
Proposta de uma arquitetura DevSecOps e os
impactos nos controles do PPSI (Programa de
Privacidade e Segurança da Informação): Um

estudo de caso
Tharcı́sio Mendonça

PPEE
Universidade de Brası́lia - UNB

Brası́lia, Brasil
tharcisio.mendonca@aluno.unb.br

Prof. Drº Robson de Oliveira Albuquerque
PPEE

Universidade de Brası́lia - UNB
Brası́lia, Brasil

robson@redes.unb.br

Resumo—Este artigo propõe uma arquitetura automatizada
de DevSecOps em ambiente de nuvem, a partir de um estudo de
caso, com o objetivo de avaliar seus impactos sobre os controles
do Programa de Privacidade e Segurança da Informação (PPSI)
e as boas práticas do CIS Controls v8. De natureza aplicada e
exploratória, a pesquisa foi validada por meio de um laboratório
experimental que integrou pipelines de integração e entrega
contı́nuas (CI/CD) com GitHub Actions, Docker, Kubernetes,
SonarQube, Trivy, Zaproxy, Prometheus, Grafana e Trend Micro
Workload Security, em infraestrutura provisionada na nuvem da
DigitalOcean. A arquitetura promove a incorporação sistemática
da segurança desde as fases iniciais do ciclo de vida do software,
assegurando automação, rastreabilidade e governança contı́nua.
Os resultados demonstram ganhos significativos em padronização
de ambientes, qualidade e segurança do código, eficiência ope-
racional e observabilidade, além de evidenciar a contribuição da
arquitetura para o fortalecimento da maturidade em DevSecOps
e para a conformidade institucional com o PPSI e o CIS Controls
v8. A pesquisa oferece uma arquitetura replicável voltado a
instituições públicas de ensino, pesquisa e saúde, contribuindo
para o avanço da governança digital e da resiliência cibernética.

Index Terms—DevSecOps, Segurança da Informação, PPSI,
CIS Controls v8, CI/CD

I. INTRODUÇÃO

As instituições públicas de ciência e tecnologia em saúde
exercem papel estratégico na consolidação do Sistema Único
de Saúde (SUS) e na promoção da inovação cientı́fica e
tecnológica [1]. A crescente digitalização de processos e
serviços intensificou a dependência de infraestruturas em
nuvem e aplicações web, ampliando o volume de dados
sensı́veis sob gestão. Nesse cenário, a proteção da informação
e a conformidade com polı́ticas de segurança tornaram-se
requisitos fundamentais para assegurar a continuidade dos
serviços e a confiança da sociedade. Entretanto, observa-se
que a maturidade em segurança digital nessas instituições
ainda é incipiente, marcada por processos fragmentados e
baixa automação, o que limita a eficiência operacional e a
capacidade de resposta a incidentes.

Nas últimas décadas, o avanço das metodologias ágeis e
o uso de infraestrutura em nuvem transformaram profunda-
mente o ciclo de desenvolvimento de software, exigindo maior
integração entre equipes de desenvolvimento e operação. O
movimento DevOps emergiu como resposta a essa demanda
[2], promovendo automação, colaboração e entrega contı́nua.
Contudo, a ausência de práticas de segurança integradas desde
as fases iniciais do ciclo de vida do software (SDLC) revelou
limitações significativas em termos de confiabilidade e confor-
midade [3]. Para mitigar essas lacunas, a literatura recente tem
enfatizado a evolução do DevOps para o DevSecOps, que in-
corpora segurança como elemento transversal e automatizado
em todas as etapas do pipeline [4].

Estudos como os de Constante [4], Thota [5] e Alghawli e
Radivilova [6] evidenciam o potencial da automação de testes
de segurança, da análise estática e dinâmica de código, e da
integração de infraestrutura como código (IaC) em ambientes
de CI/CD. Outros trabalhos, como Rangaraju et al [7] e
Verdet e Silva [8], destacam o papel emergente da inteligência
artificial e da observabilidade contı́nua na detecção de ameaças
e no reforço da conformidade. Em paralelo, frameworks de
referência, como o CIS Controls v8 e o OWASP DevSecOps
Maturity Model (DSOMM), têm orientado a implementação
de controles técnicos e processuais voltados à maturidade em
segurança. No contexto governamental brasileiro, o Programa
de Privacidade e Segurança da Informação (PPSI) tornou-se
um instrumento essencial para alinhar práticas institucionais
às exigências da Lei Geral de Proteção de Dados (LGPD) e
às boas práticas internacionais de governança da informação.

Apesar dos avanços observados, a literatura ainda carece de
estudos aplicados que avaliem como a adoção de arquiteturas
automatizadas de DevSecOps impacta diretamente os controles
de segurança e privacidade em instituições públicas, especial-
mente em ambientes de nuvem privada. A maior parte das
abordagens documentadas concentra-se em contextos corpo-
rativos ou industriais, com foco em padronização de pipelines
e automação de verificações técnicas, mas sem examinar sua



relação com programas de conformidade e governança da
informação. Além disso, observa-se uma lacuna na integração
entre mecanismos técnicos de segurança contı́nua e dire-
trizes institucionais de privacidade e proteção de dados, o
que limita a capacidade de organizações públicas evoluı́rem
para nı́veis mais altos de maturidade em DevSecOps. Há,
portanto, uma necessidade de estudos que correlacionem
práticas técnicas automatizadas com frameworks normativos,
fornecendo evidências sobre os benefı́cios e desafios dessa
integração.

Diante dessas lacunas, este trabalho tem como objetivo pro-
por uma arquitetura automatizada de DevSecOps em nuvem,
capaz de integrar segurança, privacidade e governança ao ciclo
de vida de desenvolvimento de software, avaliando seus impac-
tos sobre os controles do PPSI e as boas práticas do CIS Con-
trols v8. A pesquisa adota uma abordagem aplicada e explo-
ratória, apoiada na construção de um laboratório experimental
que implementa pipelines de integração e entrega contı́nuas
com GitHub Actions, Docker, Kubernetes, SonarQube e Post-
greSQL.A proposta contribui para o avanço do conhecimento
cientı́fico e aplicado em segurança no contexto DevSecOps, ao
apresentar uma arquitetura replicável destinada a instituições
públicas que buscam fortalecer sua maturidade tecnológica
e postura de segurança da informação. O estudo baseia-se
em um caso prático conduzido em um órgão público voltado
ao ensino, à pesquisa e à saúde pública, configurando uma
referência para a adoção de práticas integradas de segurança,
automação e governança digital.

O artigo está estruturado da seguinte forma: a Seção II des-
creve a metodologia e o delineamento experimental; a Seção
III revisa os trabalhos relacionados; a Seção IV apresenta o
estudo de caso e a arquitetura proposta; a Seção V analisa
os resultados obtidos; e a Seção VI discute as conclusões e
direções para trabalhos futuros.

II. METODOLOGIA

No contexto cientı́fico, a pesquisa pode ser classificada
de acordo com diferentes critérios. Entre eles, é possı́vel
diferenciar tipos de pesquisa de acordo com sua natureza,
objetivos ou procedimentos técnicos [9].

A presente pesquisa adota natureza aplicada, pois visa gerar
conhecimento direcionado à solução de problemas práticos
[9], especificamente o desenvolvimento de uma arquitetura
automatizada de DevSecOps em uma instituição pública de
ensino, pesquisa e saúde.

Quanto aos objetivos, classifica-se como exploratória, uma
vez que busca compreender e avaliar os impactos da adoção
do DevSecOps nos controles do Programa de Privacidade e
Segurança da Informação (PPSI), proporcionando uma visão
inicial e abrangente sobre o tema.

Em relação à estratégia metodológica, a pesquisa é bi-
bliográfica, documental e de estudo de caso.A pesquisa bi-
bliográfica envolveu a análise de artigos, teses, livros e
publicações indexadas, com buscas conduzidas em bases como
Scopus, IEEE Xplore, Web of Science, ResearchGate e ACM
Digital Library. Foram utilizados os termos “devsecops and

cloud” e “devops and cloud”, aplicando-se critérios de in-
clusão e exclusão, priorizando trabalhos mais citados, com
maior fator de impacto e mais recentes.

A pesquisa documental apoiou-se em normas, polı́ticas e
controles relacionados ao PPSI e ao CIS Controls v8, forne-
cendo o arcabouço normativo para análise. O estudo de caso
será conduzido em uma instituição pública voltada ao ensino,
à pesquisa e à saúde pública, possibilitando a validação da
proposta em um ambiente real e multidisciplinar. Ao término, a
arquitetura desenvolvida será testada em laboratório, e seus re-
sultados serão analisados quanto aos impactos nos controles do
PPSI (Programa de Privacidade e Segurança da Informação).

III. TRABALHOS RELACIONADOS

Este capı́tulo apresenta os principais estudos sobre o tema,
abordando práticas, ferramentas e modelos que integram
segurança ao ciclo de desenvolvimento ao DevSecOps.

A. Etapas DevSecOps

Os aspectos de segurança do DevSecOps abrangem a res-
ponsabilidade compartilhada pela segurança, a automação de
processos de segurança, a integração contı́nua de testes de
segurança, a implementação de medidas de segurança proati-
vas e a colaboração entre as equipes. O princı́pio fundamental
é a ”mudança para a esquerda”(”shift left”), que consiste em
integrar a segurança nas fases iniciais do SDLC, em vez de
considerá-la apenas como uma verificação final [2], [4], [10].

Alghawli e Radivilova desenvolveram um modelo de
segurança DevSecOps voltado para um cluster de nuvem
resiliente, combinando ferramentas e metodologias automati-
zadas. A proposta incluiu um algoritmo de avaliação de risco
quantitativa em tempo real, baseado na metodologia FAIR, e o
uso do Método de Análise Hierárquica (AHP) para selecionar
o provedor de nuvem mais adequado entre AWS, Azure
e GCP. A arquitetura foi implementada com Infraestrutura
como Código (Terraform) e pipeline CI/CD com Jenkins. Os
resultados indicaram a AWS como provedora mais adequada,
e os testes comprovaram a eficácia do modelo, com cálculo
automatizado de risco financeiro (US$ 5.434,54) em menos de
um segundo durante a simulação de uma vulnerabilidade em
um bucket S3. [6].

O framework OWASP DevSecOps Guideline enfatiza a
importância de incorporar a segurança em todas as fases
do ciclo de vida do software [11]. Os principais objetivos
alcançados com as análises e os testes propostos no modelo
DevSecOps são:

• Identificar vulnerabilidades de software precocemente
[6], [7], [10]

• Reduzir riscos de segurança e de negócios. [6], [8], [10]
• Acelerar a velocidade do desenvolvimento com feedback

oportuno [10]
• Garantir a conformidade regulatória [10]
• Construir uma cultura de segurança [7]
• Melhorar a postura de segurança de aplicativos e infraes-

trutura [10]



• Diminuir o tempo e o custo de correção de problemas de
segurança

O DevSecOps expande os conceitos centrais do DevOps
ao incorporar a segurança em cada fase do SDLC [3].
Isso abrange planejamento, codificação, construção, teste,
implantação, operação e monitoramento, conforme apresen-
tado na figura 1.

Figura 1. Etapas DevSecOps (adaptado de Pessol [12]

Com base nos trabalhos relacionados [3]–[5], [11], [13]–
[15], form mapeadas algumas ferramentas para cada etapa,
conforme tabela I:

Tabela I
FASES DO DEVSECOPS E PRINCIPAIS FERRAMENTAS E CONTROLES

Fase do
CI/CD

Objetivo
Principal

Ferramentas
DevSecOps

Tipo de
Controle

Planejamento
(Plan)

Definir requisitos,
riscos e polı́ticas de
segurança

Jira, Confluence,
ThreatModeler,
OWASP Threat Dragon,
GitHub Projects

Planejamento de backlog
seguro, modelagem de
ameaças, definição de
polı́ticas e conformidade

Codificação
(Code)

Garantir código
seguro desde o
desenvolvimento

GitHub / GitLab /
Bitbucket, Visual
Studio Code, GitLeaks,
SonarLint, Semgrep

Controle de versão,
revisão de código,
detecção de segredos,
análise estática local

Construção
(Build)

Compilar e empacotar
com segurança

Jenkins, GitHub Actions,
GitLab CI/CD, Trivy
Azure DevOps,
SonarQube, Snyk,
Dependency-Check

CI, análise SAST e
SCA, verificação de
dependências e containers

Testes
(Test)

Validar segurança
funcional e lógica
da aplicação

OWASP ZAPROXY,
Burp Suite, Nikto,
Gauntlt, Trivy,
Checkov, KubeLinter

DAST – análise dinâmica
de aplicações, varredura
de vulnerabilidades em
execução, testes
automatizados de
segurança no pipeline

Liberação/
Implantação
(Release/
Deploy)

Entregar software
seguro e rastreável

ArgoCD, Spinnaker, Helm,
Terraform, Ansible,
HashiCorp Vault, Cosign

CD seguro, assinatura
digital, controle de
segredos, infraestrutura
como código

Operação
(Operate)

Monitorar e manter
o ambiente seguro

Prometheus, Grafana,
ELK Stack, Splunk, Wazuh,
Sysdig Secure, Falco

Observabilidade,
monitoramento de logs e
alertas, runtime security

Monitoração
e Melhoria
contı́nua
(Monitor e
Feedback)

Aprendizado contı́nuo
e resposta a incidentes

Grafana Loki, Datadog,
ELK, OpenTelemetry,
Jira Service Management

Métricas, auditorias,
incident response,
melhoria contı́nua

B. Padrões de segurança e maturidade em pipelines DevSe-
cOps

Constante et al. propuseram uma abordagem sistemática
para integrar requisitos de padrões de segurança em pipelines
DevOps, voltada especialmente para ambientes industriais
altamente regulados, como os Sistemas de Controle Industrial
(ICS) [4]. O estudo aborda o conflito entre conformidade com
normas rigorosas, como a IEC 62443-4-1, e a manutenção de
curtos tempos de entrega, conforme apresentado na figura. 2. A
análise demonstrou que 31% das atividades do padrão podem
ser totalmente automatizadas, enquanto 38% ainda exigem
intervenção humana. Práticas como testes de segurança (SVV)
e gerenciamento de atualizações (SUM) apresentaram alto po-
tencial de automação, ao passo que especificação de requisitos
(SR) e criação de diretrizes de segurança (SG) permanecem
majoritariamente manuais. A avaliação com profissionais da
indústria confirmou a utilidade da arquitetura para construir e
avaliar pipelines compatı́veis com padrões de segurança.

Pinto propõe o desenvolvimento de um software de apoio
à adoção da metodologia DevSecOps, integrando desenvol-
vimento, segurança e operações de forma automatizada. A
solução, fundamentada em revisão de literatura e nas melhores
práticas de segurança, incorpora análises SAST, DAST e SCA,
além de automação de infraestrutura e versionamento, visando
aumentar a transparência, reduzir o tempo de desenvolvimento
e aprimorar a qualidade e a segurança das aplicações [3].
Aplicada inicialmente no Tribunal Regional do Trabalho da
21ª Região, a proposta contribui para disseminar a cultura
DevSecOps e oferece um modelo replicável para outros órgãos
públicos.

C. Integração de Infraestrutura como Código (IaC) em pipe-
lines CI/CD para automação em Nuvem

Thota destaca o desafio de incorporar segurança em ambi-
entes de desenvolvimento nativos da nuvem, que são rápidos e
ágeis. A pesquisa utilizou uma abordagem mista, combinando
revisão de literatura, análise de casos reais (Google Cloud
e Microsoft) e experimentos práticos em um pipeline CI/CD
baseado em Kubernetes [5]. Foram integradas ferramentas de
SAST, DAST, scanners de dependências e IaC para avaliar sua
eficácia. Os resultados mostraram alta precisão na detecção
de vulnerabilidades — 92% para SAST e mais de 80% para
IaC —, embora com sobrecarga de desempenho de 12–18%
no tempo de execução. O estudo também destacou desafios
de complexidade das ferramentas, falsos positivos (9%) e
resistência cultural dos desenvolvedores, concluindo que a
automação de segurança é essencial e transformadora para o
DevSecOps, equilibrando velocidade e segurança [5].

Verdet e Silva realizaram um estudo empı́rico sobre a
adoção de práticas de segurança em Infraestrutura como
Código (IaC), considerando os riscos de vulnerabilidades
introduzidas por configurações incorretas em ferramentas
como o Terraform. A pesquisa categorizou 287 polı́ticas de
segurança para AWS, Azure e GCP, com base em padrões
da indústria, e analisou 812 projetos de código aberto no
GitHub utilizando a ferramenta Checkov [8]. Os resultados



Figura 2. Pipeline DevOps em conformidade com o padrão de segurança IEC 62443-4-1 (tradução nossa) [4]

mostraram que as polı́ticas de controle de acesso são as mais
implementadas, enquanto as de criptografia em repouso são
frequentemente negligenciadas. Além disso, foi identificada
uma correlação positiva entre a popularidade dos repositórios
(número de estrelas) e a adoção de práticas de segurança,
indicando que projetos mais reconhecidos tendem a manter
configurações de infraestrutura mais seguras [8].

Rangaraju et al. investigaram a integração de estratégias
de Inteligência Artificial (IA) no framework DevSecOps para
fortalecer a segurança em ambientes de nuvem. O estudo
destaca o DevSecOps como uma mudança cultural que une
desenvolvimento, segurança e operações, enquanto a IA am-
plia suas capacidades ao possibilitar detecção avançada de
ameaças, gestão proativa de riscos e respostas automatizadas
[7]. Os autores demonstram como algoritmos de IA podem
analisar grandes volumes de dados em tempo real, identificar
anomalias e adaptar-se a ameaças emergentes. A pesquisa
também detalha a aplicação da IA nas fases de Integração
Contı́nua (CI), Entrega Contı́nua (CD) e Infraestrutura como
Código (IaC), além de discutir desafios técnicos e éticos da
implementação, propondo boas práticas e recomendações para
uma adoção eficaz.

D. Relação DevSecOps com Framework PPSI – Programa de
Privacidade de Segurança da Informação

O Programa de Privacidade e Segurança da Informação
(PPSI) é crucial para os órgãos do Governo Federal, visando
elevar a maturidade e a resiliência em privacidade e segurança
da informação. Ele estabelece diretrizes e controles para pro-
teger dados e sistemas de informação, aumentando a confiança
dos cidadãos nos serviços digitais [16]. A não conformidade
com o PPSI pode acarretar diversos impactos negativos para
a organização, incluindo:

• Sanções financeiras: Multas por descumprimento das
regulamentações de privacidade e segurança, como a
LGPD, que o PPSI visa apoiar [16]

• Danos à reputação: Perda de confiança dos cidadãos e de
outras partes interessadas devido a falhas na proteção de
dados e segurança dos sistemas

• Responsabilidade legal: Ações judiciais e outras con-
sequências legais decorrentes de incidentes de segurança
e violações de privacidade [2]

• Interrupção de serviços: Incidentes de segurança podem
levar à indisponibilidade de sistemas e serviços crı́ticos
[8].

• Perda de dados: Violações de segurança podem resultar
na perda ou roubo de informações confidenciais [8], [10]

• Escrutı́nio regulatório: Maior supervisão e auditorias por
parte dos órgãos reguladores [2], [10]

A integração de controles de segurança e privacidade nos
pipelines reforça a efetividade do PPSI, garantindo confor-
midade com normas de governança e princı́pios de confi-
dencialidade, integridade e disponibilidade. Essa abordagem
automatiza verificações de compliance, reduz vulnerabilidades,
fortalece controles de acesso e aprimora a rastreabilidade de
riscos, alinhando-se à LGPD. Assim, as instituições aumentam
a eficiência operacional e mantêm o compromisso ético e legal
com a proteção de dados sensı́veis. Dessa forma, ao adotar esta
arquitetura automatizada de DevSecOps em um ambiente de
nuvem privada, busca-se obter os seguintes benefı́cios:

• Melhoria na detecção e resposta a ameaças cibernéticas
[17].

• Redução de vulnerabilidades e riscos de segurança [10].
• Aceleração do ciclo de vida do desenvolvimento com

segurança [2], [17]
• Conformidade contı́nua com regulamentações de

segurança [2], [10]
• Redução no número de incidentes de segurança [7]

A correlação do DevSecOps com os controles do PPSI pode
ser estabelecida conforme tabela II:



Tabela II
RELAÇÃO DO OWASP DEVSECOPS GUIDELINE COM CONTROLES DO PPSI

Framework ”OWASP DevSecOps Guideline” Framework ”PPSI” Correlação entre Frameworks

Análise de Requisitos de Segurança e
Modelagem de Ameaças Control 16: Segurança de Aplicações

A modelagem de ameaças e a análise de requisitos de
segurança estão incluı́das no controle de segurança de
aplicações e nos processos de desenvolvimento seguro

Análise de Código Estático (SAST) e
Análise de Composição de Software (SCA) Control 16: Segurança de Aplicações

Ferramentas de análise estática e dinâmica verificam
práticas de codificação seguras e o gerenciamento de
componentes de terceiros faz parte da segurança

Varredura de Segredos
Control 3: Proteção de Dados
Control 4: Configuração Segura de Ativos Institucionais e Software
Control 5: Gestão de Contas

A proteção de dados sensı́veis, configuração segura e
gestão de contas abordam a varredura de segredos.

Análise de Configuração de IaC Control 4: Configuração Segura de Ativos Institucionais e Software A configuração segura de ativos contempla o uso de
versionamento e IaC.

Varredura de Contêineres
Control 16: Segurança de Aplicações
Control 2: Inventário e Controle de Ativos de Software
Control 7: Gestão Contı́nua de Vulnerabilidades

A segurança de contêineres é tratada por controles de
configuração, inventário e gestão de vulnerabilidades.

Testes de Segurança Dinâmicos (DAST) Control 16: Segurança de Aplicações Ferramentas dinâmicas são usadas para testes de
segurança em aplicações.

Testes de Segurança Interativos (IAST) Control 16: Segurança de Aplicações Análise estática e dinâmica é combinada para o ciclo de
vida da segurança de softwares.

Testes de Segurança de API Control 16: Segurança de Aplicações A segurança de APIs é integrada ao desenvolvimento
seguro e à verificação no código

Testes de Penetração Control 18: Testes de Invasão Testes de invasão simulam ações de invasores e estão
ligados a auditorias.

Testes de Segurança de Tempo
de Execução (RASP)

Control 13: Monitoramento e Defesa da Rede
Control 16: Segurança de Aplicações

Proteção em tempo de execução está presente no
monitoramento de rede e na segurança de aplicações

Auditorias de Segurança
Control 30: Avaliação de Impacto, Monitoramento e Auditoria
Control 8: Registros (Logs) de Auditoria
Control 18: Testes de Invasão

Auditorias verificam a eficácia das medidas de proteção
e são associadas a logs e testes de invasão.

Monitoramento de Segurança

Control 7: Gestão Contı́nua de Vulnerabilidades
Control 13: Monitoramento e Defesa da Rede
Control 1: Inventário e Controle de Ativos Institucionais
Control 30: Avaliação de Impacto, Monitoramento e Auditoria

Monitoramento envolve defesa de rede, gestão de
vulnerabilidades, inventário de ativos e auditoria,
incluindo o uso de SIEM

Treinamento e Conscientização
em Segurança

Control 14: Conscientização e Treinamento de Competências sobre Segurança
Control 23: Conscientização e Treinamento
Control 16: Segurança de Aplicações

Controles especı́ficos garantem treinamento e
conscientização em cibersegurança, privacidade e
codificação segura.

Figura 3. Arquitetura DevSecOps proposta (Elaborado pelo autor)

IV. PROPOSTA DA ARQUITETURA

A proposta apresenta uma arquitetura de pipeline Dev-
SecOps que utiliza tecnologias amplamente adotadas na
indústria, como Docker, Kubernetes, GitHub Actions e So-
narQube, com o objetivo de incorporar segurança e automação
em todas as etapas do processo. Além disso, foram considera-
das as soluções tecnológicas já adotadas pela instituição onde
o estudo de caso será realizado, de modo a garantir aderência
ao ambiente existente e maior viabilidade prática da proposta.

Conforme apresentado na figura 3, a arquitetura está divida
em fases e contempla ambientes de homologação (staging) e

produção, propondo práticas que vão desde o versionamento
seguro do código até o monitoramento contı́nuo em runtime,
a partir de pipelines CI/CD. Ao detalhar cada fase, busca-se
demonstrar como a integração de ferramentas e metodologias
pode reduzir riscos, aumentar a confiabilidade das entregas
e fortalecer a postura de segurança organizacional. A seguir,
apresentam-se as fases da arquitetura, acompanhadas das fer-
ramentas utilizadas e das ações previstas em cada etapa:

1) Planejamento e Versionamento: Definir requisitos,
polı́ticas e riscos de segurança antes do desenvolvimento.

Ferramenta:



• GitHub: Push e Pull Request (PR) na brach main (Código
para produção)

Ações:
• Definição de estratégia de branching:

main (produção), develop (homologação), feature/*, hot-
fix/*.

• Configuração de branch protection rules:
PR obrigatório, revisão dupla, status checks obrigatórios
(build + SonarQube).

• Segurança no repositório:
Commit signing (GPG) para autenticidade.
Dependabot para alertas de dependências vulneráveis.

• Integração com Issues/Projects para rastrear backlog de
segurança e funcionalidades.

• Criação da Worflow para execução da pipeline via Github
Actions

Saı́das:
• Código versionado, com baseline de segurança aplicado.
• Requisitos de segurança documentados.
• Backlog priorizado.
• Estrutura de repositório e controle de acesso configura-

dos.
2) Codificação (Code): Garantir código limpo, seguro e

rastreável desde o inı́cio.
Ferramenta:
• GitHub → versionamento, code review e integração com

ferramentas de segurança.
• SonarQube (SAST) → análise estática do código, iden-

tificando vulnerabilidades, más práticas e falhas de
segurança antes da compilação.

Ações:
• Build da aplicação:

Multi-stage Dockerfile (fase build + fase runtime slim).
Validação de Dockerfile com Hadolint.

• Testes automatizados:
• Integração → containers efêmeros no GitHub Actions.
• SonarQube Scan:

Quality gate configurado (mı́nimo de 80% cobertura de
testes, 0 vulnerabilidades crı́ticas).
Relatórios salvos como artefatos no pipeline.

Saı́das:
• Controle de versões rastreável no GitHub.
• Código seguro e validado (sem vulnerabilidades crı́ticas).
• Relatórios SAST (SonarQube).
3) Construção (Build): - Criar artefatos de build e imagens

de contêiner seguras.
Ferramentas:
• Docker → empacotamento e isolamento de aplicações em

contêineres.
Ações:
• Build de imagem com tags:

app:1.0.0 (semântica) + app:commit-sha + app:latest.
• Polı́ticas de aprovação:
• Publicação no repositório de imagens

Saı́das:
• Criação da imagem docker
• Imagem publicada no repositório
4) Testes (Test): - Validar a segurança da imagem em

execução e do ambiente.
Ferramenta:
• Trivy (SCA) → análise de vulnerabilidades em imagens

Docker, bibliotecas e dependências de código aberto.
Ações:
• Scan de imagem Docker com Trivy.
• SCA (dependências):

Trivy verifica pacotes/bibliotecas vulneráveis (CVEs).
Saı́das:
• Imagem Docker validada e livre de vulnerabilidades

crı́ticas.
• Relatórios SCA (Trivy).
• Artefatos prontos para teste e implantação.
5) Liberação e Implantação (Release/Deploy): Realizar

deploy automatizado e seguro da aplicação.
Ferramentas:
• OWASP ZAP (ZAPROXY) (DAST) → executa testes

dinâmicos simulando ataques reais contra a aplicação em
execução.

Ações (Staging/Homologação):
• Aplicação de manifests Kubernets
• Namespaces Staging
• DAST (Dynamic Application Security Testing): detecta

vulnerabilidades como injeções, autenticação fraca e
exposição de dados sensı́veis.

Aprovação (Manual):
• Responsáveis: Lı́der de desenvolvimento (Qualidade) e

Segurança da Informação
• Relatórios SonarQube.
• Scans de imagem Trivy.
• Logs dos testes DAST/performance.
• Registro formal da aprovação (evidências armazenadas).
Ações (Produção):
• Aplicação de manifests kubernets
• Namespaces Producao
• Observabilidade: Prometheus (métricas), Grafana (dash-

boards)
Saı́das:
• Aplicação implantada com polı́ticas de segurança defini-

das.
• Infraestrutura como código rastreável.
• Relatórios DAST com vulnerabilidades classificadas.
• Correções priorizadas antes do deploy.
• Aplicação validada em produção.
6) Operação (Operate): Monitorar os ambientes, garantir

conformidade e detectar incidentes.
Ferramentas: Trend Micro Workload Security – proteção

em tempo de execução (runtime security).
Ações:



• Monitorar cargas de trabalho em execução (VMs, contai-
ners, pods).

• Detectar vulnerabilidades e comportamentos anômalos.
• Aplicar correções automáticas e polı́ticas de conformi-

dade.
Saı́das:
• Logs e alertas de segurança centralizados.
• Ambiente protegido contra ameaças em tempo real.
• Relatórios de conformidade e vulnerabilidades.
7) Monitoração e Melhoria contı́nua: Obter visibilidade

contı́nua e promover melhoria do ciclo DevSecOps.
Ferramentas:
• Prometheus – coleta de métricas de desempenho e even-

tos.
• Grafana – visualização de dashboards e alertas.
Ações:
• Observabilidade completa:

Logs centralizados
Métricas de performance e segurança (Prometheus).
Dashboards em Grafana.

• Alertas automáticos.
• Segurança contı́nua:

TrendMicro Workload detecta execuções não autorizadas.
Revisão periódica de imagens no registry.

• Feedback loop:
Incidentes e vulnerabilidades viram issues no backlog.
Reforço da cultura de segurança no ciclo.

Saı́das:
• Dashboards e alertas de segurança operacionais.
• Indicadores de desempenho e segurança (KPIs).
• Ações corretivas e melhorias para o ciclo seguinte.

V. IMPLEMENTAÇÃO DA ARQUITETURA

Este capı́tulo apresenta o processo de implementação da ar-
quitetura DevSecOps proposta, tomando como base o cenário
real do estudo de caso. Inicialmente, descreve-se o ambi-
ente atual e seus principais desafios; em seguida, realiza-
se a avaliação de maturidade utilizando o modelo OWASP
DSOMM, identificando lacunas e oportunidades de melhoria.
Por fim, detalha-se a implementação prática da arquitetura,
demonstrando como suas etapas, ferramentas e controles foram
integrados para validar o modelo em ambiente de nuvem.

A. Cenário atual

Uma instituição centraliza sua oferta de tecnologia para suas
diversas unidades internas por meio de uma infraestrutura de
nuvem privada. Uma parcela significativa dos serviços dispo-
nibilizados consiste na provisão e gerenciamento de aplicações
e websites. Essa arquitetura é sustentada por um modelo
de Infraestrutura como Serviço (IaaS), no qual a equipe de
TI dessas unidades é responsável por gerenciar os recursos
computacionais subjacentes — como servidores virtuais, ar-
mazenamento e redes — sobre os quais as plataformas CMS
são instaladas e gerenciadas por essas unidades, semelhante
ao apresentado na figura 4.

Figura 4. Cenário atual do estudo de caso

Este modelo, embora flexı́vel, apresenta desafios de
padronização, segurança e manutenção em escala, uma vez
que cada site pode ter suas próprias configurações, plugins
e ciclos de atualização. Além do mais, podemos destacar os
principais problemas:

1) Cada aplicação precisa ser instalada diretamente no
servidor (fı́sico ou virtual).

2) O sistema operacional precisa ter as dependências (bi-
bliotecas, pacotes, frameworks, versões de linguagem)
compatı́veis com cada aplicação.

3) A configuração é manual e altamente suscetı́vel a erros
(ex: conflitos de versões, “funciona na minha máquina
mas não no servidor”).

4) Escalabilidade é limitada: replicar o ambiente exige
reinstalação ou clonagem complexa de servidores.

5) Atualizações e rollback são trabalhosos: é necessário
mexer diretamente em pacotes e configurações de
produção.

6) Não é escalável → Deploy manual via SFTP não acom-
panha o crescimento e exige intervenção humana.

7) Não é seguro → Desenvolvedores têm acesso direto à
produção; credenciais podem vazar; ausência de DevSe-
cOps (pipeline automatizado).

8) Não é resiliente → Uma vulnerabilidade em uma
aplicação pode comprometer todo o ambiente (efeito
dominó).

9) Não é rastreável → Alterações não têm versionamento
nem auditoria formal.

10) Não segue boas práticas modernas → Faltam controles
de CI/CD, infraestrutura como código (IaC), pipelines
de segurança (SonarQube, SAST/DAST), segregação de
ambientes e Zero Trust.

11) Dependência excessiva de equipes especı́ficas → O
processo depende de um número reduzido de analistas
(“gargalos humanos”), gerando risco operacional.

12) Tempo de entrega elevado → Como tudo é manual,
desde configuração até testes, o tempo entre desenvol-
vimento e produção aumenta drasticamente (lead time
alto).



B. Avaliação do nı́vel de maturidade em DevSecOps

A maturidade DevSecOps pode ser avaliada por meio de
modelos que analisam práticas, processos, ferramentas e as-
pectos culturais relacionados à integração da segurança no
ciclo de desenvolvimento. Entre esses modelos, o DevSecOps
Maturity Model (DSOMM), criado pela comunidade OWASP,
destaca-se por oferecer um framework estruturado que mede
o grau de automação, governança e efetividade das práticas de
segurança em ambientes DevOps. Ele permite identificar desde
nı́veis iniciais, com processos manuais, até estágios avançados,
figura 5, nos quais a segurança é contı́nua, automatizada
e integrada ao pipeline CI/CD, servindo como guia para
evolução e priorização de melhorias [11], [18].

Figura 5. Nı́vel de implementação DSOMM

O OWASP DevSecOps Maturity Model (DSOMM) destaca-
se como uma das iniciativas mais completas para incorporar
a segurança de forma contı́nua no ciclo DevOps. O modelo
fornece uma estrutura clara e incremental que orienta equipes
técnicas na avaliação e melhoria das práticas de segurança,
promovendo a integração entre desenvolvimento, operações e
segurança [11]. Diferentemente de frameworks tradicionais, o
DSOMM alia automação, cultura e métricas, permitindo men-
surar a maturidade e priorizar ações com base em evidências
[18]. Sua flexibilidade e enfoque prático favorecem a adoção
gradual e adaptável a diferentes contextos organizacionais,
fortalecendo a cultura de segurança colaborativa e reduzindo
barreiras entre áreas técnicas e de segurança [19] .

O DSOMM é dividido em categorias temáticas (domı́nios)
que cobrem todas as áreas relevantes de segurança em DevOps,
conforme Tabela III.

Tabela III
CATEGORIAS DSOMM

Categoria Foco
Construção
de pipelines Segurança integrada ao CI/CD

Gerenciamento
de dependências

Verificação de vulnerabilidades
em bibliotecas

Gerenciamento
de segredos

Gestão segura de senhas,
tokens e chaves

Infrastructure
as Code

Segurança no provisionamento
de infraestrutura via código

IAM
(Gerenciamento de
identidade e acesso)

Controle de acesso e identidade

Testes
de segurança

Testes automatizados de
segurança (SAST, DAST, etc.)

Monitoramento
e registro de logs

Monitoramento, detecção e
resposta a incidentes

Modelagem
de ameaças

Modelagem de ameaças no
inı́cio do desenvolvimento

Segurança
de contêineres

Segurança em ambientes com
Docker/Kubernetes

Conformidade
como Código

Polı́ticas e requisitos de
conformidade automatizados

Cada domı́nio é dividido em nı́veis de maturidade, geral-
mente de 1 (inexistente) até 3 ou 4 (altamente maduro) [18],
conforme exemplo apresentado na tabela IV:

Tabela IV
N ÍVEIS DE MATURIDADE DSOMM

Nı́vel Descrição

1 Nenhuma prática implementada
ou práticas reativas e manuais

2 Práticas iniciais ou pontuais,
geralmente manuais

3 Práticas parcialmente automatizadas
e com cobertura razoável

4
Práticas maduras, totalmente
automatizadas e integradas à
cultura da equipe

Para avaliação do nı́vel de maturidade em práticas de
segurança integradas ao ciclo de desenvolvimento, foi utilizado
o modelo OWASP DevSecOps Maturity Model (DSOMM)
como referencial metodológico. A aplicação do modelo foi
conduzida por meio de uma abordagem qualitativa baseada em
brainstorming estruturado, caracterizado por entrevistas semi-
estruturadas com os principais atores envolvidos no ciclo de
vida das soluções digitais da instituição.

O brainstorming foi realizado de forma colaborativa, com a
participação de profissionais das áreas de desenvolvimento de
software, infraestrutura de TI e segurança da informação. A
proposta central da atividade foi mapear o nı́vel de maturidade
atual da organização em cada uma das categorias técnicas
previstas no DSOMM, como integração contı́nua (CI), entrega



contı́nua (CD), gestão de identidade e acesso (IAM), segurança
de containers, entre outras.

Durante as sessões, os participantes contribuı́ram com
percepções baseadas em sua experiência prática, permitindo
uma análise mais precisa da situação atual e das lacunas
existentes. A escolha por essa abordagem visou promover
uma visão integrada e realista do ambiente DevSecOps da
instituição, considerando tanto aspectos técnicos quanto cul-
turais e organizacionais. Os resultados foram apresentados
abaixo:

Tabela V
N ÍVEL DE MATURIDADE IDENTIFICADO NA INSTITUIÇÃO

Categoria Dev
(0-3)

Infra
(0-3)

Sec
(0-3)

Nı́vel
Geral Observações

Construção
de pipelines 2 2 2 2

Pipeline de CI está parcialmente
implantado, mas segurança
ainda não está integrada ao
processo.

Gerenciamento
de dependências 2 2 2 2

Gestão de dependências é básica;
ausência de escaneamento
automatizado ou controle rigoroso.

Gerenciamento
de segredos 1 1 1 1

Nenhum controle estruturado
identificado para gestão de
segredos; representa risco crı́tico.

Infraestrutura
como Código 1 2 2 2

Adoção inicial; boas práticas de
segurança ainda são limitadas
ou não automatizadas.

Teste
de Segurança 1 1 2 1

Testes de segurança ocorrem de
forma limitada; parte da
responsabilidade está centralizada
na equipe de segurança.

IAM 3 3 3 3
Prática mais madura, com
controles razoavelmente bem
definidos entre as áreas.

Monitoramento
e registros de log 3 3 3 3

Monitoramento e registro de
eventos estão bem distribuı́dos e
funcionalmente aplicados.

Modelagem
de ameaças 1 1 1 1

A atividade é conhecida, mas
pouco formalizada ou utilizada
de forma contı́nua.

Segurança
de contêiner 1 1 1 1

Não há práticas claras de
segurança aplicadas ao uso
de containers.

Conformidade
como Código 1 1 1 1

Inexistência de automação de
conformidade; necessidade de
iniciativas nesse domı́nio.

A avaliação baseada no modelo OWASP DevSecOps Ma-
turity Model (DSOMM) permitiu identificar de forma clara
o estágio atual de maturidade da organização em relação à
integração de práticas de segurança ao ciclo de desenvolvi-
mento de software. Os resultados demonstram que, embora
existam iniciativas positivas nas áreas de gestão de identi-
dade e acesso (IAM) e monitoramento e logging, ainda há
deficiências significativas em categorias crı́ticas, como gestão
de segredos, segurança de containers e compliance como
código, todas com nı́vel de maturidade nulo (1). A análise
também evidenciou que a maturidade está distribuı́da de forma
desigual entre as áreas de desenvolvimento, infraestrutura e
segurança, o que reforça a necessidade de maior integração
entre os times e de uma cultura DevSecOps mais consolidada.
A ausência de práticas fundamentais de segurança automa-
tizada compromete não apenas a resiliência dos sistemas,
mas também a conformidade com diretrizes do Programa de

Privacidade e Segurança da Informação (PPSI) e da legislação
vigente, como a LGPD. Portanto, recomenda-se a priorização
de ações estratégicas voltadas à automação da segurança, à
formalização de processos e ao fortalecimento da colaboração
interdisciplinar. A evolução da maturidade DevSecOps será
um fator determinante para garantir não apenas a segurança e
conformidade das soluções digitais, mas também a agilidade
e a confiabilidade dos serviços prestados à população.

C. Validação da arquitetura

Para validar e testar a arquitetura de pipeline CI/CD pro-
posta, foi desenvolvido um laboratório experimental que re-
produziu as principais fases de integração, entrega e segurança
contı́nuas, utilizando as tecnologias destacadas no fluxo arqui-
tetural. O objetivo do experimento foi avaliar a aplicabilidade
prática da arquitetura, sua eficiência na automação de entregas
e a aderência aos princı́pios de DevSecOps.

O laboratório foi implementado a partir das seguintes tec-
nologias:

• GitHub Actions: utilizado como orquestrador de pipe-
line, responsável pela execução automatizada das eta-
pas de build, análise de código, testes unitários, em-
pacotamento em contêiner e deploy em ambientes de
homologação e produção [3], [12], [13].

• Docker: aplicado para o empacotamento das aplicações
e suas dependências, garantindo portabilidade, reproduti-
bilidade e padronização dos ambientes [3], [11], [12].

• Secrets Management: configurado no repositório
GitHub para o armazenamento seguro de credenciais
sensı́veis (tokens de acesso, chaves de deploy e creden-
ciais de banco de dados), em conformidade com as boas
práticas de segurança [3], [12], [13].

• SonarQube: integrado ao pipeline para análise estática
de código (SAST), permitindo identificar bugs, vulnerabi-
lidades, code smells e violações de padrões de codificação
antes da promoção para ambientes superiores [3], [12],
[13].

• Trivy: utilizado para análise de vulnerabilidades em
imagens Docker e dependências de software (SCA),
permitindo detectar componentes inseguros e avaliar a
conformidade das imagens de contêiner com polı́ticas de
segurança [3], [11], [12].

• Zaproxy (OWASP ZAP): empregado na análise
dinâmica de segurança (DAST) durante a execução da
aplicação, com o objetivo de identificar vulnerabilidades
em tempo de execução, como falhas de autenticação,
injeções e exposições de dados [3], [11], [12].

• Kubernetes: adotado como plataforma de orquestração
de contêineres, responsável pela implantação e geren-
ciamento da aplicação em ambientes de homologação
(staging) e produção, oferecendo suporte à escalabilidade,
alta disponibilidade e mecanismos automatizados de roll-
back [3], [11], [12].

• Prometheus: implementado para o monitoramento
contı́nuo da infraestrutura e das aplicações, coletando



métricas de desempenho, consumo de recursos e dispo-
nibilidade dos serviços implantados [11], [12].

• Grafana: utilizado como ferramenta de visualização
e análise de métricas, integrado ao Prometheus para
a construção de painéis em tempo real, permitindo a
identificação proativa de incidentes e tendências opera-
cionais [12], [13].

• Trend Micro Workload Security: aplicado como ca-
mada de proteção adicional em nı́vel de workload e
contêiner, oferecendo detecção de ameaças, varredura
de vulnerabilidades, controle de integridade e prevenção
de intrusões nos ambientes Kubernetes, reforçando a
segurança operacional e a conformidade regulatória [20].

Para abstrair a infraestrutura necessária à execução dos
experimentos, foram utilizados serviços de nuvem da Digi-
talOcean, que proveram os recursos de Kubernetes Managed
Cluster e rede de suporte. A arquitetura contemplou também
bases de dados PostgreSQL, configuradas separadamente para
os ambientes de homologação e produção, a fim de refletir
cenários reais de segregação de ambientes. O sistema foi
adaptado a partir de um fork (cópia derivada) de um repositório
público disponı́vel no GitHub, originalmente desenvolvido
por Fabrı́cio Veronez [21], com a finalidade de simular um
ambiente de gerenciamento de eventos.

Essa configuração laboratorial possibilitou a simulação de
todo o ciclo de vida da aplicação em um cenário controlado,
reproduzindo etapas reais de um pipeline DevSecOps. Dessa
forma, foi possı́vel observar a efetividade da arquitetura pro-
posta na entrega de software com agilidade, padronização,
rastreabilidade e segurança, confirmando sua viabilidade para
implantação em contextos institucionais e corporativos.

1) Etapa 1 – Inı́cio da Integração Contı́nua (CI) - Fases 1
a 4: O pipeline é iniciado a partir de um push ou pull request
na branch principal do repositório, conforme figura 6.

Figura 6. Inicio do pipeline CI/CD

Nessa fase, o código-fonte é obtido e submetido a uma
análise de qualidade e segurança por meio do SonarQube, res-
ponsável pela identificação de vulnerabilidades, más práticas e
falhas de segurança no código (SAST), conforme apresentados
nas figuras 7 e 8.

Figura 7. Scan código com SonarQube

Figura 8. SonarQube validando o código

Após a validação inicial, é gerada a imagem Docker da
aplicação e registrada no repositório, figura 9.

Figura 9. Imagem registrada no repositório

Em seguida, ocorre um novo procedimento de verificação
de segurança voltado à análise de componentes de terceiros
— como bibliotecas e pacotes de código aberto — utili-
zando a ferramenta Trivy, que realiza o Software Composition
Analysis (SCA) para detectar vulnerabilidades conhecidas em
dependências externa, figura 10.



Figura 10. Scan na imagem docker pela ferramenta Trivy

2) Etapa 2 - Entrega Contı́nua (CD) e Testes Dinâmicos
- Fase 5 (Homologação): Concluı́da a fase de build, inicia-
se o processo de entrega contı́nua, com o deploy da imagem
na infraestrutura de Kubernetes. Após a criação do ambiente
de homologação, é executado um scan de vulnerabilidades
em tempo de execução utilizando o Zaproxy, ferramenta de
Dynamic Application Security Testing (DAST), figura 11. Essa
etapa é essencial para identificar vulnerabilidades presentes
durante a execução real da aplicação.

Figura 11. Execução de scan de vulnerabilidades na aplicação em
homologação

3) Etapa 3 - Aprovação e Publicação em Produção - Fase
5 (Produção): Após a validação das análises de segurança
(SAST, SCA e DAST), o pipeline é pausado aguardando
a aprovação formal de um responsável técnico ou gestor,
conforme figura 12.

Figura 12. Aguardando autorização para publicação em produção

Mediante aprovação, o sistema é liberado e implantado no
ambiente de produção e o pipeline finalizado.

Figura 13. Sistema em produção

4) Etapa 4 - Monitoração e Proteção Contı́nua - Fases 6 e
7: O monitoramento de métricas de desempenho e disponibi-
lidade é realizado por meio do Prometheus, figura 14 enquanto
os dashboards e painéis analı́ticos são disponibilizados no
Grafana, figura 15.

Figura 14. Prometheus - Métricas

Figura 15. Grafana - Dashboards



A proteção contı́nua dos ambientes é garantida pela solução
Trend Micro Workload Security, que utiliza tecnologia XDR
(Extended Detection and Response) para correlacionar eventos
e ameaças de segurança em tempo real.

VI. ANÁLISE DOS RESULTADOS

O modelo de pipeline apresentado pela arquitetura proposta
incorpora práticas de Integração Contı́nua (CI) e Entrega
Contı́nua (CD) utilizando Docker, Kubernetes, SonarQube,
Trivy, Zaproxy, GitHub Actions e ferramentas de monitora-
mento. Esse arranjo técnico está diretamente associado ao pa-
radigma DevSecOps, em que segurança, qualidade e agilidade
são tratadas de forma integrada.

Os resultados apresentados podem ser organizados em cinco
dimensões, com mapeamento aos controles do CIS v8 [22] e
às diretrizes do PPSI (Programa de Privacidade e Segurança
da Informação).

A. Padronização e portabilidade

O uso de Docker garante que os artefatos sejam en-
capsulados em imagens imutáveis e portáveis. Essa prática
elimina discrepâncias entre ambientes de desenvolvimento,
homologação e produção.

• Alinhamento ao CIS Controls v8: Controle 04 -
Configuração segura de ativos corporativos e software

• Alinhamento ao PPSI: Redução de riscos operacionais
associados à falta de padronização de ambientes.

Resultado: confiabilidade e previsibilidade nos processos
de entrega, com diminuição de falhas decorrentes de incom-
patibilidades de infraestrutura.

1) Qualidade e segurança do código (SonarQube): O So-
narQube realiza análise estática do código fonte, identificando
vulnerabilidades, bugs, violações de padrões e code smells
antes da promoção do build. Essa validação atua de forma
complementar aos testes unitários, reforçando a adoção de
práticas de Secure Coding e “Shift-Left Security”.

• Alinhamento ao CIS Controls v8: Controle 16 –
Segurança de aplicações.

• Alinhamento ao PPSI: Diretriz de desenvolvimento
seguro e prevenção contra falhas de software exploráveis.

Resultado: mitigação de riscos cibernéticos desde a fase de
desenvolvimento, prevenindo a introdução de vulnerabilidades
em produção.

2) Eficiência operacional e agilidade: A automação do
pipeline por meio do GitHub Actions reduz o tempo de
entrega (time-to-market), permitindo que cada modificação de
código seja automaticamente validada, construı́da, testada e
preparada para deploy. A orquestração em Kubernetes facilita
escalabilidade e resiliência.

• Alinhamento ao CIS Controls v8: Controle 8 – Gestão
de registros de auditoria.

• Alinhamento ao PPSI: Garantia de rastreabilidade dos
processos de implantação.

Resultado: aumento da velocidade de entregas sem com-
prometer a qualidade ou a segurança do software.

3) Governança, confiabilidade e resposta a incidentes:
A arquitetura prevê aprovação manual em etapas crı́ticas,
alinhando-se a boas práticas de auditoria e gestão de
mudanças. Adicionalmente, a presença de mecanismos de
rollback garante continuidade de serviços mesmo em caso de
falhas em produção.

• Alinhamento ao CIS Controls v8: Controle 17 – Gestão
de respostas a incidentes.

• Alinhamento ao PPSI: Atendimento às diretrizes de
governança, responsabilidade e controle no ciclo de vida
da informação.

Resultado: maior confiabilidade do processo de deploy,
suporte à conformidade regulatória e capacidade de resposta
rápida a falhas.

4) Observabilidade, monitoramento e melhoria contı́nua:
A integração com ferramentas de segurança (XDR, SIEM) e
observabilidade (APM, métricas e logs) garante visibilidade
em tempo real sobre desempenho e ameaças. Essa camada
de observabilidade alimenta o ciclo de melhoria contı́nua,
permitindo ajustes proativos e otimização da arquitetura.

• Alinhamento ao CIS Controls v8: Controle 6 – Gestão
de controle de acesso e Controle 8 – Gestão de registros
de auditoria.

• Alinhamento ao PPSI: Monitoramento contı́nuo de ris-
cos e avaliação periódica de controles de segurança.

Resultado: maior resiliência organizacional, capacidade de
detecção precoce de incidentes e fortalecimento da postura de
segurança.

VII. CONCLUSÃO

A arquitetura proposta de DevSecOps em nuvem, validado
em laboratório com GitHub Actions, Docker, Kubernetes,
SonarQube, Trivy, Zaproxy entre outras, demonstrou sua vi-
abilidade ao integrar segurança, automação e governança em
todo o ciclo de vida do software. Os resultados evidenciaram
ganhos em padronização, portabilidade, qualidade do código,
eficiência operacional e conformidade com o PPSI e CIS
Controls v8.

A adoção de práticas de DevSecOps mostrou-se essencial
para reduzir vulnerabilidades, aumentar a confiabilidade das
entregas e fortalecer a postura institucional frente à segurança
da informação e à privacidade de dados. Recomenda-se, como
continuidade, a ampliação da arquitetura com Infraestrutura
como Código e polı́ticas de Zero Trust, visando maior matu-
ridade e resiliência digital.

Entretanto, é oportuno destacar que a implantação de
uma arquitetura DevSecOps demanda um grande esforço de
mudança cultural e capacitação contı́nua de toda a equipe
envolvida.

Como trabalhos futuros, recomenda-se o aprimoramento da
arquitetura proposta por meio da integração do pipeline a
soluções baseadas em Inteligência Artificial (IA), de modo a
ampliar a automação, a detecção proativa de vulnerabilidades
e a eficiência operacional.



REFERÊNCIAS

[1] A. F. de Notı́cias, “Fiocruz faz 120 anos diante do maior desafio do
século 21 | Portal Fiocruz,” May 2020.

[2] Oluwatosin Oluwatimileyin Abiona, Oluwatayo Jacob Oladapo, Oluwole
Temidayo Modupe, Oyekunle Claudius Oyeniran, Adebunmi Oke-
chukwu Adewusi, and Abiola Moshood Komolafe, “The emergence and
importance of DevSecOps: Integrating and reviewing security practices
within the DevOps pipeline,” World Journal of Advanced Engineering
Technology and Sciences, vol. 11, pp. 127–133, Mar. 2024.

[3] M. M. Pinto, “AppSeg: Um Sistema para Apoio à Adoção de DevSe-
cOps,”

[4] F. M. Constante, R. Soares, M. Pinto-Albuquerque, D. Méndez, and
K. Beckers, “Integration of Security Standards in DevOps Pipelines: An
Industry Case Study,” in International Conference on Product-Focused
Software Process Improvement, vol. 12562, pp. 434–452, PROFES,
2020. arXiv:2105.13024 [cs].

[5] R. C. Thota, “Cloud-Native DevSecOps: Integrating Security Automa-
tion into CI/CD Pipelines,” IJIRCT, Dec. 2024. Publisher: Zenodo.

[6] A. S. A. Alghawli and T. Radivilova, “Resilient cloud cluster with
DevSecOps security model, automates a data analysis, vulnerability
search and risk calculation,” Alexandria Engineering Journal, vol. 107,
pp. 136–149, Nov. 2024.

[7] S. Rangaraju, D. S. Ness, and R. Dharmalingam, “Incorporating AI-
Driven Strategies in DevSecOps for Robust Cloud Security,” Internatio-
nal Journal of Innovative Science and Research Technology, Dec. 2023.
Publisher: Zenodo.

[8] A. Verdet, M. Hamdaqa, L. D. Silva, and F. Khomh, “Exploring Security
Practices in Infrastructure as Code: An Empirical Study,” Empirical
Software Engineering, vol. 30, p. 74, May 2025. arXiv:2308.03952
[cs].

[9] R. S. Wazlawick, Metodologia de pesquisa para ciência da computação.
GEN LTC, 2014. OCLC: 902734376.

[10] T. Hsu, Hands-on security in DevOps: ensure continuous security,
deployment, and delivery withDevSecOps. Erscheinungsort nicht ermit-
telbar: Packt Publishing, 1st ed ed., 2018.

[11] OWASP, “OWASP Devsecops Maturity Model | OWASP Foundation.”
[12] L. Pessol, “Como começar com DevSecOps,” July 2024.
[13] “OWASP DevSecOps Guideline - v-0.2 | OWASP Foundation.”
[14] D. S. A. d. Freitas, A. A. d. Oliveira, E. D. Moreno, and G. J. F. d.

Silva, “DevSecOps Practices for GDPR, HIPAA or LGPD Compliance
in Software Development: A Systematic Review,” in Simpósio Brasileiro
de Sistemas de Informação (SBSI), pp. 145–153, SBC, May 2025. ISSN:
0000-0000.

[15] A. Ibrahim, A. H. Yousef, and W. Medhat, “DevSecOps: A Security
Model for Infrastructure as Code Over the Cloud,” in 2022 2nd In-
ternational Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), pp. 284–288, May 2022.

[16] S. d. G. D. SGD, “Guia de Gerenciamento de Vulnerabilidades,” 2022.
[17] J. Alonso, R. Piliszek, and M. Cankar, “Embracing IaC Through

the DevSecOps Philosophy: Concepts, Challenges, and a Reference
Framework,” IEEE Software, vol. 40, pp. 56–62, Jan. 2023.

[18] R. Brasoveanu, Y. Karabulut, and I. Pashchenko, “Security Maturity
Self-Assessment Framework for Software Development Lifecycle,” in
Proceedings of the 17th International Conference on Availability, Re-
liability and Security, ARES ’22, (New York, NY, USA), pp. 1–8,
Association for Computing Machinery, 2022.

[19] A. Krasnov and D. R. Maiti, “Overview of DevSecOps frameworks for
Software Development Lifecycle and its current limitations,” 2024.

[20] “Solução Cloud Workload Security - Trend Vision One™ | Trend Micro
(BR).”

[21] F. Veronez, “Encontros Tech.”
[22] C. F. I. S. CIS, “Controles CIS Versão 8,” 2021.


