niimero reduzido de analistas
(“‘gargalos humanos”), gerando risco operacional.

12) Tempo de entrega elevado — Como tudo é manual,
desde configuracdo até testes, o tempo entre desenvol-
vimento e producdo aumenta drasticamente (lead time
alto).

B. Avaliacdo do nivel de maturidade em DevSecOps

A maturidade DevSecOps pode ser avaliada por meio de
modelos que analisam praticas, processos, ferramentas e as-
pectos culturais relacionados a integragdo da seguranga no
ciclo de desenvolvimento. Entre esses modelos, o DevSecOps
Maturity Model (DSOMM), criado pela comunidade OWASP,
destaca-se por oferecer um framework estruturado que mede
o grau de automacio, governanca e efetividade das praticas de
seguranga em ambientes DevOps. Ele permite identificar desde
niveis iniciais, com processos manuais, até estagios avancados,
figura 5, nos quais a seguranca é continua, automatizada
e integrada ao pipeline CI/CD, servindo como guia para
evolugdo e priorizacdo de melhorias [11], [18].

i depm\nh'a Build
. \&\a M atu . Og
@x‘@& @&& Matumy ! %%’%
It
b3 %
@'”’? %,
g“ *,
%
§ EY
B g
3
_1?
) i
B
s
‘%% @g
%%%
06&%% Q\X\&]

%

» ’@ L7
o o
waﬁi’uew Yored pred alﬂ@“nse

Figura 5. Nivel de implementagio DSOMM

O OWASP DevSecOps Maturity Model (DSOMM) destaca-
se como uma das iniciativas mais completas para incorporar
a seguranca de forma continua no ciclo DevOps. O modelo
fornece uma estrutura clara e incremental que orienta equipes
técnicas na avaliacdo e melhoria das préticas de seguranca,
promovendo a integragdo entre desenvolvimento, operagdes e
seguranga [11]. Diferentemente de frameworks tradicionais, o
DSOMM alia automacao, cultura e métricas, permitindo men-
surar a maturidade e priorizar acdes com base em evidéncias
[18]. Sua flexibilidade e enfoque pritico favorecem a adocdo
gradual e adaptdvel a diferentes contextos organizacionais,
fortalecendo a cultura de seguranga colaborativa e reduzindo
barreiras entre dreas técnicas e de seguranga [19] .

O DSOMM ¢ dividido em categorias temadticas (dominios)

que cobrem todas as dreas relevantes de seguranca em DevOps,
conforme Tabela III.

Tabela III
CATEGORIAS DSOMM
Categoria Foco
((llons.tru?ao Seguranca integrada ao CI/CD
e pipelines
Gerenciamento Verificacdo de vulnerabilidades
de dependéncias em bibliotecas
Gerenciamento Gestdo segura de senhas,
de segredos tokens e chaves
Infrastructure Seguranc¢a no provisionamento
as Code de infraestrutura via cédigo
IAM

(Gerenciamento de
identidade e acesso)

Controle de acesso e identidade

Testes
de seguranca

Testes automatizados de
seguranca (SAST, DAST, etc.)

Monitoramento Monitoramento, detec¢do e

e registro de logs resposta a incidentes
Modelagem Modelagem de ameagas no
de ameacas inicio do desenvolvimento
Seguranca Seguran¢a em ambientes com
de contéineres Docker/Kubernetes
Conformidade Politicas e requisitos de

como Codigo conformidade automatizados

Cada dominio é dividido em niveis de maturidade, geral-
mente de 1 (inexistente) até 3 ou 4 (altamente maduro) [18],
conforme exemplo apresentado na tabela IV:

Tabela IV
NiVEIS DE MATURIDADE DSOMM

Nivel Descricao

Nenhuma prética implementada

1 ou praticas reativas e manuais

2 Praticas iniciais ou pontuais,
geralmente manuais

3 Praticas parcialmente automatizadas

e com cobertura razoavel
Praticas maduras, totalmente
4 |automatizadas e integradas a
cultura da equipe

Para avaliacdo do nivel de maturidade em préticas de
segurancga integradas ao ciclo de desenvolvimento, foi utilizado
o modelo OWASP DevSecOps Maturity Model (DSOMM)
como referencial metodoldgico. A aplicagdio do modelo foi
conduzida por meio de uma abordagem qualitativa baseada em
brainstorming estruturado, caracterizado por entrevistas semi-
estruturadas com os principais atores envolvidos no ciclo de
vida das solugdes digitais da institui¢@o.

O brainstorming foi realizado de forma colaborativa, com a
participacdo de profissionais das dreas de desenvolvimento de
software, infraestrutura de TI e seguranca da informacdo. A
proposta central da atividade foi mapear o nivel de maturidade
atual da organizacdo em cada uma das categorias técnicas
previstas no DSOMM, como integracao continua (CI), entrega

continua (CD), gestdo de identidade e acesso (IAM), seguranga
de containers, entre outras.

Durante as sessdes, 0s participantes contribuiram com
percepcdes baseadas em sua experi€ncia pratica, permitindo
uma andlise mais precisa da situacdo atual e das lacunas
existentes. A escolha por essa abordagem visou promover
uma visdo integrada e realista do ambiente DevSecOps da
instituicdo, considerando tanto aspectos técnicos quanto cul-
turais e organizacionais. Os resultados foram apresentados
abaixo:

Tabela V
NiVEL DE MATURIDADE IDENTIFICADO NA INSTITUIQ;\O
q Dev |Infra| Sec | Nivel ~
Categoria (0-3)| (0-3)|(0-3)|Geral Observacoes
Pipeline de CI estd parcialmente
Construcio implantado, mas seguranga

de pipelines ainda ndo estd integrada ao
processo.

Gestao de dependéncias é basica;
auséncia de escaneamento
automatizado ou controle rigoroso.
Nenhum controle estruturado
identificado para gestdo de
segredos; representa risco critico.
Adocio inicial; boas priticas de
seguranga ainda sdo limitadas

ou nio automatizadas.

Testes de seguranga ocorrem de
forma limitada; parte da
responsabilidade estd centralizada
na equipe de seguranca.

Pratica mais madura, com

Gerenciamento
de dependéncias

Gerenciamento
de segredos

Infraestrutura
como Codigo

Teste
de Seguranca

IAM 3 3 3 3 controles razoavelmente bem
definidos entre as dreas.
. Monitoramento e registro de
Monitoramento £

eventos estdo bem distribuidos e
funcionalmente aplicados.
A atividade é conhecida, mas

e registros de log

Modelagem 1 1 1 1 pouco formalizada ou utilizada
de ameacas a

de forma continua.

Nio hd préticas claras de
Seguranca

seguranga aplicadas ao uso
de containers.

Inexisténcia de automagdo de
conformidade; necessidade de
iniciativas nesse dominio.

de contéiner

Conformidade
como Cdédigo

A avaliacdo baseada no modelo OWASP DevSecOps Ma-
turity Model (DSOMM) permitiu identificar de forma clara
o estagio atual de maturidade da organizacdo em relacdo a
integracdo de praticas de seguranga ao ciclo de desenvolvi-
mento de software. Os resultados demonstram que, embora
existam iniciativas positivas nas dreas de gestdo de identi-
dade e acesso (IAM) e monitoramento e logging, ainda ha
deficiéncias significativas em categorias criticas, como gestao
de segredos, segurangca de containers e compliance como
c6digo, todas com nivel de maturidade nulo (1). A andlise
também evidenciou que a maturidade estd distribuida de forma
desigual entre as dreas de desenvolvimento, infraestrutura e
segurancga, o que reforca a necessidade de maior integracdo
entre os times e de uma cultura DevSecOps mais consolidada.
A auséncia de praticas fundamentais de seguranca automa-
tizada compromete ndo apenas a resiliéncia dos sistemas,
mas também a conformidade com diretrizes do Programa de

Privacidade e Seguranca da Informacdo (PPSI) e da legislacdo
vigente, como a LGPD. Portanto, recomenda-se a priorizacdo
de acdes estratégicas voltadas a automacgdo da segurancga, a
formalizacdo de processos e ao fortalecimento da colaboracao
interdisciplinar. A evolu¢do da maturidade DevSecOps serd
um fator determinante para garantir ndo apenas a seguranca e
conformidade das solucdes digitais, mas também a agilidade

e a confiabilidade dos servigos prestados a populagdo.

C. Validacdo da arquitetura

Para validar e testar a arquitetura de pipeline CI/CD pro-
posta, foi desenvolvido um laboratério experimental que re-
produziu as principais fases de integracao, entrega e seguranga
continuas, utilizando as tecnologias destacadas no fluxo arqui-
tetural. O objetivo do experimento foi avaliar a aplicabilidade
prética da arquitetura, sua eficiéncia na automacao de entregas
e a aderéncia aos principios de DevSecOps.

O laboratério foi implementado a partir das seguintes tec-
nologias:

o GitHub Actions: utilizado como orquestrador de pipe-
line, responsdvel pela execucdo automatizada das eta-
pas de build, andlise de cddigo, testes unitdrios, em-
pacotamento em contéiner e deploy em ambientes de
homologa¢do e producgdo [3], [12], [13].

o Docker: aplicado para o empacotamento das aplica¢des
e suas dependéncias, garantindo portabilidade, reproduti-
bilidade e padronizacdo dos ambientes [3], [11], [12].

o Secrets Management: configurado no repositdrio
GitHub para o armazenamento seguro de credenciais
sensiveis (tokens de acesso, chaves de deploy e creden-
ciais de banco de dados), em conformidade com as boas
praticas de seguranca [3], [12], [13].

¢ SonarQube: integrado ao pipeline para andlise estdtica
de cédigo (SAST), permitindo identificar bugs, vulnerabi-
lidades, code smells e violagdes de padrdes de codificacdo
antes da promocdo para ambientes superiores [3], [12],
[13].

e Trivy: utilizado para andlise de vulnerabilidades em
imagens Docker e dependéncias de software (SCA),
permitindo detectar componentes inseguros e avaliar a
conformidade das imagens de contéiner com politicas de
seguranca [3], [11], [12].

e Zaproxy (OWASP ZAP): empregado na andlise
dindmica de seguranca (DAST) durante a execucdo da
aplicacdo, com o objetivo de identificar vulnerabilidades
em tempo de execugdo, como falhas de autenticacio,
inje¢des e exposi¢cdes de dados [3], [11], [12].

o Kubernetes: adotado como plataforma de orquestracio
de contéineres, responsdvel pela implantacdo e geren-
ciamento da aplicacdo em ambientes de homologacdo
(staging) e producdo, oferecendo suporte a escalabilidade,
alta disponibilidade e mecanismos automatizados de roll-
back [3], [11], [12].

o Prometheus: implementado para o monitoramento
continuo da infraestrutura e das aplicagdes, coletando

métricas de desempenho, consumo de recursos e dispo-
nibilidade dos servigos implantados [11], [12].

o Grafana: utilizado como ferramenta de visualizacdo
e andlise de métricas, integrado ao Prometheus para
a constru¢do de painéis em tempo real, permitindo a
identificacdo proativa de incidentes e tendéncias opera-
cionais [12], [13].

o Trend Micro Workload Security: aplicado como ca-
mada de protecdo adicional em nivel de workload e
cont@iner, oferecendo detec¢do de ameagas, varredura
de vulnerabilidades, controle de integridade e prevengdo
de intrusdes nos ambientes Kubernetes, reforcando a
seguranca operacional e a conformidade regulatéria [20].

Para abstrair a infraestrutura necessaria a execucdo dos
experimentos, foram utilizados servicos de nuvem da Digi-
talOcean, que proveram os recursos de Kubernetes Managed
Cluster e rede de suporte. A arquitetura contemplou também
bases de dados PostgreSQL, configuradas separadamente para
os ambientes de homologacdo e producdo, a fim de refletir
cendrios reais de segregacdo de ambientes. O sistema foi
adaptado a partir de um fork (c6pia derivada) de um repositorio
publico disponivel no GitHub, originalmente desenvolvido
por Fabricio Veronez [21], com a finalidade de simular um
ambiente de gerenciamento de eventos.

Essa configurag¢@o laboratorial possibilitou a simulagdo de
todo o ciclo de vida da aplicagdo em um cendrio controlado,
reproduzindo etapas reais de um pipeline DevSecOps. Dessa
forma, foi possivel observar a efetividade da arquitetura pro-
posta na entrega de software com agilidade, padronizagao,
rastreabilidade e seguranca, confirmando sua viabilidade para
implantacdo em contextos institucionais e corporativos.

1) Etapa 1 - Inicio da Integracdo Continua (CI) - Fases 1
a 4: O pipeline ¢ iniciado a partir de um push ou pull request
na branch principal do repositério, conforme figura 6.

€ CI-CD

@ Correcio do formulério para cadastro do evento #46 Re-run all jobs

() Summary
Triggered via push 3 days ago
Jobs tharcisio-mendonca pushed -© 7739ab7 main
®c Status Total duration Atifacts
Success 10m 10s 1
@ CD-Homolog a— -
@ CD-Prod
main.ym|
Run details Y
on: push
& Usage
oa ims5 e e @ CD-Homolog nize e @ CD-Prod

&Y Workflow file

Figura 6. Inicio do pipeline CI/CD

Nessa fase, o codigo-fonte € obtido e submetido a uma
andlise de qualidade e seguranca por meio do SonarQube, res-
ponsavel pela identificacdo de vulnerabilidades, mds praticas e
falhas de seguranga no cédigo (SAST), conforme apresentados
nas figuras 7 e 8.

Cl

succeeded 3 days ago in 1m 56s

Q search logs

v @ 2.Realizando Scan no codigo - SonarQube Scan (SAST)

report
274 20:13:47.792 INFO
275 20:13:47.793 INFO
276 20:13:49.378 INFO
277 20:13:49.538 INFO
278 20:13:49.539 INFO
279 20:13:49.884 INFO
280 20:13:49.886 INFO

More about the report processing at https://sonarcloud.io/api/ce/task?id=AZpSs_MIZnYd2Qcr21iR

rrrrrrrrrrrrr Upload SCA dependency files
Sensor cache published successfully
Analysis total time: 37.443 s
SonarScanner Engine completed successfully
EXECUTION SUCCESS

Total time: 44.757s

v @ 2.validando o quality gate - SonarQube Quality Gate check (SAST)

1 »Run sonarsource/sonarqube-quality-gate-action@vl.2.0

7 > Run $GITHUB_ACTION_PATH/script/check-quality-gate.sh "./src/.scannerwork/report-task.txt” "600"
12

13V Quality Gate has PASSED.

Figura 7. Scan cdédigo com SonarQube

< O (5 Bx 0O O :
) SoNarQUbE wyprojects My lssues Explore o e
tharcisio-mendonca > eventos-tic > § main v A Lastanalysis had warnings
Summary Issues Security Hotspots ~ More v
Quality Gate: Sonar way ©
1
v Passed
New Code Overall Code
Security Reliability Maintainability
4 openissues E 2 Openissues B 52 openissues A
Acceptedssues Coverage Duplcations
0 & 0.0% O .

Figura 8. SonarQube validando o cédigo

Apéds a validacdo inicial, é gerada a imagem Docker da
aplicacdo e registrada no repositorio, figura 9.

tharcisiomendonca/web-project

Docker commands

Last pushed 3 days ago * Repository size: 8727 MB + ¥¥0 * ¥ 470 To push a new tag to this
repository:
Projeto WEB
‘ docker push tharcisiomendonca/w
Add a category £ (@) eb-project:tagname
General Tags Image BETA G Settings

Q b S 5 Filter by v
Where to start? Report an issue &

() Digest Tags Media type 0S/ARCH Size Last pushe

() sha256:2540217f6950 (J: latest a6 Image linux/amdé4 65.2 MB 3 days

() sha256:ac22af2c5dba (3 was Image linux/amd64 65.2 MB 3 days

Figura 9. Imagem registrada no repositdrio

Em seguida, ocorre um novo procedimento de verificacao
de seguranca voltado a andlise de componentes de terceiros
— como bibliotecas e pacotes de codigo aberto — utili-
zando a ferramenta Trivy, que realiza o Software Composition
Analysis (SCA) para detectar vulnerabilidades conhecidas em
dependéncias externa, figura 10.

a C @

succeeded 3 days ago in 1m 56s

v ° 4. Verificando vulnerabilidades na imagem - Run Trivy scan (SAST / SCA) 10s

224 M Notices:

225 - Version 0.67.2 of Trivy is now available, current version is 8.65.0

226

227 To suppress version checks, run Trivy scans with the --skip-version-check flag

228

229 | Target | Type |
Vulnerabilities | Secrets |

230 | } }

231 | tharcisiomendonca/web-project:va6 (debian 13.1) | debian |
o I = 1

232 | } }

233 | usr/local/lib/python3.11/site-packages/MarkupSafe-3.0.2. dist-info/METADATA python-pkg
o I = |

234 |

Figura 10. Scan na imagem docker pela ferramenta Trivy

2) Etapa 2 - Entrega Continua (CD) e Testes Dindmicos
- Fase 5 (Homologacdo): Concluida a fase de build, inicia-
se o processo de entrega continua, com o deploy da imagem
na infraestrutura de Kubernetes. Apds a criacdo do ambiente
de homologacdo, é executado um scan de vulnerabilidades
em tempo de execucdo utilizando o Zaproxy, ferramenta de
Dynamic Application Security Testing (DAST), figura 11. Essa
etapa é essencial para identificar vulnerabilidades presentes
durante a execucdo real da aplicacdo.

CDiomelog Q search logs
succeeded 3 days ago in 1m 10s
v ° 5. (HOMOLOGAGAO) Realizando scan aplicagdo (DAST) - ZAP Scan
89 http://129.212.146.41/ 2created=5&token=d915621c-1e85-4ada-8ec9-6£572bfa290c (200 OK)
% http://129.212.146.41/2search=7AP (200 OK)
91 WARN-NEW: X-Content-Type-Options Header Missing [10021] x 9
92 http://129.212.146.41 (200 OK)
93 http://129.212.146.41/ (200 OK)
94 http://129.212.146.41/2created=5&search=7AP&token=d915621c-1e85-4ada-8ec9-6£572bfa290c (200 OK)
95 http://129.212.146.41/ 2created=5&token=d915621c-1e85-4ada-8ec9-6f572bfa290c (200 OK)
96 http://129.212.146.41/2search=7AP (200 OK)
97 WARN-NEW: Information Disclosure - Sensitive Information in URL [10024] x 2

98 http
99 http

129.212.146.41/2created=5&search=7AP&token=d915621 c-1e85-4a4a-8ec-6£572bfa290c (200 OK)
129.212.146.41/ 2created=5&token=d915621c-1e85-4ada-8ec9-6£572bfa290c (200 OK)

100 WARN-NEW: User Controllable HTML Element Attribute (Potential XSS) [10031] x 2

Figura 11.
homologagdo

Execu¢do de scan de vulnerabilidades na aplicagio em

3) Etapa 3 - Aprovacdo e Publicacdo em Producdo - Fase
5 (Produgdo): Apds a validacdo das andlises de seguranca
(SAST, SCA e DAST), o pipeline é pausado aguardando
a aprovacdo formal de um responsdvel técnico ou gestor,
conforme figura 12.

€ aI-cD
Review pending deployments X
(©) Correcao do requested by tharcisio-mendonca in CI-CD #46

(@ Summary producao

Review needed from tharcisio-mendonca
Jobs
Q@ Leave a comment:

@ CD-Homolog Liberado para produgao apds validagao dos relatérios de seguranca e aprovagéo da RDM

©® cD-Prod #4455

Run details

® Usage

Reject 27 Approve and deploy 1

Figura 12. Aguardando autorizagdo para publicacdo em producio

& Workflow file

Mediante aprovagdo, o sistema ¢é liberado e implantado no
ambiente de producdo e o pipeline finalizado.

< @ ANdosequo 4555123130 * B OO

[3) Sistema de eventos de TIC I

Cadastrar Novo Evento

Préximos Eventos

Buscar eventos

Digite titulo, descrigao ou local

Hmear

Nenhum evento encontrado

Seja o primeiro a cadastrar um evento!

Figura 13. Sistema em producio

4) Etapa 4 - Monitoracdo e Protecdo Continua - Fases 6 e
7: O monitoramento de métricas de desempenho e disponibi-
lidade € realizado por meio do Prometheus, figura 14 enquanto
os dashboards e painéis analiticos s@o disponibilizados no
Grafana, figura 15.

€ > C ANioseguo 159.203.145.147/targets B Q & B o

g Prometheus o & Mm

pod_template_generation="1"

http://10.109.0.62: app="web-project" v S 4.168s ago upP
8000/metrics instance="10.109.0.62:8000" 8 15ms
job="kubernetes-pods"
namespace="web-prod"
node="default-snlu4"
pod="web-project-77446d868f-tbhz8"
pod_template_hash="77446d868f"
http://10.108.0.3:9 app_kubernetes io_name="cilium-agent" > S 8.419s ago up
090/metrics app_kubernetes_io_part_of="cilium" 8 43ms
controller_revision_hash="7999c4844"
Figura 14. Prometheus - Métricas
< G A Nsoseguo 159.203150.97/d/k8s views ns/ tafom=n.. B & #* O £

Figura 15. Grafana - Dashboards

A protecdo continua dos ambientes é garantida pela solucio
Trend Micro Workload Security, que utiliza tecnologia XDR
(Extended Detection and Response) para correlacionar eventos
e ameagcas de seguranga em tempo real.

VI. ANALISE DOS RESULTADOS

O modelo de pipeline apresentado pela arquitetura proposta
incorpora praticas de Integracdo Continua (CI) e Entrega
Continua (CD) utilizando Docker, Kubernetes, SonarQube,
Trivy, Zaproxy, GitHub Actions e ferramentas de monitora-
mento. Esse arranjo técnico estd diretamente associado ao pa-
radigma DevSecOps, em que seguranga, qualidade e agilidade
sdo tratadas de forma integrada.

Os resultados apresentados podem ser organizados em cinco
dimensdes, com mapeamento aos controles do CIS v8 [22] e
as diretrizes do PPSI (Programa de Privacidade e Seguranca
da Informacdo).

A. Padronizacdo e portabilidade

O uso de Docker garante que os artefatos sejam en-
capsulados em imagens imutdveis e portdveis. Essa pratica
elimina discrepancias entre ambientes de desenvolvimento,
homologag¢do e produgdo.

o Alinhamento ao CIS Controls v8: Controle 04 -

Configuragdo segura de ativos corporativos e software

o Alinhamento ao PPSI: Reduc¢do de riscos operacionais

associados a falta de padronizagdo de ambientes.

Resultado: confiabilidade e previsibilidade nos processos
de entrega, com diminui¢do de falhas decorrentes de incom-
patibilidades de infraestrutura.

1) Qualidade e seguranca do codigo (SonarQube): O So-
narQube realiza andlise estitica do cédigo fonte, identificando
vulnerabilidades, bugs, violacdes de padrdes e code smells
antes da promoc¢do do build. Essa valida¢do atua de forma
complementar aos testes unitdrios, reforcando a adocdo de
praticas de Secure Coding e “Shift-Left Security”.

o Alinhamento ao CIS Controls v8: Controle 16 —
Seguranga de aplicacdes.

o Alinhamento ao PPSI: Diretriz de desenvolvimento
seguro e prevencao contra falhas de software exploraveis.

Resultado: mitigacdo de riscos cibernéticos desde a fase de
desenvolvimento, prevenindo a introducgdo de vulnerabilidades
em produgdo.

2) Eficiéncia operacional e agilidade: A automacdo do
pipeline por meio do GitHub Actions reduz o tempo de
entrega (time-to-market), permitindo que cada modificag@o de
codigo seja automaticamente validada, construida, testada e
preparada para deploy. A orquestracdo em Kubernetes facilita
escalabilidade e resiliéncia.

o Alinhamento ao CIS Controls v8: Controle 8 — Gestio
de registros de auditoria.

o Alinhamento ao PPSI: Garantia de rastreabilidade dos
processos de implantagao.

Resultado: aumento da velocidade de entregas sem com-
prometer a qualidade ou a seguranca do software.

3) Governanga, confiabilidade e resposta a incidentes:
A arquitetura prevé aprovacdo manual em etapas criticas,
alinhando-se a boas priticas de auditoria e gestdo de
mudangas. Adicionalmente, a presenca de mecanismos de
rollback garante continuidade de servicos mesmo em caso de
falhas em producio.

o Alinhamento ao CIS Controls v8: Controle 17 — Gestao
de respostas a incidentes.

o Alinhamento ao PPSI: Atendimento as diretrizes de
governanca, responsabilidade e controle no ciclo de vida
da informac@o.

Resultado: maior confiabilidade do processo de deploy,
suporte a conformidade regulatéria e capacidade de resposta
rdpida a falhas.

4) Observabilidade, monitoramento e melhoria continua:
A integracdo com ferramentas de seguranca (XDR, SIEM) e
observabilidade (APM, métricas e logs) garante visibilidade
em tempo real sobre desempenho e ameacas. Essa camada
de observabilidade alimenta o ciclo de melhoria continua,
permitindo ajustes proativos e otimizac¢do da arquitetura.

o Alinhamento ao CIS Controls v8: Controle 6 — Gestdo
de controle de acesso e Controle 8 — Gestdo de registros
de auditoria.

o Alinhamento ao PPSI: Monitoramento continuo de ris-
cos e avaliacdo periddica de controles de seguranca.

Resultado: maior resiliéncia organizacional, capacidade de
deteccdo precoce de incidentes e fortalecimento da postura de
seguranga.

VII. CONCLUSAO

A arquitetura proposta de DevSecOps em nuvem, validado
em laboratério com GitHub Actions, Docker, Kubernetes,
SonarQube, Trivy, Zaproxy entre outras, demonstrou sua vi-
abilidade ao integrar seguranga, automacio e governanca em
todo o ciclo de vida do software. Os resultados evidenciaram
ganhos em padronizacdo, portabilidade, qualidade do cddigo,
eficiéncia operacional e conformidade com o PPSI e CIS
Controls v8.

A adogdo de préticas de DevSecOps mostrou-se essencial
para reduzir vulnerabilidades, aumentar a confiabilidade das
entregas e fortalecer a postura institucional frente a seguranca
da informacao e a privacidade de dados. Recomenda-se, como
continuidade, a ampliacdo da arquitetura com Infraestrutura
como Cddigo e politicas de Zero Trust, visando maior matu-
ridade e resiliéncia digital.

Entretanto, é oportuno destacar que a implantacdo de
uma arquitetura DevSecOps demanda um grande esforco de
mudanga cultural e capacitacdo continua de toda a equipe
envolvida.

Como trabalhos futuros, recomenda-se o aprimoramento da
arquitetura proposta por meio da integracdo do pipeline a
solucdes baseadas em Inteligéncia Artificial (IA), de modo a
ampliar a automacdo, a deteccdo proativa de vulnerabilidades
e a eficiéncia operacional.

[1]
[2]

[3]
[4]

[6]

[7]

[8]

[9]

[10]

(11]
[12]
[13]
[14]

[15]

[16]
[17]

(18]

[19]
[20]

[21]
[22]

REFERENCIAS

A. F. de Noticias, “Fiocruz faz 120 anos diante do maior desafio do
século 21 | Portal Fiocruz,” May 2020.

Oluwatosin Oluwatimileyin Abiona, Oluwatayo Jacob Oladapo, Oluwole
Temidayo Modupe, Oyekunle Claudius Oyeniran, Adebunmi Oke-
chukwu Adewusi, and Abiola Moshood Komolafe, “The emergence and
importance of DevSecOps: Integrating and reviewing security practices
within the DevOps pipeline,” World Journal of Advanced Engineering
Technology and Sciences, vol. 11, pp. 127-133, Mar. 2024.

M. M. Pinto, “AppSeg: Um Sistema para Apoio a Adocdo de DevSe-
cOps,”

F. M. Constante, R. Soares, M. Pinto-Albuquerque, D. Méndez, and
K. Beckers, “Integration of Security Standards in DevOps Pipelines: An
Industry Case Study,” in International Conference on Product-Focused
Software Process Improvement, vol. 12562, pp. 434-452, PROFES,
2020. arXiv:2105.13024 [cs].

R. C. Thota, “Cloud-Native DevSecOps: Integrating Security Automa-
tion into CI/CD Pipelines,” IJIRCT, Dec. 2024. Publisher: Zenodo.

A. S. A. Alghawli and T. Radivilova, “Resilient cloud cluster with
DevSecOps security model, automates a data analysis, vulnerability
search and risk calculation,” Alexandria Engineering Journal, vol. 107,
pp. 136-149, Nov. 2024.

S. Rangaraju, D. S. Ness, and R. Dharmalingam, “Incorporating Al-
Driven Strategies in DevSecOps for Robust Cloud Security,” Internatio-
nal Journal of Innovative Science and Research Technology, Dec. 2023.
Publisher: Zenodo.

A. Verdet, M. Hamdagqa, L. D. Silva, and F. Khomh, “Exploring Security
Practices in Infrastructure as Code: An Empirical Study,” Empirical
Software Engineering, vol. 30, p. 74, May 2025. arXiv:2308.03952
[cs].

R. S. Wazlawick, Metodologia de pesquisa para ciéncia da computagdo.
GEN LTC, 2014. OCLC: 902734376.

T. Hsu, Hands-on security in DevOps: ensure continuous security,
deployment, and delivery withDevSecOps. Erscheinungsort nicht ermit-
telbar: Packt Publishing, st ed ed., 2018.

OWASP, “OWASP Devsecops Maturity Model | OWASP Foundation.”
L. Pessol, “Como comecar com DevSecOps,” July 2024.

“OWASP DevSecOps Guideline - v-0.2 | OWASP Foundation.”

D. S. A. d. Freitas, A. A. d. Oliveira, E. D. Moreno, and G. J. F. d.
Silva, “DevSecOps Practices for GDPR, HIPAA or LGPD Compliance
in Software Development: A Systematic Review,” in Simpdsio Brasileiro
de Sistemas de Informagdo (SBSI), pp. 145-153, SBC, May 2025. ISSN:
0000-0000.

A. Ibrahim, A. H. Yousef, and W. Medhat, “DevSecOps: A Security
Model for Infrastructure as Code Over the Cloud,” in 2022 2nd In-
ternational Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), pp. 284-288, May 2022.

S. d. G. D. SGD, “Guia de Gerenciamento de Vulnerabilidades,” 2022.
J. Alonso, R. Piliszek, and M. Cankar, “Embracing IaC Through
the DevSecOps Philosophy: Concepts, Challenges, and a Reference
Framework,” IEEE Software, vol. 40, pp. 56-62, Jan. 2023.

R. Brasoveanu, Y. Karabulut, and I. Pashchenko, “Security Maturity
Self-Assessment Framework for Software Development Lifecycle,” in
Proceedings of the 17th International Conference on Availability, Re-
liability and Security, ARES 22, (New York, NY, USA), pp. 1-8,
Association for Computing Machinery, 2022.

A. Krasnov and D. R. Maiti, “Overview of DevSecOps frameworks for
Software Development Lifecycle and its current limitations,” 2024.
“Solugdo Cloud Workload Security - Trend Vision One™ | Trend Micro
(BR)”

F. Veronez, “Encontros Tech.”

C. F. L S. CIS, “Controles CIS Versao 8,” 2021.

