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RESUMO

Esta dissertação investiga violações de dados sob a ótica da segurança da informação e da proteção de dados
pessoais, articulando previsão temporal, análise de recorrência e privacidade diferencial. Parte-se de uma
análise bibliométrica sobre privacidade e segurança cibernética, seguida da exploração da base Data Breach
Chronology da Privacy Rights Clearinghouse, com estratificação por setor organizacional. No eixo preditivo,
comparam-se modelos estatísticos (SARIMA e Prophet), modelos de aprendizado de máquina baseados
em árvores de decisão (XGBoost) e redes neurais profundas (TCN e LSTM) para a previsão mensal de
incidentes, avaliando o desempenho por meio das métricas MAPE, MAE e RMSE. Em seguida, aplica-se
a análise de Sobrevivência (Kaplan–Meier) para estimar o tempo até a reincidência do próximo incidente
por setor, evidenciando perfis diferenciados de risco temporal. Por fim, avalia-se o impacto da privacidade
diferencial, por meio do mecanismo de Laplace, em dados tabulares de incidentes sintéticos, quantificando
o equilíbrio entre orçamento de privacidade, deslocamento distributivo e perda de acurácia. Os resultados
indicam melhor desempenho preditivo de redes neurais em séries mais complexas, janelas de recorrência
menores em setores críticos e faixas de parâmetros de privacidade que preservam utilidade analítica. Em
conjunto, os achados compõem um arcabouço aplicado para apoiar planejamento, definição de SLAs e
divulgação responsável de estatísticas em conformidade com a Lei Geral de Proteção de Dados Pessoais.

Palavras-chave: Violação de dados; Segurança da Informação; Modelagem Preditiva; Análise de
Sobrevivência; Privacidade Diferencial; LGPD.
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ABSTRACT

This dissertation investigates data breaches from the perspective of information security and personal data
protection, articulating temporal prediction, recurrence analysis, and differential privacy. It begins with
a bibliometric analysis of privacy and cybersecurity, followed by an exploration of the Privacy Rights
Clearinghouse’s Data Breach Chronology database, stratified by organizational sector. In the predictive axis,
statistical models (SARIMA and Prophet), machine learning models based on decision trees (XGBoost),
and deep neural networks (TCN and LSTM) are compared for monthly incident prediction, evaluating
performance using the metrics MAPE, MAE, and RMSE. Subsequently, Survival analysis (Kaplan–Meier) is
applied to estimate the time until the next incident recurrence by sector, highlighting differentiated temporal
risk profiles. Finally, the impact of differential privacy is evaluated, using the Laplace mechanism, on tabular
synthetic incident data, quantifying the balance between privacy budget, distributional shift, and accuracy
loss. The results indicate better predictive performance of neural networks in more complex series, smaller
recurrence windows in critical sectors, and privacy parameter ranges that preserve analytical utility. Taken
together, the findings comprise an applied framework to support planning, SLA definition, and responsible
disclosure of statistics in accordance with the General Data Protection Law.

Keywords: Data Breaches; Information Security; Predictive Modeling; Survival Analysis; Differential
Privacy; LGPD.

vi



SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 MOTIVAÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 OBJETIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 CONTRIBUIÇÕES ACADÊMICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 ESTRUTURA DO TRABALHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 REVISÃO BIBLIOGRÁFICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 COLETA E PREPARAÇÃO DOS DADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 ANÁLISE DA BASE DE DADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 PRINCIPAIS FONTES E PERIÓDICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 PRINCIPAIS AUTORES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 TENDÊNCIAS TEMÁTICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 ESTRUTURA CONCEITUAL E TEMAS EMERGENTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 REDE DE COOCORRÊNCIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 MODELAGEM PREDITIVA DE INCIDENTES DE VIOLAÇÃO DE DADOS . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 PROCEDIMENTOS METODOLÓGICOS APLICADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 ANÁLISE E PREPARAÇÃO DOS DADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 APLICAÇÃO DO MODELO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 RESULTADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 AVALIAÇÃO COMPARATIVA DA PRECISÃO ENTRE OS MODELOS . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 ANÁLISE DE SOBREVIVÊNCIA DE INCIDENTES CIBERNÉTICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 PROCEDIMENTOS METODOLÓGICOS APLICADOS À ANÁLISE DE SOBREVIVÊNCIA 25
4.2 RESULTADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 PRIVACIDADE DIFERENCIAL APLICADA A DADOS DE INCIDENTES . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 PROCEDIMENTOS METODOLÓGICOS APLICADOS AO ESTUDO DE

PRIVACIDADE DIFERENCIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 DADOS E VARIÁVEIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 DADOS SENSÍVEIS, QUASE-IDENTIFICADORES E IDENTIFICADORES . . . . . . . . . . . . . . . 32
5.3 SELEÇÃO DO CENÁRIO DE DIVULGAÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 AVALIAÇÃO DE PRIVACIDADE DIFERENCIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 MECANISMO DE LAPLACE PARA PRIVACIDADE DIFERENCIAL . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 MÉTRICAS DE COMPARAÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.7 RESULTADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



5.7.1 ENTROPIA DAS COLUNAS QUASE-IDENTIFICADORAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.7.2 AVALIAÇÃO DE MUDANÇA DISTRIBUTIVAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7.3 AVALIAÇÃO DA PRECISÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.7.4 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1 SÍNTESE DOS ACHADOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 IMPLICAÇÕES PRÁTICAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 LIMITAÇÕES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 TRABALHOS FUTUROS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERÊNCIAS BIBLIOGRÁFICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



LISTA DE FIGURAS

2.1 Visão Geral da Análise Bibliometrica ....................................................................... 8
2.2 Fontes Relevantes ................................................................................................ 9
2.3 Principais Autores ................................................................................................ 9
2.4 Mapa de Colaboração ........................................................................................... 10
2.5 Palavras Chave .................................................................................................... 10
2.6 Nuvem de Palavras ............................................................................................... 11
2.7 Frequência das Palavras ao Longo do Tempo ............................................................. 12
2.8 Hierarquia dos Temas de Pesquisa ........................................................................... 13
2.9 Rede de Coocorrência ........................................................................................... 14

3.1 Arquitetura Metodológica para Aplicaçao dos Modelos Preditivos .................................. 16
3.2 Evolução Anual das Violacões de Dados ................................................................... 17
3.3 Evolução Anual das violações de Dados por Setor....................................................... 17
3.4 Delimitação Temporal ........................................................................................... 18
3.5 MAPE por Modelo com Comparação entre Setores Organizacionais ............................... 22

4.1 Fluxo metodológico da análise de sobrevivência de incidentes cibernéticos ...................... 26
4.2 Kaplan-Meier...................................................................................................... 29

5.1 Fluxograma do Estudo de DP ................................................................................. 32
5.2 Distribuição de Classificação de Valores das Colunas QI .............................................. 38
5.3 Distância Jansen-Shanon entre o sinal original e o sinal com ruído.................................. 42
5.4 MAPE entre as distribuições com ruído e original ....................................................... 43

ix



LISTA DE TABELAS

3.1 Descrição do Setor ............................................................................................... 18
3.2 Expoente de Hurst por Setor ................................................................................... 19
3.3 Descrição dos Modelos Preditivos Utilizados ............................................................. 21
3.4 Classificação da Precisão das Previsões com base no MAPE ......................................... 21

5.1 Colunas categorizadas como QI e consideradas na avaliação de DP................................. 34
5.2 Estatística resumida das tabelas de QI....................................................................... 34
5.3 Entropia dos atributos (em Nats) ............................................................................. 37

x



1 INTRODUÇÃO

A transformação digital acelerou a criação, o trânsito e o armazenamento de dados sensíveis em organiza-
ções públicas e privadas (Lopes e Amaral 2022). Embora a evolução tecnológica traga vantagens, ela resul-
tou em uma significativa geração de informações pessoais e de clientes (Belarmino, Ricarte e Motta 2024),
intensificando a complexidade da regulação de segurança e privacidade de dados (Carvalho et al. 2023).
Além de sistemas próprios, há hoje um ecossistema complexo de nuvem, SaaS, integrações por Application
Programming Interfaces (APIs), dispositivos móveis e Internet of Things (IoT) (Benzell et al. 2022), o
que fragmenta perímetros e amplia a superfície de ataque (Rodrigues et al. 2024). Essa realidade expõe a
sociedade a ameaças cibernéticas significativas (Bertoni et al. 2022). Nesse contexto, cyberataques conti-
nuam com frequência crescente em todo o mundo (Urooj et al. 2022), e violações de dados — oriundas
de vazamentos (Bertoni 2020), ransomware, exploração de vulnerabilidades ou falhas de configuração —
deixaram de ser eventos raros para se tornarem riscos operacionais recorrentes (Rodrigues et al. 2024).

Os incidentes de ransomware, por exemplo, evoluíram significativamente em complexidade e potência,
visando cada vez mais companhias e organizações para obter resgates maiores (Urooj et al. 2022). As
violações geram impactos financeiros, reputacionais e legais (Rodrigues et al. 2024), e podem afetar a
continuidade do serviço. A perda de informações sensíveis, como registros médicos confidenciais, resulta
em danos substanciais (Vainzof 2020). No setor público, tais incidentes podem interromper políticas
públicas, afetar a confiança social e gerar encargos regulatórios adicionais (Rodrigues et al. 2024).

A Lei Geral de Proteção de Dados Pessoais (LGPD), formalizada pela Lei nº 13.709/2018 (Brasil 2018),
é o principal marco regulatório brasileiro, inspirado no Regulamento Geral de Proteção de Dados (GDPR)
da União Europeia (Belarmino, Ricarte e Motta 2024, Elger e Santander 2024, Fernandes e Nuzzi 2022), e
tem como propósito fundamental proteger direitos essenciais como a privacidade, a liberdade e o livre
desenvolvimento da personalidade dos titulares (Elger e Santander 2024, Fernandes e Nuzzi 2022). Para
a Administração Pública, a LGPD estabelece que o tratamento de dados deve visar ao interesse público,
permitindo a coleta e o uso compartilhado de informações quando estritamente necessário para a execução de
políticas públicas (Art. 7º, III) (Brasil 2018, Fernandes e Nuzzi 2022). Este uso deve seguir rigorosamente
o princípio da necessidade, que limita o tratamento ao mínimo indispensável, garantindo que os dados
sejam pertinentes, proporcionais e não excessivos (Art. 6º, III) (Brasil 2018, Fernandes e Nuzzi 2022). Em
síntese, a LGPD fixa diretrizes para o tratamento de dados pelo poder público, balizando-o pelo interesse
público e pelo princípio da necessidade, com vistas à proteção dos direitos fundamentais dos titulares
(Brasil 2018, Fernandes e Nuzzi 2022, Elger e Santander 2024).

À luz desse cenário, este trabalho adota uma perspectiva aplicada, orientada por evidências, com
foco na análise e avaliação do panorama de violações de dados. A investigação organiza-se em frentes
complementares: (i) previsão temporal da incidência de violações de dados; (ii) mensuração da recorrência
(tempo-até-novo-incidente) por métodos de sobrevivência; e (iii) avaliação de estratégias de divulgação de
evidências com salvaguardas formais de proteção de dados.
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1.1 MOTIVAÇÃO

A crescente sofisticação dos ataques cibernéticos e o volume elevado de informações sensíveis arma-
zenadas digitalmente intensificam as preocupações com violações de dados (Sun et al. 2023). Em 2023,
organizações levaram, em média, 204 dias para identificar um vazamento, com pouca variação em relação
a anos anteriores. Em paralelo, o custo médio global de uma violação em 2024 foi estimado em 4,88
milhões de dolares, podendo alcançar 5,36 milhões de dólares em ambientes com poucos recursos de
segurança. Essas preocupações são agravadas pela expansão da coleta de dados a partir de fontes sensíveis
— como registros de equipamentos médicos e transações online — que aumenta a superfície de exposição e
a complexidade de proteção (Kumar e Gupta 2020).

Casos de grande escala ilustram esse cenário. Em janeiro de 2024, cerca de 26 bilhões de registros
foram expostos em um único evento, conhecido como a “Mãe de Todos os Vazamentos”, envolvendo
aproximadamente 12 terabytes de dados e atingindo, entre outros, plataformas de redes sociais como
LinkedIn e Twitter (Rodrigues et al. 2024). Em anos recentes, episódios de ampla repercussão — como o
incidente nos hotéis Marriott, que expôs dados de 500 milhões de clientes — reforçam a materialidade do
risco. Empresas como T-Mobile, Quora, Google, Orbitz e Facebook também reportaram incidentes que
comprometeram populações superiores a 100 milhões de usuários, com efeitos diretos sobre conformidade
regulatória e práticas de proteção (Yang e al. 2024).

Dados históricos da Privacy Rights Clearinghouse (PRC) indicam que, entre 2006 e 2021, o número
anual mínimo de registros expostos nos Estados Unidos se aproximou de 100 milhões, atingindo mais
de 700 milhões em 2019 (Autores do Artigo Healthcare 2020). Embora o recorte seja norte-americano,
há relatos de maior número de ocorrências públicas na Europa em certos períodos, o que indica que a
gravidade do fenômeno se estende a múltiplas jurisdições (Neto et al. 2021). Nesses eventos, a exposição
de dados pessoais, de saúde e financeiros — por definição sensíveis e privados — configura incidentes de
segurança em que informações confidenciais são acessadas por indivíduos não autorizados, com implicações
de privacidade e proteção de dados (Rodrigues et al. 2024).

Para organizações públicas e privadas, as consequências incluem danos reputacionais (Perera et al. 2022),
litígios e perdas financeiras diretas (Rodrigues et al. 2024), além de impactos indiretos significativos como
aumento dos custos operacionais para investigação e remediação (Val et al. 2024), sanções administrativas
regulatórias (Ainslie et al. 2023), interrupção ou degradação de serviços críticos (Val et al. 2024), perda de
vantagem competitiva (Ainslie et al. 2023) e erosão da confiança de cidadãos, clientes e parceiros comerciais
(Sharma e Bantan 2025).

Diante desse quadro, a preocupação com privacidade cresce de forma consistente, tornando es-
sencial gerenciar riscos cibernéticos combinando probabilidade de ocorrência e potencial de impacto
(International Organization for Standardization 2018). Assim, compreender o panorama de incidência, a
recorrência temporal dos eventos e os limites para divulgação responsável de evidências desponta como
requisito para um planejamento de proteção de dados mais eficaz e aderente às exigências regulatórias
vigentes.

Nesse contexto, observa-se que, embora as violações de dados já sejam objeto de um conjunto consoli-
dado de estudos e medidas de proteção — como controles de acesso, criptografia, políticas de segurança da
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informação e marcos regulatórios alinhados à LGPD e a padrões internacionais —, a literatura indica que
tais respostas permanecem, em grande medida, reativas, fragmentadas e orientadas à conformidade mínima
(Rodrigues et al. 2024). Paralelamente, estudos recentes mostram que dados de clientes e cidadãos deixa-
ram de estar confinados a infraestruturas on-premises e passaram a circular em ecossistemas distribuídos
que combinam computação em nuvem, aplicações em modelo Software as a Service (Saas), integrações
baseadas em APIs, aplicativos móveis e dispositivos IoT, fragmentando o perímetro tradicional de segurança
e ampliando a superfície de ataque (Zio e Miqueles 2024).

Diante desse cenário, torna-se imperativo reduzir a frequência e a severidade das violações de dados
(Rodrigues et al. 2024), o que exige diagnosticar com rigor os diversos contextos que favorecem inciden-
tes (Val et al. 2024), caracterizar estatisticamente o fenômeno (Mulla et al. 2025) — incluindo previsão
temporal da incidência — e mensurar a recorrência por meio de abordagens apropriadas. Em paralelo, é
indispensável situar essas ações no marco regulatório vigente, definindo critérios de divulgação responsável
de dados que preservem, de forma equilibrada, a utilidade analítica e a privacidade (Ponte et al. 2024).

Nesse sentido, este trabalho não busca substituir arquiteturas, controles ou modelos de segurança já
consolidados, mas sim complementá-los por meio de uma abordagem analítica voltada especificamente
para violações de dados. Tal abordagem enfatiza a caracterização estatística do fenômeno, a antecipação
de incidentes e a mensuração de sua recorrência, oferecendo insumos quantitativos adicionais para o
planejamento, a tomada de decisão sobre medidas de proteção, resposta e monitoramento, bem como para a
governança de dados pessoais. Ao fazê-lo, contribui para o uso mais eficiente de recursos organizacionais, o
fortalecimento da segurança da informação e a conformidade regulatória.

1.2 OBJETIVOS

Este estudo tem como objetivo geral ampliar a compreensão sobre a mitigação de violações de dados a
partir de uma abordagem integrada e proativa, que combina análise preditiva para antecipação de incidentes,
modelagem de recorrência — voltada à estimativa do tempo até um novo incidente — e mecanismos de
proteção de dados. Essa integração visa subsidiar decisões estratégicas de alocação de recursos, definir
níveis de serviço (SLAs) adequados para resposta a incidentes e fortalecer a resiliência organizacional frente
ao crescimento e à sofisticação das ameaças cibernéticas.

Para alcançar esse objetivo, são definidos os seguintes objetivos específicos:

• Comparar modelos de machine learning e deep learning, avaliando, em séries temporais de incidentes
de violação de dados, a capacidade de prever a ocorrência de violação de dados por tipo de organização,
de modo a orientar ações proativas para mitigação de riscos e fundamentar a definição de acordos de
níveis de serviço (SLAs), fornecendo subsídios quantitativos que potencializam a eficiência operacional
e fortalecem a governança em segurança da informação;

• Estimar a recorrência de incidentes cibernéticos, por meio da estimativa do tempo até a reincidência
do evento em diferentes tipos de organização. Este objetivo específico visa subsidiar ações preditivas e
o aprimoramento dos mecanismos de reporte institucional, fundamentando o gerenciamento proativo
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de riscos segundo os padrões temporais e setoriais identificados na Análise de Sobrevivência;

• Quantificar e otimizar o trade-off entre privacidade e utilidade dos dados, mensurando o impacto da
privacidade diferencial (ε) sobre a utilidade analítica e a acurácia preditiva, especialmente quando há
injeção de ruído em atributos de alta entropia, e propondo diretrizes para escolha de ε que proteja
dados sensíveis sem comprometer o desempenho de modelos; e

• Propor ações preventivas e melhorias operacionais, delineando e priorizando medidas para reduzir a
incidência e a recorrência de violações de dados, com base nas evidências empíricas obtidas e em
alinhamento com a governança de dados e os SLAs institucionais.

1.3 CONTRIBUIÇÕES ACADÊMICAS

Este estudo avança a compreensão das violações de dados ao integrar, de forma coesa, três frentes
analíticas: previsão temporal, análise de recorrência e divulgação protegida de dados.

No eixo preditivo, a dissertação propõe um delineamento experimental unificado
(Hou, Xue e Zhang 2020) para comparação de famílias de modelos de machine learning e deep le-
arning (Janiesch, Zschech e Heinrich 2021), com protocolo padronizado de preparo, particionamento
temporal (Mintarsih et al. 2023), calibração e avaliação (Fissler et al. 2020). Esse enquadramento metodo-
lógico fornece um caminho claro para seleção, operação e monitoramento de modelos em contextos setoriais
(Jimenez et al. 2020), sem depender de escolhas ad hoc (Silva et al. 2020), e favorece sua aplicação em
planejamento e gestão de capacidade em segurança da informação (Maddireddy e Maddireddy 2020).

Na dimensão temporal da recorrência, a pesquisa incorpora a análise de sobrevivência (Kaplan–Meier)
(Papathanasiou, Demertzis e Tziritas 2023) para estimar probabilidade e janelas até um novo incidente por
tipo de organização. Essa perspectiva complementa a previsão de volumes (Ansari et al. 2024) ao introduzir
o “quando” como variável de apoio à decisão (Ponce et al. 2023), permitindo ajustar políticas de prevenção,
ciclos de monitoramento (Zabierek et al. 2021) e gatilhos operacionais conforme o nível de recorrência de
incidentes.

No campo da proteção e transparência, o trabalho estrutura um quadro quantitativo para aplicação de
privacidade diferencial em dados tabulares de incidentes (Janiesch, Zschech e Heinrich 2021), relacionando
parâmetros de privacidade à utilidade analítica (Saifuzzaman e al. 2024) por métricas de deslocamento
distributivo e precisão (Ponte et al. 2024). Como resultado, apresenta diretrizes práticas para divulgação
responsável de estatísticas (Ponte et al. 2024) em conformidade com a LGPD e boas práticas internacionais
(Fernandes, Machado e Amaral 2023).

Por fim, o estudo disponibiliza um conjunto de artefatos — códigos, parâmetros, scripts/notebooks,
visualizações e pipelines — que garantem rastreabilidade, auditabilidade e verificação independente dos
resultados (Sharma e Bantan 2025). Esses materiais funcionam como referências técnicas estruturadas,
apoiando a operacionalização dos modelos por equipes técnicas em etapas críticas, tais como seleção
e monitoramento de desempenho, procedimentos sistemáticos de retreino, avaliação contínua de deriva
temporal e calibragem dos mecanismos de privacidade (Lu et al. 2022). Em conjunto, as contribuições
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resultam em um arcabouço coeso que traduz evidência quantitativa em governança e tomada de deci-
são (Ainslie et al. 2023) — incluindo políticas, SLAs e controles (Joint Task Force 2022) — preservando
transparência e conformidade regulatória (Govindankutty e Goel 2024).

1.4 ESTRUTURA DO TRABALHO

Para melhor estruturar esse estudo, o trabalho está divido em 6 capítulos. O Capítulo 2 apresenta a
revisão bibliográfica da pesquisa, fundamentado em uma análise bibliométrica sobre violações de dados,
segurança da informação e privacidade, com foco na identificação e caracterização das principais fontes,
periódicos, autores e temas recorrentes da literatura científica, além do mapeamento da estrutura conceitual
do campo e das tendências temáticas atuais, proporcionando assim uma visão integrada e abrangente do
panorama acadêmico sobre o tema.

O capítulo 3 detalha a modelagem preditiva de incidentes de violação de dados com base nos registros
históricos da PRC. A metodologia inicia-se com a análise exploratória, na qual são definidos os critérios
de seleção e preparação do conjunto de dados e explicitada a variável “tipo de organização” utilizada na
estratificação setorial. Em seguida, aplicam-se diferentes famílias de modelos estatísticos e computacionais
para previsão temporal dos incidentes e procede-se à comparação de desempenho entre as abordagens. Essa
sequência estabelece uma base objetiva para a tomada de decisões estratégicas e orienta a definição de
medidas de prevenção em contextos organizacionais.

O capítulo 4 desenvolve a análise de sobrevivência de incidentes de violações de dados. A base Data
Breach Chronology da PRC é novamente utilizada e, por meio do estimador de Kaplan–Meier, estima o
tempo até a reincidência de um incidente em diferentes setores organizacionais. O capítulo descreve a
padronização e preparação dos dados, a estratificação por tipo de organização e os procedimentos estatísticos
para a construção das curvas de sobrevivência. Essas curvas permitem caracterizar perfis de recorrência por
setor e fundamentar a priorização de recursos, o desenho de políticas preventivas e a definição de níveis de
serviço (SLAs) proporcionais ao risco temporal observado.

O capítulo 5 trata da aplicação de privacidade diferencial na publicação de dados, com foco na ca-
tegorização de atributos sensíveis, identificadores e quase-identificadores e na simulação de cenários no
setor de reservas hoteleiras. Utiliza-se o mecanismo de Laplace para testar diferentes orçamentos de
privacidade e níveis de sensibilidade, avaliando o impacto do ruído adicionado sobre a utilidade analítica
dos dados. Métricas como entropia, distância Jensen–Shannon e erro percentual absoluto médio (MAPE)
permitem quantificar o trade-off entre proteção e precisão. Os resultados orientam parâmetros para divulga-
ção responsável de dados em conformidade com a LGPD, destacando benefícios, riscos e limitações da
abordagem.

O capítulo 6 apresenta as principais conclusões do estudo, integrando os achados das análises preditivas,
de sobrevivência e de privacidade diferencial aplicadas a incidentes de violação de dados. Destacam-se as
implicações práticas para o planejamento estratégico e a alocação de recursos, além do reconhecimento das
limitações metodológicas, como vieses de reporte e volatilidade setorial. Propõe-se, para pesquisas futuras,
a ampliação com novas bases de dados, abordagens multivariadas, mecanismos explicáveis para proteção de
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dados e aprimoramento dos métodos estatísticos, sempre alinhados às demandas regulatórias, em especial à
LGPD, e à necessidade de fortalecer a resiliência organizacional frente aos riscos cibernéticos.
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2 REVISÃO BIBLIOGRÁFICA

A ascensão da era digital e a proliferação de dados têm impulsionado a produção acadêmica em um
ritmo sem precedentes, especialmente em temas críticos como privacidade e segurança cibernética. Neste
contexto, a análise da literatura se torna uma atividade essencial para que pesquisadores possam mapear e
identificar os artigos mais relevantes para suas investigações. No entanto, a vasta quantidade de publicações
torna esse processo uma tarefa exaustiva e complexa, suscetível a vieses e demorada, o que destaca a
necessidade de métodos automatizados para lidar com o volume crescente de estudos (Bispo et al. 2024).

Neste capítulo, o objetivo principal é apresentar uma análise bibliométrica da produção científica
sobre privacidade e segurança cibernética, com base em uma metodologia estruturada para extração,
processamento e análise de artigos. A coleta de dados foi realizada na plataforma Scopus, e o tratamento das
informações ocorreu em ambiente R, utilizando os pacotes bibliometrix e biblioshiny. O pacote bibliometrix
foi empregado para realizar as análises estatísticas, enquanto o biblioshiny, uma ferramenta baseada em
interface gráfica, foi utilizado para facilitar a visualização e a exploração interativa dos dados.

A abordagem bibliométrica sistemática adotada segue princípios de estudos que empregam automação
na revisão de literatura (Bispo et al. 2024) e articula-se a um conjunto de métricas alinhadas à estrutura
analítica do capítulo. Para estruturar essa análise foram consideradas: Coleta e preparação dos dados (2.1);
análise dos dados (2.2); principais fontes e periódicos (2.3); principais autores (2.4); tendências temáticas
(2.5), estrutura conceitual e temas emergentes (2.6); rede de recorrência (2.7); e conclusão (2.8).

2.1 COLETA E PREPARAÇÃO DOS DADOS

A coleta de dados foi realizada na plataforma Scopus, importante base de dados de literatura acadêmica.
Foram utilizadas palavras-chave estratégicas para identificar artigos relevantes nas áreas de privacidade e
segurança cibernética. Após a busca, os metadados dos artigos selecionados foram exportados e salvos no
formato BibTeX. O termo booleano de busca, aplicado ao campo de título dos documentos, é apresentado na
Listagem 2.1. A busca foi realizada em 10 de agosto de 2025.

Código 2.1: Termo de busca usados na Scopus

(TITLE-ABS-KEY(privacy) AND TITLE-ABS-KEY(cyber security)) AND PUBYEAR

> 2020 AND PUBYEAR < 2025

A base de dados resultante foi submetida a um processo de pré-processamento, no qual artigos duplicados
foram removidos para assegurar a exclusividade dos documentos e a integridade da análise. Após essa etapa,
o conjunto final de dados foi preparado para importação no ambiente de análise.
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2.2 ANÁLISE DA BASE DE DADOS

A base de dados analisada abrange o período de 2021 a 2024 e é composta por 4.262 documentos. A
pesquisa foi conduzida por um total de 11.966 autores e utilizou 858 fontes de publicação. A média de idade
dos documentos é de 2.03 anos, o que indica que a base é composta majoritariamente por estudos recentes.
A Figura 2.1 apresenta uma visão geral das principais métricas da base de dados.

Figura 2.1: Visão Geral da Análise Bibliometrica

A análise do campo de estudo demonstra dinâmicas relevantes quanto ao volume de produção e aos
padrões colaborativos. No período de 2021 a 2024, a amostra abrange 4.262 documentos. O corpo autoral
totalizou 11.966 pesquisadores e a disseminação do conhecimento ocorreu por meio de 858 veículos distintos.
A média de idade dos documentos situa-se em 2,03 anos, evidenciando que o acervo é predominantemente
composto por trabalhos recentes.

A pesquisa também revela um forte padrão de colaboração na área, evidenciado pela taxa de crescimento
anual de 49.16%. A média de coautores por documento é de 3.67, e a proporção de artigos com um único
autor é pequena, totalizando 388 documentos. Um percentual notável de 28.44% dos artigos resulta de
coautoria internacional, destacando a natureza global da pesquisa.

2.3 PRINCIPAIS FONTES E PERIÓDICOS

A análise das fontes de publicação revela os periódicos e anais de conferências mais relevantes para
o campo de pesquisa. A figura 2.2 ilustra as principais fontes, ranqueadas pelo número de documentos
publicados.

As fontes com o maior número de publicações são IEEE Access, com 105 documentos, seguidas por
Lecture Notes in Networks and Systems com 101 documentos, e Lecture Notes in Computer Science com 88
documentos. A presença proeminente de séries de conferências, como as da Lecture Notes e da ACM, sugere
que a pesquisa em privacidade e segurança cibernética é altamente dinâmica e frequentemente publicada em
anais de eventos científicos.

8



Figura 2.2: Fontes Relevantes

2.4 PRINCIPAIS AUTORES

A análise dos autores mais relevantes revela os pesquisadores mais produtivos no campo da privacidade
e segurança cibernética. O gráfico 2.3 a seguir ranqueia os autores com base no número de publicações.

Figura 2.3: Principais Autores

Apesar da entrada anômala com 102 documentos, que provavelmente se refere a dados de autoria não
indexados, a análise focada nos autores identificados mostra pesquisadores com contribuições substanciais.
Wang Y. se destaca como o autor mais prolífico, com 29 documentos, seguido por Kumar A. (26 documentos)
e Zhang Y. (18 documentos). Outros autores notáveis incluem Kumar R., Mishra S., Wang S., Das S., Li J. e
Singh A., que publicaram entre 14 e 17 documentos. A predominância de nomes de origem asiática no topo
da lista sugere a forte atuação de pesquisadores da Ásia neste campo de estudo.

A análise da estrutura social da pesquisa, representada pelo mapa de colaboração 2.4, evidencia a
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natureza global do campo de estudo. A avaliação focada nos autores identificados revela pesquisadores com
contribuições substanciais. A intensidade das linhas entre os países indica colaboração robusta e frequente,
sugerindo uma troca dinâmica de conhecimento e recursos em escala global.

Figura 2.4: Mapa de Colaboração

2.5 TENDÊNCIAS TEMÁTICAS

A análise das palavras-chave mais frequentes é um excelente indicador das tendências e dos temas
centrais do campo de pesquisa. O gráfico 2.5 a seguir ranqueia os termos por ocorrência, revelando os focos
da literatura.

Figura 2.5: Palavras Chave

As palavras-chave mais proeminentes são aquelas diretamente relacionadas à segurança. Os termos
cybersecurity (2938 ocorrências) e cyber security (1714 ocorrências), quando combinados, dominam o
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cenário, seguidos por network security (1201 ocorrências). Isso confirma que a segurança cibernética é o
tema central da pesquisa.

Além dos termos de segurança, a lista inclui palavras-chave que refletem a preocupação com a proteção
de dados e tecnologias emergentes. data privacy (914 ocorrências) e privacy (736 ocorrências) são temas de
alta relevância, mostrando que a proteção de informações é um foco principal da pesquisa. A presença de
termos como internet of things, machine learning e blockchain demonstra que a comunidade acadêmica está
explorando ativamente as implicações e as soluções de segurança e privacidade para novas tecnologias.

Além dos termos diretamente associados à segurança, a lista inclui palavras-chave que refletem a
crescente preocupação com a proteção de dados e com o avanço de tecnologias emergentes. Data privacy
(914 ocorrências) e privacy (736 ocorrências) aparecem como temas de alta relevância, evidenciando que a
proteção de informações permanece um eixo central na produção científica. Da mesma forma, a presença
de termos como internet of things, machine learning e blockchain indica que a comunidade acadêmica
explora ativamente tanto as implicações quanto as soluções de segurança e privacidade relacionadas a novas
tecnologias.

Complementando essa análise, a nuvem de palavras oferece uma representação visual clara dos temas
predominantes na literatura examinada. Nela, o tamanho de cada termo reflete sua frequência na base
de dados, permitindo identificar rapidamente os tópicos mais recorrentes. Conforme ilustrado na figura
2.6, o termo dominante é cybersecurity, confirmando sua posição como núcleo central das discussões
científicas. Outros subtemas relevantes, como network security e data privacy, também surgem com
destaque, reforçando áreas específicas de concentração. Além disso, a presença expressiva de conceitos
como privacy, internet of things, machine learning e blockchain evidencia a interseção entre segurança,
tecnologias emergentes e proteção de dados.

Figura 2.6: Nuvem de Palavras

A análise da frequência de palavras-chave ao longo do tempo evidencia a evolução e o dinamismo do
campo de estudo. O gráfico de linhas 2.7, que apresenta as ocorrências cumulativas entre 2021 e 2024,
ilustra um crescimento contínuo e consistente em todos os temas examinados. Nesse conjunto, o termo
cybersecurity se destaca como líder absoluto, exibindo a curva de expansão mais acentuada e o maior
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volume acumulado de ocorrências, o que reforça sua posição como tópico central da pesquisa. Outros temas,
como network security e cyber-security, também apresentam trajetórias de crescimento robustas e estáveis,
confirmando a relevância progressiva dessas áreas no período analisado.

Figura 2.7: Frequência das Palavras ao Longo do Tempo

A ascensão de tópicos como data privacy, internet of things, machine learning e blockchain indica um
interesse crescente e duradouro em suas interconexões com a privacidade e a segurança. O fato de todas as
linhas do gráfico estarem em ascensão demonstra que o campo é dinâmico e está em contínua expansão,
com todos os subtemas ganhando relevância de forma simultânea.

2.6 ESTRUTURA CONCEITUAL E TEMAS EMERGENTES

A análise da estrutura conceitual por meio do gráfico 2.8 oferece uma visão detalhada e hierárquica dos
temas na pesquisa. A área de cada bloco representa a frequência de ocorrência da palavra-chave, fornecendo
uma clara visualização da proporção de cada tema no campo.

O gráfico reforça a dominância de cybersecurity e network security como pilares da literatura, evidenci-
ada pelas maiores áreas do treemap. Logo ao lado, o bloco correspondente a data privacy e privacy destaca
a centralidade da proteção de dados no conjunto de pesquisas analisadas. A visualização também evidencia
a relevância de áreas tecnológicas como internet of things, machine learning e blockchain, que aparecem
como temas consolidados e de alta frequência na produção científica.

Além desses núcleos principais, a presença de blocos menores — como intrusion detection, cryptography
e authentication — indica que o campo se ramifica em tópicos mais específicos e técnicos, refletindo a
diversificação e a especialização natural da área.
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Figura 2.8: Hierarquia dos Temas de Pesquisa

2.7 REDE DE COOCORRÊNCIA

A rede de coocorrência de palavras-chave, apresentada na figura 2.9, revela a estrutura conceitual do
campo de pesquisa, evidenciando como os temas se conectam e se agrupam. O gráfico mostra três clusters
principais, indicando a organização do campo em subáreas especializadas.

O primeiro cluster, em vermelho, representa a interseção entre privacidade e segurança, com ênfase
em cybersecurity e data privacy, conectando-se a temas como internet of things, security and privacy e
authentication. O segundo cluster, em azul, agrupa abordagens técnicas relacionadas à proteção de sistemas,
destacando termos como cyber security, network security, machine learning, deep learning e intrusion
detection. O terceiro cluster, em verde, concentra-se em sistemas ciber-físicos, com foco em cyber physical
systems e embedded systems.

A presença de conexões entre os clusters indica que, embora especializados, esses subcampos são
interdependentes e contribuem para um ecossistema de pesquisa integrado no domínio da privacidade e da
segurança cibernética.

2.8 CONCLUSÃO

Este capítulo apresentou uma análise bibliométrica sistemática da literatura em privacidade e segurança
cibernética, a partir de dados extraídos da plataforma Scopus e processados com os pacotes bibliometrix e
biblioshiny no ambiente R. O mapeamento revelou um campo dinâmico e em clara expansão, caracterizado
por um volume expressivo de 4.262 documentos publicados entre 2021 e 2024, média de idade de 2,03 anos
e crescimento anual consistente, o que evidencia a atualidade e a vitalidade da produção científica na área.
A estrutura analítica adotada — contemplando coleta e preparação dos dados, análise descritiva da base,
principais fontes, autores, padrões de colaboração, tendências temáticas, estrutura conceitual e redes de
coocorrência — permitiu organizar de forma sistemática os resultados obtidos.
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Figura 2.9: Rede de Coocorrência

Os achados indicam a consolidação de um ecossistema de pesquisa globalizado, com forte padrão
de colaboração científica, refletido na elevada média de coautores por documento, na baixa proporção
de trabalhos de autoria única e na taxa relevante de coautoria internacional. Do ponto de vista temático,
observou-se a centralidade de cybersecurity e network security, acompanhada pela recorrência de tópicos
como privacidade de dados, Internet of Things (IoT), aprendizado de máquina e blockchain. As análises
de palavras-chave, nuvens de termos, evolução temporal e redes de coocorrência e colaboração evidenci-
aram ainda a organização do campo em clusters conceituais inter-relacionados, que articulam segurança,
privacidade e tecnologias emergentes em sistemas distribuídos e ciber-físicos.

Em síntese, este capítulo ofereceu uma visão estruturada das principais fontes, autores, padrões de
colaboração, temas centrais e frentes emergentes que moldam a produção científica em privacidade e
segurança cibernética. Esses resultados não apenas caracterizam o estado da arte da área, mas também
fornecem subsídios para a delimitação de lacunas, a formulação de questões de pesquisa e o alinhamento
dos estudos empíricos desenvolvidos nos capítulos subsequentes desta dissertação.
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3 MODELAGEM PREDITIVA DE INCIDENTES DE
VIOLAÇÃO DE DADOS

No eixo preditivo, investiga-se a capacidade de diferentes famílias de modelos de previsão temporal em
representar a dinâmica setorial dos incidentes de violação de dados, a partir de séries mensais derivadas da
base Data Breach Chronology da PRC.

Em um delineamento experimental unificado, comparam-se abordagens estatísticas clássicas, métodos
baseados em árvores de decisão e redes neurais profundas, quantificando o desempenho por meio de
múltiplas métricas de erro, com ênfase no MAPE (Mulla et al. 2025).

O objetivo central é fornecer subsídios quantitativos para decisões relacionadas à prevenção e mitigação
de violações de dados, por meio da avaliação comparativa do desempenho de diferentes famílias de modelos
na previsão mensal de incidentes (Petropoulos et al. 2022). Essa avaliação considera tanto o total geral
de violações de dados quanto as subdivisões por setor, buscando identificar quais modelos são mais
adequados para capturar as distintas características e dinâmicas temporais presentes em cada série, dada a
heterogeneidade e a complexidade dos dados ao longo do tempo.

Essa análise, derivada do artigo (Santos et al. 2025), previamente publicado no SBSeg 2025: XXV
Simpósio Brasileiro de Cibersegurança, e incorporada a esta dissertação como parte de um estudo mais
amplo, com pequenos ajustes e melhorias pontuais para ampliar sua aplicabilidade ao contexto desta pesquisa.
Essa integração fortalece a interpretação dos resultados preditivos e orienta sua utilização em cenários de
gestão de riscos de segurança da informação, permitindo que gestores e especialistas em cibersegurança
tomem decisões mais precisas e estratégicas quanto à alocação de recursos e à implementação de medidas
preventivas (Mulla et al. 2025).

3.1 PROCEDIMENTOS METODOLÓGICOS APLICADOS

O conjunto de dados utilizado da PRC reúne informações detalhadas sobre incidentes de violação de
dados, incluindo o tipo de ataque, o número de pessoas afetadas, o tipo de organização, a data da ocorrência,
o estado e a cidade, entre outros atributos. Neste estudo, o termo setor é empregado especificamente para
designar o tipo de organização registrada na base de dados. Assim, para esta pesquisa, foram selecionadas as
variáveis data da violação e tipo de organização, que refletem diretamente o setor de atuação correspondente.
A Figura 3.1 apresenta uma visão geral da arquitetura proposta.

Inicialmente, conduziu-se uma análise exploratória para caracterizar o conjunto de dados e fundamentar
as etapas subsequentes de modelagem. Na fase de preparação dos dados, foram realizados procedimentos
como padronização e formatação dos campos, filtragem por tipo de organização e por período, agregação
mensal das séries, cálculo do expoente de Hurst — indicador de dependência ou aleatoriedade temporal —
e tratamento de valores extremos com base no intervalo interquartil (IQR).
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Figura 3.1: Arquitetura Metodológica para Aplicaçao dos Modelos Preditivos

Com as séries consolidadas, foram comparadas três famílias de modelos — estatísticos, métodos de
combinação baseados em árvores e redes neurais profundas — calibradas por meio de busca em grade (grid
search) e avaliadas a partir de uma partição temporal, composta por aproximadamente 85% dos dados para
treino e 15% para teste. O desempenho foi mensurado pelas métricas MAPE, MAE e RMSE, possibilitando
uma análise comparativa entre os diferentes setores e em relação ao agregado total.

Todo o processo de análise, modelagem e previsão foi realizado em Python 3.12, utilizando bibliotecas
como statsmodels, fbprophet, xgboost, tensorflow, keras, pandas, numpy, matplotlib e scikit-learn. Os
artefatos completos do projeto, incluindo scripts e documentação, estão disponíveis em: <https://github.com/
evaneigomes/Modelos-Preditivos-para-Deteccao-de-Viola-oes-de-Dados-Uma-Abordagem-Comparativa>.

3.1.1 Análise e Preparação dos dados

Com o objetivo de compreender o comportamento das violações de dados ao longo do tempo, realizou-se
uma análise exploratória. Esta etapa possibilitou a identificação de padrões, sazonalidades e variações
significativas (Mulla et al. 2025), fornecendo subsídios para a construção de modelos preditivos mais
consistentes e sensíveis às dinâmicas temporais observadas.

A análise da série histórica revelou um crescimento acentuado nas violações de dados a partir de
2010, evidenciando o aumento no uso de serviços digitais e a consequente ampliação da exposição das
organizações a riscos de segurança (Ainslie et al. 2023). A Figura 3.2 apresenta essa evolução ao longo do
período analisado e evidencia, a partir de 2024, uma queda brusca no número de violações registradas, que
não reflete uma redução real no volume de dados vazados, mas decorre de atrasos nas notificações e na
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consolidação dos incidentes reportados.

Figura 3.2: Evolução Anual das Violacões de Dados

A figura 3.3 apresenta a evolução anual das violações de dados classificadas por setor, permitindo a
identificação de tendências históricas específicas para cada setor. A análise evidencia picos e quedas na
ocorrência de incidentes, sugerindo possíveis relações com fatores externos, como mudanças regulatórias,
avanços tecnológicos e alterações no perfil das ameaças cibernéticas. A descrição detalhada de cada setor
considerado para este estudo encontra-se na tabela 3.1.

Figura 3.3: Evolução Anual das violações de Dados por Setor

Dessa forma, a análise exploratória realizada constituiu etapa fundamental para a definição da mo-
delagem, ao revelar padrões, sazonalidades e variações específicas dos dados ao longo do tempo. Esses
resultados orientaram a escolha dos métodos preditivos mais indicados para capturar as particularidades
temporais e setoriais das séries, como será explorado nas subseções seguintes.
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Na etapa de preparação dos dados, dos 72.553 registros iniciais de violações, 40.142 foram validados
após a limpeza e a exclusão de inconsistências. O processo envolveu ajustes, filtragem por tipo de orga-
nização/setor e recorte temporal, estruturando as séries temporais de forma organizada. O expoente de
Hurst foi empregado para avaliar se as séries temporais se aproximam de um comportamento aleatório ou se
apresentam dependência de longo prazo em sua dinâmica, enquanto os valores atípicos foram tratados com
base no intervalo interquartil (IQR), visando aprimorar a qualidade preditiva dos dados.

A filtragem dos dados permitiu organizar as informações de forma consistente por setor, assegurando
maior homogeneidade ao longo do período analisado. Os setores organizacionais considerados estão
apresentados e descritos na tabela 3.1.

Tabela 3.1: Descrição do Setor

Setor Descrição
BSF Serviços financeiros (bancos, corretoras, seguradoras não-sanitárias)
BSO Outros negócios (tecnologia, manufatura, utilidades, serviços profissionais)
BSR Varejo (lojas físicas e online)
EDU Instituições educacionais (escolas, universidades, serviços educacionais)
GOV Governo e militares (agências públicas e forças armadas)
MED Saúde (hospitais e clínicas)
NGO Organizações sem fins lucrativos (ONGs, igrejas, grupos de advocacia)

UNKN Setor desconhecido devido a informações insuficientes para classificar

Para garantir maior consistência na análise, o período de estudo foi delimitado entre 2010 e 2023. Os
registros anteriores a 2010 apresentavam volume reduzido, possivelmente em razão da menor maturidade
dos mecanismos de detecção e da ausência de regulamentações específicas (Rodrigues et al. 2024). Embora
o conjunto de dados inclua registros até 2025, optou-se por considerar apenas as informações até 2023, a fim
de evitar distorções decorrentes de possíveis atrasos nas notificações de violações de dados, que poderiam
comprometer a representatividade temporal da série (Petropoulos et al. 2022).

Figura 3.4: Delimitação Temporal

O expoente de Hurst foi utilizado para quantificar o comportamento dinâmico das séries temporais,
funcionando como uma medida estatística que avalia a dependência de longo prazo e a previsibilidade da
série, permitindo identificar se os dados apresentam persistência ou antipersistência (Zou et al. 2019). Esse
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indicador permite classificar a série como tendencial (H>0,5), aleatória (H ≈ 0,5) ou revertente à média
(H<0,5). Essa abordagem contribui para uma compreensão mais aprofundada da estrutura temporal dos
dados e subsidia a seleção de modelos preditivos mais adequados às características específicas de cada série.
Os resultados estão apresentados na Tabela 3.2.

Tabela 3.2: Expoente de Hurst por Setor

Setor Expoente de Hurst (H)
BSF 0.5237
BSO 0.5042
BSR 0.5773
EDU 0.5939
GOV 0.6508
MED 0.5703
NGO 0.6027

UNKN 0.4629
Total Geral 0.5269

Durante a análise, identificaram-se valores discrepantes (outliers) ao longo das séries, os quais poderiam
comprometer a precisão e a capacidade de generalização dos modelos preditivos (Petropoulos et al. 2022).
Para mitigar esse impacto, aplicou-se o método do Intervalo Interquartil (IQR), técnica reconhecida pela
eficácia na detecção de outliers, particularmente em distribuições não paramétricas (Carvalho et al. 2023).

Para aplicar o método do Intervalo Interquartil (IQR), deve-se inicialmente calcular o primeiro quartil
(Q1), que corresponde ao valor que separa os 25% menores dados, e o terceiro quartil (Q3), que separa os
75% menores dados. Em seguida, determina-se o intervalo interquartil, dado por:

IQR = Q3 −Q1 (3.1)

A partir do valor do IQR, é possível identificar possíveis outliers no conjunto de dados. Para isso,
calculam-se os limites inferior e superior, que definem o intervalo de variação aceitável:

Limite inferior = Q1 − 1.5× IQR (3.2)

Limite superior = Q3 + 1.5× IQR (3.3)

Qualquer valor abaixo do limite inferior ou acima do limite superior é considerado um outlier. Essa
abordagem permite lidar com valores extremos sem removê-los, preservando a estrutura dos dados. De
acordo com (Kumar, Kaur e Kumar 2023), a combinação do método do intervalo interquartil (IQR) com a
winsorização possibilita a identificação e o ajuste eficiente de outliers. A winsorização substitui valores
extremos pelos valores dos percentis-limite, reduzindo a influência de observações atípicas sem necessidade
de exclusão (Martinez, Castle e Hendry 2021), sendo especialmente útil em análises sensíveis como séries
temporais (Abraham e Box 1979).

Em síntese, esta subseção estabeleceu uma análise da base de dados e o protocolo de preparação
necessários às etapas subsequentes: definição do escopo temporal (2010–2023) e das variáveis-chave
(data da violação e tipo de organização); padronização e filtragem por setor e período; agregação mensal;
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diagnóstico de dependência temporal pelo expoente de Hurst; e tratamento de valores extremos via IQR,
com winsorização quando aplicável. Esses procedimentos produzem um painel setorial temporalmente
consistente, com qualidade e rastreabilidade adequadas, servindo de alicerce para as análises que se seguem.

3.1.2 Aplicação do Modelo

A aplicação dos modelos foi realizada individualmente para cada setor, com o objetivo de avaliar
comparativamente seu desempenho na previsão da quantidade de violações de dados ao longo do tempo.
Para tanto, os dados foram particionados sequencialmente em conjuntos de treino e teste, de forma a preservar
a ordem temporal da série — um requisito essencial em análises de séries temporais (Song et al. 2024).

Cada modelo considerado (LSTM, TCN, FBPROPHET, SARIMA e XGBOOST) (Petropoulos et al. 2022)
foi treinado com aproximadamente 85% dos dados, correspondentes ao período de 2010 a 2021, permitindo
o aprendizado dos padrões históricos e tendências relacionados às violações de dados. Os 15% restantes,
referentes ao intervalo de 2022 a 2023, compuseram o conjunto de teste, possibilitando uma avaliação
imparcial da capacidade preditiva dos modelos em relação a eventos não observados durante o treinamento
(Petropoulos et al. 2022).

A implementação setorial dessa estratégia de particionamento garantiu uma comparação equitativa entre
os diferentes modelos, permitindo identificar qual abordagem apresenta melhor adequação às especificidades
temporais e características de cada segmento organizacional.

Nessa etapa, realizou-se inicialmente o ajuste de hiperparâmetros, procedimento essencial para otimizar
o desempenho dos modelos preditivos (Gayam, Yellu e Thuniki 2021). Empregou-se a técnica de busca em
grade (grid search), método sistemático que explora combinações de parâmetros dentro de um espaço prede-
finido (Thakkar e Lohiya 2021). Essa abordagem possibilitou testar uma ampla variedade de configurações
na grade, avaliando o desempenho de cada modelo por meio das métricas de validação: erro médio absoluto
(MAE), erro quadrático médio (RMSE) e erro percentual absoluto médio (MAPE) (Mulla et al. 2025).

A busca em grade foi aplicada em conjunto com validação cruzada, a fim de mitigar o risco de sobreajuste
e garantir maior generalização dos resultados (Petropoulos et al. 2022). Esse processo foi executado
individualmente para cada modelo e para cada setor organizacional analisado, respeitando as particularidades
das séries temporais envolvidas (Petropoulos et al. 2022). Como resultado, foi possível identificar as
configurações mais adequadas aos dados específicos de cada segmento, contribuindo diretamente para a
acurácia das previsões obtidas (Carvalho et al. 2023).

Com a preparação concluída e as séries temporais devidamente estruturadas, procedeu-se à aplicação
dos modelos preditivos. Foram selecionadas abordagens com naturezas e níveis de complexidade distintos —
modelos estatísticos clássicos (SARIMA), modelos aditivos com heurísticas específicas para séries temporais
(fbprophet), métodos baseados em árvores de decisão em regime de boosting (xgboost) e redes neurais
profundas voltadas a dados sequenciais (LSTM e TCN). Essa diversidade de modelos, sintetizada na Tabela
3.3, permite explorar diferentes formas de capturar tendência, sazonalidade, não linearidades e dependências
de longo prazo, oferecendo múltiplas perspectivas sobre a dinâmica dos incidentes de violação de dados.

Para mensurar o desempenho dos modelos aplicados à previsão de violações de dados organizacionais,
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Tabela 3.3: Descrição dos Modelos Preditivos Utilizados

Modelo Tipo Descrição e Características Relevantes
SARIMA Modelo estatístico

clássico
Lida com componentes de tendência, sazonalidade e resíduos. Requer séries estacionárias e pode
apresentar alta complexidade para ajuste de parâmetros.

fbprophet Modelo estatístico adi-
tivo com heurísticas

Desenvolvido para dados de séries temporais com fortes efeitos sazonais e de tendência. Automatiza
a detecção de tendências e sazonalidades e é tolerante a falhas ou lacunas nos dados. Pode, contudo,
superestimar tendências e ter menor desempenho com dados com ruídos ou outliers extremos.

xgboost Ensemble de árvores
de decisão (Boosting)

Algoritmo baseado em árvores de decisão que constrói um modelo preditivo de forma aditiva. Oferece
alta performance com dados estruturados e boa explicabilidade de variáveis. Contudo, não modela
diretamente a sequência temporal e requer engenharia de features para dados de séries temporais.

LSTM Rede neural recorrente
(Deep Learning)

Capaz de aprender dependências de longo prazo em dados sequenciais. É eficaz com dados não lineares
e sazonais. Suas desvantagens incluem a necessidade de muitos dados e tempo de treinamento, além de
ser sensível ao ajuste de hiperparâmetros.

TCN Rede neural convolu-
cional temporal (Deep
Learning)

Utiliza convoluções para modelar dependências em séries temporais. Apresenta melhor paralelismo que
LSTM e é capaz de captar padrões de longo prazo de forma mais estável. No entanto, é mais complexo
para configurar e ainda menos difundido na literatura de séries temporais.

foram utilizadas três métricas estatísticas: o erro médio absoluto (MAE), a raiz do erro quadrático médio
(RMSE) e o erro percentual absoluto médio (MAPE) (Mulla et al. 2025).

O MAE (Mean Absolute Error) representa a média dos erros absolutos entre os valores reais e previs-
tos, fornecendo uma estimativa direta do desvio médio na mesma unidade da variável analisada, o que
facilita sua interpretação (Carvalho et al. 2023). O RMSE (Root Mean Squared Error) corresponde à raiz
quadrada da média dos quadrados dos erros, atribuindo maior peso a desvios elevados em função do termo
quadrático (Rahimpour et al. 2024), de modo que penaliza erros grandes de forma mais intensa que o MAE
(Song et al. 2024) e se torna, por isso, mais sensível à presença de valores atípicos (Ding et al. 2025). O
MAPE (Mean Absolute Percentage Error), por sua vez, mede o erro percentual médio em relação aos valores
reais, expressando-se em porcentagem e permitindo comparações equitativas entre diferentes séries ou
modelos, o que reforça sua utilidade prática pela alta interpretabilidade (Fildes, Ma e Kolassa 2019).

Neste estudo, o MAPE foi adotado como métrica principal de avaliação da acurácia preditiva dos
modelos (Mulla et al. 2025), em razão de sua capacidade de comparação entre diferentes séries temporais
e de sua interpretação direta em termos percentuais (Fildes, Ma e Kolassa 2019). Seguindo os critérios
propostos por (Lewis 1982), os valores de MAPE foram classificados conforme apresentado na Tabela 3.4.

Tabela 3.4: Classificação da Precisão das Previsões com base no MAPE

Intervalo do MAPE (%) Classificação Descrição
< 10 Previsão Altamente

Precisa
Indica previsões com erro percentual muito baixo; trata-se de um desempenho excelente
para fins analíticos e operacionais.

10 – 19,99 Boa Previsão Indica modelos com boa acurácia, confiáveis para aplicações práticas, embora com margem
de erro perceptível.

20 – 49,99 Previsão Razoável As previsões possuem erro moderado; podem ser utilizadas em contextos exploratórios,
mas com cautela nas decisões.

50 ou mais Previsão Imprecisa Reflete alto grau de erro percentual, tornando o modelo inadequado para aplicações que
exigem confiabilidade nas estimativas.

3.2 RESULTADOS

Esta seção apresenta os principais resultados da análise da base de dados da PRC, com ênfase na
comparação do desempenho preditivo dos modelos a partir do MAPE como métrica principal. Ao final,
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sintetizam-se as considerações, aplicações práticas e teóricas.

3.2.1 Avaliação Comparativa da Precisão entre os Modelos

A análise dos resultados obtidos com os modelos LSTM, fbprophet, SARIMA, TCN, e xgboost foi
realizada com base nas métricas MAE, RMSE e MAPE, considerando a previsão de violações de dados em
diferentes tipos de organização, tendo o MAPE como métrica principal de avaliação. Foi incluída a figura
3.5 com resultados do MAPE por setor e por modelo aplicado:

Figura 3.5: MAPE por Modelo com Comparação entre Setores Organizacionais

Os resultados obtidos para cada setor, com base na aplicação dos diferentes modelos preditivos, foram
avaliados segundo a classificação de (Lewis 1982), utilizando o MAPE como principal métrica de acurácia.

No setor Business–Financial (BSF), o modelo LSTM apresentou o melhor equilíbrio entre erros relativos
e absolutos, com MAPE de 21,94%. O xgboost exibiu o menor erro relativo (MAPE 19,96%), embora
a análise de MAE e RMSE não esteja representada na figura. Os demais modelos apresentaram MAPE
superior: SARIMA (55,43%), fbprophet (39,47%) e TCN (34,46%).

No setor Business–Other (BSO), o xgboost apresentou o menor MAPE (11,40%), seguido de LSTM (16,64%)
e TCN (19,44%). fbprophet (32,13%) e SARIMA (34,77%) mostraram desempenho inferior, refletindo a
heterogeneidade do setor.

No setor Business–Retail (BSR), todos os modelos apresentaram resultados insatisfatórios, com MAPE
de 68,00% (LSTM), 73,13% (fbprophet), 80,64% (SARIMA), 68,78% (TCN) e 83,34% (xgboost). A alta
volatilidade e os eventos atípicos comprometeram a precisão das previsões.

No setor de Educação (EDU), o modelo LSTM registrou MAPE de 32,99%, enquanto fbprophet e SARIMA
obtiveram desempenho semelhante (34,40% e 34,90%, respectivamente). O xgboost apresentou MAPE
de 35,47%, e o TCN, 42,62%, indicando que a presença de tendência e sazonalidade beneficiou modelos
estatísticos.
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No setor Governamental (GOV), o LSTM destacou-se com MAPE de 31,01%, seguido de xgboost (35,03%)
e fbprophet (39,47%). SARIMA (42,57%) e TCN (49,37%) apresentaram previsões menos precisas.

No setor Médico (MED), os modelos exibiram MAPE entre 19,44% (TCN) e 32,19% (SARIMA). O LSTM
obteve 23,76%, fbprophet 26,54% e xgboost 21,53%, refletindo séries relativamente estáveis.

Para Organizações Não Governamentais (NGO), o menor MAPE foi do LSTM (37,10%), enquanto SARIMA
(53,38%), fbprophet (48,57%), TCN (42,50%) e xgboost (42,10%) apresentaram desempenho inferior.

No Total Geral, o xgboost apresentou o menor MAPE (5,97%), seguido de TCN (7,82%) e LSTM (12,21%).
fbprophet e SARIMA apresentaram 17,63% e 27,61%, respectivamente, indicando boa estabilidade preditiva
no agregado.

Nos setores desconhecidos (UNKN), o xgboost foi o modelo mais preciso (10,03%), seguido de LSTM
(12,78%) e TCN (12,88%). SARIMA (32,76%) e fbprophet (22,54%) apresentaram desempenho inferior.

De modo geral, os modelos LSTM e TCN mostraram desempenho consistente entre os setores, com
destaque para o xgboost, que apresentou os menores valores de MAPE em vários contextos, especialmente
no agregado e nos setores BSO e UNKN. SARIMA e fbprophet tiveram desempenho inferior nos setores
mais voláteis, como o BSR, onde todas as abordagens registraram baixa acurácia.

3.2.2 Considerações Finais

Os resultados revelam que o desempenho preditivo varia de forma significativa entre setores, modelos
e características estruturais das séries. O xgboost apresentou os menores valores de MAPE no agregado
e em setores como BSO e UNKN, demonstrando elevada capacidade preditiva quando as séries são mais
estáveis ou apresentam menor ruído. Por outro lado, LSTM e TCN mantiveram desempenho consistente
em múltiplos setores, destacando-se em contextos com não linearidade e padrões mais complexos, embora
não tenham sido sempre superiores em todos os cenários. Modelos estatísticos, como SARIMA e fbprophet,
apresentaram limitações mais evidentes em setores voláteis, com destaque para o varejo (BSR), onde todos
os modelos registraram MAPE elevado, reforçando o desafio inerente à previsão em ambientes altamente
instáveis.

Na prática, recomenda-se uma estratégia diferenciada por setor: utilizar xgboost em séries com boa
estabilidade ou como baseline de menor erro relativo no agregado; aplicar LSTM e TCN em contextos que
exigem maior robustez a padrões não lineares e interações temporais mais complexas; e empregar modelos
estatísticos como alternativas interpretáveis, especialmente quando sazonalidades regulares ou tendências
bem definidas predominam. Métricas como MAPE, MAE e RMSE devem orientar definições de SLAs,
intervalos de tolerância e políticas de alocação de recursos, considerando a previsibilidade específica de cada
setor. A calibração periódica, com re-treinos e monitoramento de deriva temporal, torna-se fundamental
diante de mudanças de comportamento nas séries.

Os achados reforçam que a escolha do modelo deve considerar a estrutura da série, o grau de volatilidade
setorial e a finalidade operacional da previsão. Propõe-se a adoção de portfólios híbridos de modelos
por setor, SLAs proporcionais à previsibilidade observada e integração sistemática das previsões ao ciclo
de resposta organizacional. A incorporação de variáveis exógenas, aliada a monitoramento contínuo da
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performance e ao ajuste dinâmico dos modelos, pode fortalecer a gestão de riscos e aprimorar a governança
cibernética baseada em previsões.
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4 ANÁLISE DE SOBREVIVÊNCIA DE INCIDENTES
CIBERNÉTICOS

A partir da compreensão preditiva da frequência e da distribuição dos incidentes, o estudo avança
para a análise temporal da recorrência das violações de dados por meio de técnicas de sobrevivência
(Wang, Li e Reddy 2019), utilizando a base Data Breach Chronology da PRC como fonte empírica. Essa
abordagem estima o tempo até a ocorrência de um novo incidente cibernético, incorporando informa-
ções parciais de observações que ainda não sofreram novo evento, e amplia a compreensão do com-
portamento das séries ao oferecer uma perspectiva complementar às técnicas tradicionais de previsão
(Bradley, Alhajjar e Bastian 2023).

A partir da compreensão preditiva da frequência e da distribuição dos incidentes, o estudo avança para a
dimensão temporal da recorrência dos incidentes de violação de dados por meio da análise de sobrevivência
(Wang, Li e Reddy 2019), utilizando também a base Data Breach Chronology da PRC como fonte empírica.
Essa abordagem estima o tempo até a ocorrência de um novo incidente cibernético e oferece uma perspectiva
complementar às técnicas de predição, abordando uma nova perspectiva que complementa as técnicas
tradicionais de previsão (Bradley, Alhajjar e Bastian 2023).

A Análise de Sobrevivência permite estimar, para cada setor, a função de sobrevivência e as respectivas
probabilidades de permanecer sem novo incidente (Val et al. 2024), além de identificar fatores que influ-
enciam o intervalo entre violações de dados (Papathanasiou, Demertzis e Tziritas 2023). Essa abordagem
aprofunda a compreensão do ciclo de vida dos incidentes ao revelar padrões temporais e variabilidades
intrínsecas que afetam diretamente a recorrência(Alvarez et al. 2025).

Essa abordagem permite que gestores desenvolvam políticas fundamentadas em estimativas temporais
(Petropoulos et al. 2022), otimizem a alocação de recursos (Kotsias, Ahmad e Scheepers 2022) e imple-
mentem medidas preventivas ajustadas à vulnerabilidade específica de cada setor ao longo do tempo
(Val et al. 2024). Com isso, fortalece-se a capacidade de antecipação e de resposta, ampliando a eficácia na
mitigação da recorrência de incidentes de violação de dados (Rodrigues et al. 2024).

4.1 PROCEDIMENTOS METODOLÓGICOS APLICADOS À ANÁLISE DE SOBRE-
VIVÊNCIA

A figura 4.1 sintetiza o encadeamento metodológico adotado na análise de sobrevivência de incidentes
cibernéticos. O processo inicia-se na seleção da fonte de dados, a base PRC – Data Breach Chronology, e no
recorte temporal de 2010–2023, escolhido por oferecer maior consistência e padronização dos registros. Em
seguida, procede-se à preparação dos dados, etapa em que são realizadas a limpeza dos registros, a padroni-
zação dos formatos de data e a harmonização da taxonomia setorial, de modo a garantir comparabilidade
entre os diferentes tipos de organização.
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Na sequência, são construídas as variáveis analíticas centrais da modelagem de sobrevivência: a
duração em dias entre incidentes (duration_days), o indicador de ocorrência de evento (event) e o
código setorial padronizado (sector_code). Com esse conjunto estruturado, aplica-se o estimador de
Kaplan–Meier, implementado em ambiente do Google Colab com a biblioteca lifelines, para obter as curvas
de sobrevivência estratificadas por setor, bem como as medianas de tempo e as probabilidades S(t) em
diferentes horizontes. Por fim, as saídas analíticas são interpretadas sob a perspectiva de governança: os
resultados subsidiam a priorização de setores mais críticos, a definição de acordos de nível de serviço (SLAs)
alinhados ao risco temporal de reincidência e o ajuste de estratégias de mitigação de incidentes de violação
de dados.

Fonte de Dados
Base PRC – Data Breach Chronology

Recorte Temporal
Seleção dos registros de 2010–2023

Preparação dos Dados
Limpeza e padronização de datas

Construção das Variáveis
duration_days, event, sector_code

Estimativa de Sobrevivência
Estimador de Kaplan–Meier

(Python 3.12 no Colab)

Saídas Analíticas
Curvas de sobrevivência por setor,

medianas de tempo e probabilidades S(t)

Interpretação e Uso Gerencial
Priorização de setores, definição de SLAs

e ajuste de estratégias de mitigação

Figura 4.1: Fluxo metodológico da análise de sobrevivência de incidentes cibernéticos

O recorte temporal da base de dados da PRC, para o período de 2010–2023, foi definido por corres-
ponder ao intervalo em que a cobertura dos registros e a padronização dos campos são mais consistentes
(Ainslie et al. 2023). Essa delimitação busca mitigar vieses de subnotificação nos anos iniciais do cadastro
e assegurar maior comparabilidade entre os diferentes tipos de organização ao longo do tempo.

As variáveis analíticas centrais desta pesquisa são a data da violação e o tipo de organização (ver
Tabela 3.1), ambas fundamentais para caracterizar a dinâmica temporal dos incidentes. A data da violação
estabelece o eixo cronológico das análises e orienta a construção das séries temporais (Mulla et al. 2025).
Para este estudo, entende-se que o tipo de organização corresponde ao setor de atuação da respectiva
entidade.

A variável temporal constitui a base para a decomposição das séries em componentes de tendência e de
sazonalidade (Rhif e al. 2019), além de permitir a identificação de choques exógenos, como mudanças regu-
latórias ou eventos de grande impacto (Marczak e Proietti 2016). No contexto da análise de sobrevivência,
essa mesma dimensão temporal é utilizada para derivar as durações entre incidentes e definir o tempo até o
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evento, o que viabiliza a estimação de funções de sobrevivência e de risco associadas às violações de dados.
Também sustenta a análise de rupturas estruturais, sinalizando transições relevantes no comportamento
de incidência das violações. Esses aspectos temporais são fundamentais para compreender a evolução do
fenômeno, interpretar a dinâmica de recorrência e contextualizar as variações entre períodos e grupos de
observação (Song et al. 2024).

O tipo de organização é a variável que sustenta a segmentação por setor, necessária para controlar as
heterogeneidades estruturais (Val et al. 2024). Neste estudo, o termo setor é empregado especificamente para
designar o tipo de organização registrada na base de dados. Setores distintos apresentam variações relevantes
na exposição, na maturidade de segurança, na regulação e no tipo de dado tratado. Essa segmentação permite
contrastar as curvas de sobrevivência por grupo setorial (Val et al. 2024), testar diferenças significativas
e derivar implicações práticas, como o ajuste de estratégias de mitigação e a priorização de controles
(Val et al. 2024).

Combinadas, as variáveis data da violação e setor da organização permitem análises comparativas
consistentes de recorrência, articulando uma base temporal uniforme (agregação mensal e ordenação
dos eventos) à heterogeneidade setorial observada. Para assegurar essa uniformidade, as datas foram
padronizadas, os formatos ajustados e o índice temporal definido, o que viabilizou a construção de históricos
de eventos por setor, a derivação das durações (tempo entre incidentes) e a codificação do indicador de evento
ou censura. Assim, obtém-se um painel (setor × tempo) apropriado às etapas de análise de sobrevivência,
garantindo consistência temporal e comparabilidade.

O estimador de Kaplan–Meier foi empregado para obter a função de sobrevivência S(t) (Val et al. 2024),
interpretada como a probabilidade de não ocorrer um novo incidente até o tempo t após o evento anterior
(Val et al. 2024). Em conformidade com o pipeline implementado Google Colab, derivou-se a variável
de duração como o número de dias desde a última violação por setor (Alvarez et al. 2025), bem como o
indicador de evento 1 para ocorrência observada e 0 para censura à direita (Alvarez et al. 2024). O estimador
não paramétrico foi calculado pelo produto-limite

S(t) =
∏
ti≤t

(
1− di

ni

)
(4.1)

(Papathanasiou, Demertzis e Tziritas 2023), com intervalos de confiança obtidos pela variância de Gre-
enwood, mantendo o pressuposto de censura não informativa.

Para esta análise de sobrevivência, utilizou-se o estimador de Kaplan–Meier, uma ferramenta não
paramétrica amplamente empregada para estimar a função de sobrevivência S(t), que representa a probabi-
lidade de que um evento de interesse, como a reincidência de um incidente, não ocorra até um instante de
tempo t (Val et al. 2024). Essa técnica constrói uma função por partes, decrescente em degraus nos tempos
observados dos eventos, incorporando tanto dados completos quanto censurados, isto é, observações nas
quais o evento não foi observado até o final do período de análise (Val et al. 2024).

Neste estudo, utilizou-se o pipeline Colab combinado com a biblioteca lifelines para derivar a variável
de duração, definida como o número de dias desde a última violação, por setor ou estrato. O indicador
de evento foi codificado como 1 para ocorrência observada e 0 para censura à direita (Alvarez et al. 2025,

27



Alvarez et al. 2024). O estimador de Kaplan–Meier foi calculado pelo produto-limite:

S(t) =
∏
ti≤t

(
1− di

ni

)
(4.2)

onde di representa o número de eventos ocorridos no tempo ti e ni o número de indivíduos em risco
imediatamente antes de ti (Papathanasiou, Demertzis e Tziritas 2023). Os intervalos de confiança foram
obtidos pela variância de Greenwood, sob o pressuposto de censura não informativa.

Para capturar a heterogeneidade estrutural, as curvas foram estratificadas segundo o tipo de organiza-
ção, permitindo comparações entre perfis de risco (Papathanasiou, Demertzis e Tziritas 2023) e, quando
aplicável, a aplicação do teste log-rank. O processo de preparação dos dados envolveu a padronização de
datas, a ordenação temporal, o tratamento mínimo de valores ausentes e a definição explícita do conjunto
em risco por estrato (Papathanasiou, Demertzis e Tziritas 2023). A visualização foi configurada com escala
temporal de 0–30 dias, rótulos e grade informativa, assegurando rastreabilidade entre os dados, o código de
estimação e os gráficos gerados (Bradley, Alhajjar e Bastian 2023).

Foram geradas curvas de sobrevivência para cada setor, permitindo comparar os padrões de recorrência
de incidentes entre setores. A análise foi conduzida utilizando Python, com bibliotecas como pandas para
tratamento dos dados, matplotlib para visualização e para modelagem de sobrevivência (Val et al. 2024).
Scripts e documentação estão disponíveis em repositório público no GitHub.

4.2 RESULTADOS

Conforme a Figura 4.2, as curvas de sobrevivência Kaplan–Meier por tipo de organização evidenciam
padrões distintos de reincidência entre os setores analisados. Observa-se que todas as curvas apresentam
queda acentuada nos primeiros dias após uma violação, indicando que a probabilidade de ocorrer um novo
incidente é significativamente maior logo no período inicial. Entretanto, a intensidade desse decaimento
varia de forma substantiva entre os grupos.

Setores como Saúde (MED) e Outros Negócios (BSO) apresentam declínios acentuados na função de
sobrevivência nos períodos iniciais, evidenciando alta probabilidade de reincidência de incidentes em janelas
temporais curtas. Esse padrão é compatível com ambientes de elevada criticidade operacional e regulatória,
nos quais a exigência de disponibilidade contínua e a concentração de dados sensíveis ampliam a exposição
a novos eventos adversos. De forma semelhante, os setores Business–Financial (BSF) e Business–Retail
(BSR) também exibem quedas aceleradas nas curvas de sobrevivência, refletindo sua intensa exposição a
ataques direcionados e a contextos fortemente transacionais.

O setor Desconhecido (UNKN) igualmente apresenta queda abrupta da função de sobrevivência, especi-
almente nos estágios iniciais, sugerindo alta reincidência de incidentes em curto prazo. Esse comportamento
pode estar associado à heterogeneidade do agrupamento, que reúne organizações com diferentes perfis de
risco e níveis de maturidade em segurança, concentrando eventos recorrentes em intervalos reduzidos. Em
contraste, o setor de Organizações Sem Fins Lucrativos (NGO) exibe uma curva mais suavizada ao longo
do tempo, indicando menor frequência relativa de reincidência ou maior variabilidade nos intervalos entre
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Figura 4.2: Kaplan-Meier

incidentes. Já o setor de Educação (EDU) apresenta um padrão intermediário, com declínio menos abrupto
quando comparado aos setores de maior risco.

Esse conjunto de curvas evidencia que o risco temporal não é homogêneo entre setores, reforçando a
importância de estratificar políticas de segurança cibernética de acordo com o perfil operacional de cada
tipo de organização. A análise temporal permite ainda inferir intervalos médios distintos até a ocorrência
de um novo incidente, gerando insumos diretos para a priorização de recursos, definição de janelas de
monitoramento e ajuste de estratégias de prevenção. Setores com queda mais rápida na sobrevivência
demandam ciclos de resposta mais curtos e mecanismos contínuos de mitigação, enquanto setores com
curvas mais estáveis podem adotar abordagens de monitoramento com periodicidade mais espaçada, sem
perda significativa de cobertura de risco.

4.2.1 Considerações Finais

A aplicação da Análise de Sobrevivência, especificamente por meio do estimador Kaplan-Meier,
proporcionou uma visão detalhada da dinâmica temporal da reincidência de incidentes de violação de dados
em diferentes setores organizacionais. Os resultados evidenciam que o perfil setorial é determinante para as
estratégias de mitigação, ajustando o nível de resposta e recursos segundo o risco temporal identificado.

O estudo mostrou-se eficaz para incorporar as incertezas temporais e o tratamento da censura, caracte-
rísticas frequentes em bases reais de incidentes cibernéticos. Recomenda-se a continuidade da pesquisa
com a inclusão de modelos de riscos proporcionais de Cox, técnica amplamente utilizada em análise
de sobrevivência para investigar como diferentes fatores influenciam o risco de ocorrência de um novo
incidente ao longo do tempo. Esses modelos permitem estimar o efeito de variáveis explicativas —
como tipos específicos de ataque, atributos organizacionais ou características setoriais — sobre a pro-
babilidade instantânea de uma nova violação, sem impor uma forma paramétrica ao tempo até o evento
(Papathanasiou, Demertzis e Tziritas 2023).

Além disso, o monitoramento contínuo, a atualização periódica dos dados e a integração dessas análises
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na governança corporativa são cruciais para antecipar violações futuras. Tal abordagem contribui para
aprimorar políticas de segurança cibernética e alocação eficiente de recursos em ambientes complexos e
dinâmicos.
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5 PRIVACIDADE DIFERENCIAL APLICADA A DADOS DE
INCIDENTES

Neste capítulo, investiga-se o impacto introduzido pela privacidade diferencial (DP) em dados tabulares
associados a incidentes de segurança da informação. O estudo baseia-se no artigo (Rodrigues et al. 2025),
previamente publicado no SBSeg 2025, do qual o autor desta dissertação é coautor, sendo aqui incorporado
como componente de uma investigação mais abrangente. A ênfase recai sobre a relação entre o orçamento
de privacidade (ε), a sensibilidade da função (∆f ) e a preservação da utilidade analítica (Ponte et al. 2024).
A problemática central consiste em compreender de que forma a aplicação de ruído controlado, inerente aos
mecanismos de DP, altera a estrutura estatística dos dados e, consequentemente, influencia a validade de
modelos preditivos ou inferenciais derivados desses conjuntos (Henderson e al. 2023).

Tal análise busca sustentar a transparência e a colaboração interorganizacional — por meio de divulgação
de estatísticas agregadas ou geração de dados sintéticos — em conformidade com os princípios da Lei
Geral de Proteção de Dados e com abordagens consagradas na literatura sobre proteção de dados sensíveis
(Ponte et al. 2024).

O objetivo é investigar como mecanismos e parâmetros de DP influenciam a utilidade de análises e
o risco de reidentificação em dados de incidentes (Ponte et al. 2024). As questões de pesquisa incluem:
(i) quais impactos sobre métricas de utilidade são observados sob diferentes configurações de ε e ∆f ; (ii)
em que medida atributos com maior entropia apresentam maior degradação quando submetidos a ruído
(Dwork et al. 2025); e (iii) como estabelecer diretrizes práticas para divulgação responsável de estatísticas
observando os limites impostos pelo orçamento de privacidade (Kifer, Messing e Roth 2020).

5.1 PROCEDIMENTOS METODOLÓGICOS APLICADOS AO ESTUDO DE PRIVA-
CIDADE DIFERENCIAL

Parte-se de um conjunto de dados gerado sinteticamente que simula vazamentos em dezesseis cenários hi-
potéticos de divulgação adversarial (Sharma e Bantan 2025), abrangendo setores sensíveis como o bancário,
comércio eletrônico, saúde, reservas de viagens, redes sociais e entretenimento digital (Wang et al. 2024).
Cada domínio modela variáveis demográficas e comportamentais de modo estatisticamente coerente, asse-
gurando utilidade analítica sem expor indivíduos (Alaa et al. 2022).

O delineamento empírico considera um cenário adversarial no domínio de reservas de hotel
(Alhamad e Singh 2021), no qual se aplica o mecanismo de Laplace para avaliar, de forma sistemática, o
impacto combinado dos parâmetros de privacidade ε (orçamento de privacidade) e ∆f (sensibilidade da fun-
ção) em 6.120 configurações experimentais. A análise quantitativa utiliza como métricas a Jensen–Shannon
Distance (JSD), para mensurar a divergência entre distribuições originais e perturbadas, e o erro percentual
absoluto médio MAPE, para avaliar a degradação da acurácia analítica (Ponte et al. 2024).

A metodologia adotada nesta pesquisa é apresentada na Figura 5.1. As análises foram desenvolvidas em
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Figura 5.1: Fluxograma do Estudo de DP

ambiente Python, versão 3.11.11, assegurando a reprodutibilidade e a consistência nos procedimentos de
processamento, modelagem e avaliação dos experimentos.

5.2 DADOS E VARIÁVEIS

Para o experimento, realiza-se uma seleção das colunas do conjunto de dados às quais será aplicada
a técnica de privacidade diferencial. Para facilitar esse processo, as colunas do conjunto de dados são
classificadas em três categorias distintas: atributos sensíveis, identificadores e quase-identificadores (QIs).
Essa categorização permite direcionar a aplicação da privacidade diferencial de forma adequada, focando
principalmente nos quase-identificadores, que são atributos que, isoladamente, não identificam um indivíduo,
mas que em combinação podem representar uma ameaça à privacidade.

5.2.1 Dados Sensíveis, Quase-Identificadores e Identificadores

Com base em requisitos regulatórios — em particular o California Consumer Privacy Act (CCPA)
e o California Privacy Rights Act (CPRA), que definem como sensível qualquer informação capaz de
expor credenciais ou dados financeiros, e o Payment Card Industry Data Security Standard (PCI-DSS), que
estabelece regras específicas para o armazenamento seguro de dados de cartões de pagamento — as seguintes
colunas são classificadas como atributos sensíveis: nome de usuário, endereço de e-mail, senha, número do
cartão de crédito, CVV e data de validade do cartão. Como a proteção desses dados exige confidencialidade
absoluta, essas colunas são excluídas da avaliação de privacidade diferencial. Os últimos quatro dígitos do
cartão, entretanto, não são considerados sensíveis, pois o PCI-DSS permite seu armazenamento desde que
estejam devidamente mascarados.

Além dos atributos sensíveis, as colunas são classificadas como identificadores ou quase-identificadores.
Identificadores são atributos que identificam unicamente um indivíduo sem precisar de informações adi-
cionais — por exemplo, nome completo, endereço físico ou número de telefone. Por outro lado, quase-
identificadores (QIs) são atributos que não identificam unicamente um indivíduo isoladamente, mas podem
fazê-lo quando combinados com outros QIs, como cidade, código postal, informações do dispositivo ou
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métodos de pagamento.

Para distinguir atributos identificadores de quase-identificadores, calcula-se a entropia de Shannon de
cada coluna como medida da incerteza associada à distribuição de seus valores. Colunas que apresentam
entropia elevada, refletindo alto grau de unicidade entre os registros, são classificadas como identificadores
e excluídas da avaliação de privacidade diferencial, uma vez que a adição de ruído nesses casos tenderia a
comprometer a unicidade intrínseca dos dados e a reduzir de forma significativa sua utilidade analítica.

A entropia H(X) é estimada a partir da distribuição empírica de cada coluna. Para atributos cujos
valores são essencialmente únicos, assume-se uma distribuição aproximadamente uniforme sobre as 185.000
observações amostradas, o que resulta em uma entropia teórica de ln(185000) ≈ 12,13 nats. Com base
nesse critério, colunas com entropia superior a 12 nats são classificadas como identificadoras, enquanto
aquelas com entropia inferior, desde que não caracterizadas como sensíveis por definição regulatória, são
tratadas como quase-identificadores.

Assim, atributos como nome, endereço físico, número de telefone e histórico de pagamentos são
excluídos da aplicação de mecanismos de privacidade diferencial. Em contrapartida, os mecanismos de
privacidade diferencial — em particular o mecanismo de Laplace — são aplicados exclusivamente aos quase-
identificadores, cuja menor entropia está diretamente associada tanto ao risco potencial de reidentificação
quanto ao impacto da injeção de ruído sobre as distribuições de contagem. Essa escolha permite mitigar
riscos indiretos de identificação ao mesmo tempo em que preserva, na medida do possível, a utilidade
analítica dos dados.

A categorização sistemática das colunas em atributos sensíveis, identificadores e quase-identificadores
fundamenta uma estratégia direcionada de preservação da privacidade, na qual a confidencialidade é
assegurada para os dados mais críticos, enquanto a privacidade estatística é aplicada aos atributos que
representam ameaças indiretas à identificação. Essa abordagem contribui para o atendimento aos requisitos
regulatórios e para o equilíbrio entre proteção da privacidade e utilidade analítica.

5.3 SELEÇÃO DO CENÁRIO DE DIVULGAÇÃO

Dentre os 16 cenários de vazamento simulados apresentados por (Sharma e Bantan 2025), selecionamos
o cenário de vazamento associado a reservas de hotel, por ter apresentado o maior número de quase-
identificadores (QIs). Essa escolha possibilita uma avaliação mais abrangente da aplicação da privacidade
diferencial, visto que a presença de múltiplos QIs aumenta a complexidade do desafio de proteção dos dados
(Carvalho et al. 2023). Essa seleção é sustentada por evidências da literatura que mostram que a indústria
hoteleira, inserida no próprio setor de turismo, apresenta recorrentes fragilidades de segurança e elevada
exposição a ameaças cibernéticas, o que torna esse contexto particularmente relevante para a avaliação de
estratégias de proteção de dados (Li et al. 2010).

Ao optar por este cenário, é possível investigar com mais profundidade os impactos da privacidade dife-
rencial em um conjunto de dados realista, rico em atributos que podem potencialmente levar à reidentificação
de indivíduos quando combinados. Dessa forma, a análise realizada contribui tanto para o aprimoramento
das técnicas de proteção quanto para a compreensão dos trade-offs entre privacidade e utilidade dos dados
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na prática (Ponte et al. 2024).

O cenário de divulgação adversária selecionado consiste em aproximadamente 2,9 milhões de linhas (pré-
amostragem), contendo as colunas classificadas como quase-identificadores apresentadas na tabela 5.1. Essa
tabela apresenta as principais colunas consideradas na avaliação de privacidade diferencial, acompanhadas
de descrições sucintas de cada atributo. As colunas classificadas como quase-identificadores (QI) são
aquelas que possibilitam a identificação indireta dos indivíduos presentes no conjunto de dados, isto é,
informações que, embora não revelem a identidade por si sós, apresentam potencial de reidentificação
quando combinadas com outras variáveis.

Tabela 5.1: Colunas categorizadas como QI e consideradas na avaliação de DP

Coluna Descrição
Informação de dispositivo Sistema operacional do telefone (Android ou iOS) e sua versão, consi-

derando aqueles lançados entre 2016 e 2022.
Hábitos de Viagem Pode ser qualquer combinação de viagem de carro, viagem de trem,

cruzeiros, voos domésticos ou internacionais.
Métodos de Pagamento Pode ser qualquer combinação de dinheiro, carteira digital, pagamento

móvel, transferência bancária, cartão de débito ou cartão de crédito.
Cidade Cidade do endereço do titular (Estados Únidos da America - EUA).
Últimos 4 dígitos do cartão Últimos quatro dígitos do número do cartão de crédito.
Código postal Código postal (ZIP code) do endereço do titular (Estados Unidos da

America - EUA).

A tabela 5.2 apresenta o resumo estatístico dos quase-identificadores, indicando para cada coluna
o número total de entradas, a quantidade de valores distintos, o valor mais frequente e sua respectiva
ocorrência. Essa organização facilita a compreensão da diversidade e da distribuição desses atributos,
fornecendo subsídios para avaliar o risco de divulgação adversarial.

Tabela 5.2: Estatística resumida das tabelas de QI

Coluna Contar valores únicos Mais frequentes Frequência
Informações do dispositivo 185.000 16 Android, Android 12 11.773
Hábitos de viagem 185.000 155 Viagem de trem 12.646
Métodos de pagamento 185.000 3.905 Cartão de crédito 7.590
Cidade 185.000 17.610 Washington 1.444
Últimos 4 dígitos do cartão 185.000 10.000 **** **** **** 5519 51342 36
Códigos Postais 185.000 39.359 – 16

5.4 AVALIAÇÃO DE PRIVACIDADE DIFERENCIAL

Para a avaliação da privacidade diferencial, utilizou-se a biblioteca diffprivlib, que oferece mecanismos
consolidados para DP, além de permitir a configuração dos principais parâmetros de privacidade. A
biblioteca possui interface simples, boa documentação e alertas integrados que ajudam a evitar violações
acidentais de privacidade.

Neste trabalho, optou-se pelo uso do mecanismo de Laplace, amplamente empregado em análises de
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dados com preservação de privacidade devido à sua simplicidade e eficiência. O mecanismo de Laplace atua
adicionando ruído calibrado às consultas sobre os dados, controlado pelos parâmetros de sensibilidade e
orçamento de privacidade (Anon. 2021), permitindo equilibrar o grau de proteção com a utilidade dos dados
(Ponte et al. 2024). Tal abordagem possibilita que as análises e publicações estatísticas sejam realizadas
minimizando os riscos de reidentificação dos indivíduos, sem comprometer excessivamente a acurácia das
respostas (Seeman e Susser 2024).

5.5 MECANISMO DE LAPLACE PARA PRIVACIDADE DIFERENCIAL

O mecanismo de Laplace (ML), aplicado à privacidade diferencial, garante a propriedade de ε-
privacidade diferencial ao adicionar ruído calibrado ao resultado das consultas realizadas sobre os dados.
Esse ruído é gerado a partir de uma distribuição de Laplace, cujo parâmetro de escala é inversamente
proporcional ao orçamento de privacidade ε. Em outras palavras, quanto menor o valor de ε, maior será o
ruído adicionado, resultando em uma proteção de privacidade mais forte, porém com maior impacto sobre a
precisão dos resultados (Ponomareva et al. 2024). O mecanismo pode ser expresso matematicamente como:

ML(f(x)) = f(x) + Laplace
(
∆f

ε

)
(5.1)

onde f(x) é a consulta de interesse (Ponomareva et al. 2024), ∆f corresponde à sensibilidade global
da função f , e Laplace(·) representa a distribuição de Laplace centrada em zero e ajustada pela escala
apropriada (Ponomareva et al. 2024).

Dada uma consulta original f(x), com sensibilidade L1 igual a ∆f , o mecanismo de Laplace gera como
saída ML(x), conforme a expressão:

ML(x) = f(x) + Lap(0, b) (5.2)

onde Lap(0, b) representa ruído amostrado de uma distribuição de Laplace com média zero e escala b = ∆f
ε .

O parâmetro de escala b é determinado pela sensibilidade ∆f da função e pelo orçamento de privacidade ε.

A magnitude do ruído introduzido depende diretamente da sensibilidade da consulta: quanto maior
∆f , maior será o ruído somado ao resultado, garantindo maior privacidade, porém diminuindo a precisão
das respostas. Valores menores de ∆f resultam em menor ruído, favorecendo a precisão mas reduzindo a
proteção de privacidade.

O orçamento de privacidade ε atua como regulador deste equilíbrio: valores menores de ε aumentam
o nível de privacidade ao adicionar mais ruído, enquanto valores maiores favorecem precisão, mas com
menor proteção. Assim, tanto a sensibilidade ∆f quanto ε são fundamentais para controlar o trade-off entre
utilidade e privacidade na aplicação do mecanismo de Laplace.

Neste estudo, são analisados os impactos das variações na sensibilidade (∆f ) e no orçamento de
privacidade (ε) sobre os deslocamentos distribucionais dos resultados de consultas de contagem f(x). Foram
avaliadas alterações na perda de privacidade mediante a variação de ε no intervalo {0.1, 0.2, 0.3, . . . , 12.0}
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e de ∆f em {0.1, 1.1, 2.1, . . . , 50.1}. Para garantir a validade dos resultados, todas as saídas negativas, que
não possuem significado na consulta de contagem, são truncadas para o valor mínimo de zero.

5.6 MÉTRICAS DE COMPARAÇÃO

Para comparar as distribuições de contagem de cada coluna de quase-identificadores (QIs) antes e após
a aplicação de privacidade diferencial, utiliza-se a métrica Jensen-Shannon Distance (JSD), definida como a
raiz quadrada da divergência Jensen-Shannon.

A divergência Jensen-Shannon é derivada da divergência Kullback-Leibler (KLD), definida conforme a
equação (5.3), que também é denominada entropia relativa. A KLD quantifica a discrepância esperada na
surpresa ao assumir a distribuição Q em vez da distribuição real P .

DKL(P ∥ Q) =

n∑
i=1

P (xi) log
P (xi)

Q(xi)
(5.3)

Trata-se de uma medida assimétrica e não limitada superiormente, tal que

DKL(P ∥ Q) ∈ [0,+∞) (5.4)

sendo zero se e somente se

P = Q. (5.5)

A presença de zeros na distribuição Q faz com que

DKL(P ∥ Q) (5.6)

tenda ao infinito devido à fração

P (xi)

Q(xi)
. (5.7)

A Jensen-Shannon Distance, conforme expressa na equação (5.8), quantifica a discrepância entre duas
distribuições P e Q calculando a raiz quadrada da média das divergências Kullback-Leibler entre cada
distribuição e sua distribuição média M = P+Q

2 .

JSD(P ∥ Q) =

√
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M) (5.8)

Ao contrário da KLD, a JSD é uma medida simétrica e limitada, tal que

JSD(P ∥ Q) ∈ [0,
√
ln 2] (5.9)
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assumindo valor zero somente quando

P = Q (5.10)

e valor máximo

√
ln 2 (5.11)

quando P e Q são disjuntas. Por depender da distribuição média M , a JSD evita divergências infinitas da
KLD, não sendo necessário adicionar constantes para lidar com zeros.

5.7 RESULTADOS

Esta seção apresenta os resultados obtidos nos experimentos, com ênfase na quantificação dos desloca-
mentos distribucionais introduzidos pela aplicação da privacidade diferencial. Como base para a análise e
discussão subsequentes, são calculados os valores de entropia para cada coluna de quase-identificadores no
conjunto de dados. Esses valores de entropia fornecem informações acerca da variabilidade de cada atributo
QI, os quais influenciam o impacto da adição de ruído sob distintas configurações da privacidade diferencial.

5.7.1 Entropia das Colunas quase-identificadoras

A entropia para cada coluna de quase-identificadores selecionada foi calculada e está apresentada na
tabela 5.3. Correlacionando essas informações com as estatísticas resumidas da tabela 5.2, observa-se que
colunas com menor entropia tendem a possuir menos valores únicos. Essa relação decorre da definição de
entropia como uma medida de imprevisibilidade. Quando o número de valores únicos em uma coluna é baixo,
a diversidade de resultados possíveis é reduzida, tornando os dados mais previsíveis e, consequentemente,
diminuindo sua entropia.

Tabela 5.3: Entropia dos atributos (em Nats)

Coluna Entropia (Nats)
Informação de Dispositivo 2.78
Hábitos de Viagem 4.32
Método de Pagamento 6.42
Cidade 8.93
4 últimos dígitos Cartão 9.18
Código Postal 10.48

Colunas com menor entropia, como as relacionadas a informação de dispositivo, apresentam risco
reduzido de reidentificação, devido ao fato de muitos registros compartilharem os mesmos valores. Essa
uniformidade diminui a probabilidade de que um indivíduo seja identificado de forma única, possivelmente
exigindo uma proteção de privacidade menos rigorosa. Contudo, colunas de baixa entropia também impõem
desafios à aplicação da privacidade diferencial. Devido à limitada variabilidade nessas colunas, o ruído
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adicionado pode não ser suficiente para ocultar efetivamente os valores excepcionais. Consequentemente,
valores raros ou únicos podem permanecer evidentes mesmo após a adição do ruído, reduzindo o nível geral
de proteção da privacidade nesses casos.

Por outro lado, colunas de alta entropia, como código postal, apresentam maior potencial de reidenti-
ficação devido à sua maior unicidade entre os registros. Contudo, dado o elevado grau de variabilidade
nessas colunas, mesmo uma pequena quantidade de ruído pode ser eficaz para provocar um deslocamento
distribucional.

A figura 5.2 apresenta as funções de distribuição acumulada empírica (ECDFs) dos atributos quase-
identificadores, utilizadas para avaliar sua representatividade e capacidade de generalização em relação
a distribuições típicas de bases reais. As ECDFs são construídas a partir do rank das categorias (eixo
X, em escala logarítmica), ordenadas da mais frequente para a menos frequente, enquanto o eixo Y
expressa a proporção acumulada de registros à medida que novas categorias são incorporadas. Curvas
que apresentam crescimento rápido — como Device Information e Travel Habits — evidenciam forte
concentração, indicando que poucas categorias dominam a maior parte dos registros e caracterizando
atributos de baixa entropia, nos quais a incerteza sobre o valor observado é reduzida. Em contraste,
atributos como City, Zip Codes e Card Last4Digits exibem crescimento gradual ao longo do eixo X,
revelando alta dispersão e necessidade de milhares de categorias para abranger o conjunto completo de
registros. Esses padrões refletem atributos de alta entropia, que carregam maior diversidade informacional e,
consequentemente, maior potencial de quase-identificação.

Figura 5.2: Distribuição de Classificação de Valores das Colunas QI

Dessa forma, a análise comparativa das curvas sintetiza o grau de diversidade ou concentração presente
em cada atributo QI, oferecendo uma base empírica sólida para estimar riscos de reidentificação e orientar a
seleção de mecanismos de proteção apropriados sob o arcabouço da privacidade diferencial.
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5.7.2 Avaliação de mudança distributivas

Um deslocamento distribucional refere-se a uma mudança nas propriedades estatísticas dos dados de
entrada. Em contextos como aprendizado de máquina, onde a privacidade diferencial é frequentemente
empregada para proteger os sujeitos dos dados, tais deslocamentos podem acarretar consequências sig-
nificativas. Especificamente, quando ocorre um descompasso entre a distribuição dos dados utilizada
durante o treinamento do modelo e aquela encontrada na aplicação real, o desempenho do modelo pode se
degradar. Isso acontece porque o modelo é otimizado com base na distribuição de treinamento e pode não
generalizar adequadamente para dados com características alteradas, o que pode levar à redução da acurácia
e confiabilidade durante a inferência.

Os deslocamentos distribucionais em função do orçamento de privacidade ε e da sensibilidade ∆f ,
medidos pela distância Jensen-Shannon (JSD), são apresentados na figura 5.3. Conforme esperado, observa-
se que deslocamentos maiores ocorrem quando se adiciona mais ruído aos dados, o que ocorre para valores
menores de ε e maiores de ∆f . Essas condições resultam em maior perturbação e, consequentemente,
aumento da divergência em relação à distribuição original.

Esse comportamento evidencia o trade-off fundamental da privacidade diferencial: a adição de mais
ruído fortalece as garantias de privacidade, mas eleva o deslocamento distribucional, refletido nos maiores
valores de JSD. A seleção dos valores adequados para ε e ∆f requer um equilíbrio cuidadoso entre esses
objetivos conflitantes. Em cenários de maior risco, valores menores de ε são preferíveis para assegurar
maior proteção à privacidade, enquanto valores maiores podem ser tolerados para atributos menos sensíveis,
preservando maior precisão. Assim, a escolha dos parâmetros deve ser orientada pelos requisitos de
privacidade e pelos objetivos analíticos da aplicação específica.

Os padrões de variação observados na figura 5.3 podem ser diretamente relacionados aos níveis de
entropia de cada coluna. Colunas com maior entropia, como payment Methods, City, Card Last4digits e Zip
Codes (figuras 5.3c, 5.3f), apresentam valores mais elevados da distância Jensen-Shannon, mesmo quando
o ruído adicionado é mínimo (isto é, para valores maiores de ε e menores de ∆f ). Esse comportamento
reflete a maior variabilidade dessas colunas, tornando suas distribuições mais sensíveis mesmo a pequenas
perturbações introduzidas pelos mecanismos de privacidade diferencial.

Como esses atributos possuem um número maior de valores distintos e distribuições menos uniformes,
apresentam maior sensibilidade à injeção de ruído. Consequentemente, as perturbações decorrentes dos
mecanismos de privacidade diferencial acarretam deslocamentos mais acentuados em suas distribuições de
probabilidade.

Em contraste, colunas como device information e travel habits (figuras 5.3a, 5.3b) apresentam consisten-
temente baixos valores de divergência. Essas características exibem menor entropia, conforme demonstrado
na tabela 5.3, devido ao menor número de valores únicos, evidenciado na tabela 5.3. Isso resulta em impacto
mínimo da injeção de ruído, conduzindo a deslocamentos distribucionais reduzidos e, consequentemente,
menor divergência, refletido nas superfícies quase planas dos gráficos correspondentes.

Essas colunas, portanto, requerem ruído significativamente maior (isto é, ε mais baixo e/ou ∆f mais
alto) para alcançar o mesmo nível de proteção de privacidade que colunas de maior entropia. Observa-se
que a magnitude da divergência correlaciona-se com a entropia do atributo, sugerindo que atributos com
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maior diversidade são mais suscetíveis à distorção quando mecanismos de preservação de privacidade são
aplicados.

5.7.3 Avaliação da precisão

Para avaliar o impacto do ruído sobre a utilidade dos dados, a acurácia foi medida por meio do Erro
Percentual Absoluto Médio (MAPE) entre os valores originais e os valores com ruído. Como esperado,
orçamentos de privacidade menores e sensibilidades maiores resultam consistentemente em valores elevados
de MAPE, refletindo o trade-off entre a preservação da privacidade e a fidelidade dos dados para análise.

A degradação da acurácia segue um padrão previsível, possibilitando a seleção dos parâmetros ε e
∆f que equilibram os requisitos de privacidade e o nível aceitável de precisão dos dados para cada caso
específico. A figura 5.4 apresenta o MAPE entre os dados originais e os dados protegidos por privacidade
diferencial para cada quase-identificador, considerando ε ≤ 2 para melhor visualização. Em conjunto com a
tabela 5.3, que reporta os valores de entropia, observa-se uma relação entre entropia e erro sob privacidade
diferencial.

Atributos de baixa entropia, como device Information (2,78 nats), apresentam consistentemente menores
valores de MAPE ao longo dos diferentes níveis de privacidade (figura 5.3a). Colunas com entropia
média, como Payment Methods (6,42 nats), exibem MAPE moderado (figura 5.3c), enquanto colunas de
alta entropia, como Zip Codes (10,48 nats), apresentam maiores valores de MAPE, especialmente para
valores baixos de ε (figura 5.3f). Esses atributos são mais suscetíveis a degradação significativa da acurácia,
requerendo menor injeção de ruído para induzir erros substanciais. Observa-se, portanto, que maior entropia
e sensibilidade resultam em distorção mais acentuada para o mesmo orçamento de privacidade.

Nas configurações testadas, observa-se que valores de ε na faixa de [1,5, 4,0] geralmente resultam em
injeção moderada de ruído, equilibrando a privacidade com níveis razoáveis de degradação da acurácia
(MAPE < 15%) para a maioria dos quase-identificadores. Da mesma forma, valores de sensibilidade na
faixa [5,0, 20,0] preservaram a acurácia sem comprometer excessivamente a privacidade para atributos de
entropia média a alta.

Embora essas faixas não sejam definitivas, elas representam pontos iniciais para implantação em
contextos reais com estruturas de dados similares. Importa ressaltar que atributos de maior entropia indicam
a necessidade de ajuste dos parâmetros de privacidade diferencial conforme as características específicas de
cada atributo, ao invés da aplicação de valores uniformes.

5.7.4 Considerações finais

A aplicação de DP no contexto de incidentes possibilita transparência responsável com risco mensurável,
desde que mecanismos e parâmetros sejam calibrados ao uso pretendido. A sensibilidade dos atributos
e a presença de contagens baixas demandam cautela adicional na interpretação dos resultados, enquanto
aspectos de implementação — como potenciais canais laterais decorrentes de operações temporais ou de
ponto flutuante — requerem práticas seguras de execução e publicação (Jin et al. 2021). Do ponto de vista
de governança, o uso de DP alinha-se aos princípios da LGPD — minimização, finalidade, segurança e

40



prestação de contas — e favorece análises reprodutíveis com salvaguardas formais (Brasil 2018).

As principais ameaças identificadas incluem: (i) viés de reporte e cobertura nos dados de incidentes; (ii)
dependência do desenho das consultas e da hipótese de sensibilidade (∆f ); (iii) efeitos de deslocamento
distribucional; e (iv) riscos de implementação capazes de degradar garantias formais quando não mitigados.
Estratégias de mitigação incluem reporte transparente de parâmetros, rastreabilidade das transformações
aplicadas e testes de robustez (Jin et al. 2021).

Em síntese, o estudo observa os princípios da LGPD e adota transparência responsável na divulgação de
resultados, privilegiando agregações e proteção por DP quando pertinente. As evidências obtidas oferecem
diretrizes para a publicação de estatísticas fortalecendo a accountability e apoiando práticas seguras de
colaboração interinstitucional.
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Figura 5.3: Distância Jansen-Shanon entre o sinal original e o sinal com ruído
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Figura 5.4: MAPE entre as distribuições com ruído e original
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6 CONCLUSÃO

Este capítulo apresenta a síntese integrada dos achados obtidos nos três eixos analíticos da pesquisa,
bem como suas principais implicações práticas e acadêmicas, limitações e possibilidades de continuidade.
A dissertação é estruturada como um estudo empírico único, desenvolvido em três frentes articuladas:
(i) modelagem preditiva da incidência de violações de dados; (ii) análise de recorrência por métodos de
sobrevivência; e (iii) aplicação de privacidade diferencial (DP) em dados de incidentes. Em conjunto,
esses eixos formam um arcabouço coerente de governança baseada em evidências, alinhado às exigências
regulatórias contemporâneas, especialmente às diretrizes da LGPD (Brasil 2018).

6.1 SÍNTESE DOS ACHADOS

O primeiro eixo analítico concentrou-se na modelagem preditiva da incidência mensal de violações de
dados por setor, a partir de séries temporais derivadas da base Data Breach Chronology da PRC. Foram
comparadas famílias de modelos estatísticos, métodos baseados em árvores de decisão e redes neurais
profundas, em um delineamento experimental unificado, com protocolo padronizado de preparo dos dados,
particionamento temporal, calibração e avaliação. Os resultados indicaram desempenho relativo superior das
redes LSTM e TCN no agregado, com MAPE médio mais baixo e maior estabilidade entre setores, sobretudo
na presença de padrões não lineares, dependências de longo prazo e heterogeneidades setoriais. Modelos
estatísticos (SARIMA, fbprophet) mantiveram desempenho competitivo em contextos com sazonalidade mais
clara e menor volatilidade, enquanto o xgboost se destacou por reduzir erros absolutos em determinadas
configurações, embora com maior variação relativa em cenários de baixa contagem e alta variabilidade.

O segundo eixo deslocou o foco do volume de incidentes para a dimensão temporal da recorrência,
por meio da análise de sobrevivência com o estimador de Kaplan–Meier. Utilizando o mesmo recorte
temporal (2010–2023) e a mesma base da PRC, estimou-se o tempo-até-novo-incidente por setor, com
tratamento explícito da censura à direita e estratificação setorial. As curvas de sobrevivência obtidas
evidenciaram heterogeneidade significativa na probabilidade de permanecer sem novo incidente ao longo do
tempo. Setores como Saúde (MED) e Governo (GOV) apresentaram declínios mais rápidos nas funções de
sobrevivência, sugerindo janelas críticas de reincidência mais curtas e, portanto, maior urgência na renovação
de controles, testes e auditorias. Outros setores, como organizações sem fins lucrativos, exibiram curvas
mais suaves, indicando intervalos médios mais longos entre incidentes. Essas evidências complementam o
eixo preditivo ao introduzir explicitamente a dimensão do “quando”, permitindo associar níveis de risco
temporal a perfis setoriais e a padrões empíricos de recorrência.

O terceiro eixo investigou a aplicação de privacidade diferencial a dados tabulares associados a incidentes,
com foco em um cenário sintético de reservas de hotel, selecionado dentre dezesseis cenários adversariais
por sua maior concentração de quase-identificadores (Sharma e Bantan 2025). Com base no mecanismo
de Laplace e na variação sistemática do orçamento de privacidade (ε) e da sensibilidade da função (∆f ),
foram executadas 6.120 configurações experimentais, avaliando-se deslocamentos distributivos por meio da
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Jensen–Shannon Distance (JSD) e degradação de acurácia por meio do MAPE. Os resultados mostraram que
atributos com maior entropia (por exemplo, códigos postais, cidades e combinações de hábitos e métodos de
pagamento) são mais sensíveis à injeção de ruído, apresentando maiores JSD e MAPE mesmo em cenários
com ε moderado. Em contraste, atributos de baixa entropia, com menor diversidade de valores, sofrem
deslocamentos mais discretos e demandam ruído mais intenso para alcançar níveis comparáveis de proteção.

Tomados em conjunto, os três eixos configuram um ciclo analítico integrado: (i) a modelagem preditiva
fornece estimativas quantitativas de “quanto” tende a ocorrer, em termos de volume de incidentes por
setor; (ii) a análise de sobrevivência explicita “quando” novas ocorrências são mais prováveis, revelando
janelas críticas de tempo-até-novo-incidente; e (iii) a privacidade diferencial oferece meios formais para
divulgar estatísticas, preservando a utilidade analítica sob restrições de proteção de dados. Essa integração
sustenta uma abordagem operacional em que previsão, recorrência e transparência responsável se reforçam
mutuamente, fornecendo insumos robustos para a governança de violações de dados em ambientes regulados
pela LGPD (Brasil 2018).

6.2 IMPLICAÇÕES PRÁTICAS

Do ponto de vista aplicado, os achados desta dissertação fornecem instrumentos concretos para apoiar
o planejamento, a operação e a prestação de contas em segurança da informação e proteção de dados,
especialmente em organizações públicas.

Em primeiro lugar, o eixo preditivo demonstra que modelos de séries temporais, em particular ar-
quiteturas neurais profundas como LSTM e TCN, podem ser incorporados a fluxos de monitoramento
contínuo para antecipar a incidência de violações por setor. Ao produzir previsões mensais com MAPE em
faixas consideradas boas ou razoáveis na maioria dos setores, esses modelos oferecem base quantitativa
para decisões como dimensionamento de equipes, priorização de auditorias, renegociação de contratos de
serviços de segurança e definição de janelas de manutenção preventiva. A utilização combinada de MAPE,
MAE e RMSE permite calibrar expectativas sobre precisão e volatilidade setorial, facilitando a tradução dos
resultados em metas e indicadores operacionais.

Em segundo lugar, o eixo de análise de recorrência fornece um eixo temporal adicional para orientar
a definição de SLAs e políticas de mitigação. As curvas de Kaplan–Meier por setor permitem estabelecer
horizontes temporais nos quais a probabilidade de reincidência se torna crítica, sustentando, por exemplo, a
intensificação de monitoramento em períodos subsequentes a incidentes em setores com alta taxa de recor-
rência. No contexto da administração pública, onde recursos são escassos e as demandas são concorrentes,
essa diferenciação temporal por setor apoia a alocação seletiva de esforços, alinhando níveis de serviço a
perfis de risco empiricamente observados, em consonância com práticas de gestão baseada em risco.

Em terceiro lugar, o eixo de privacidade diferencial demonstra que é possível conciliar transparência e
proteção de dados ao divulgar estatísticas ou dados sintéticos sobre incidentes. Ao quantificar o efeito de
diferentes combinações de ε e ∆f sobre a JSD e o MAPE, a dissertação oferece subsídios para a escolha
de parâmetros que preservem a utilidade de análises agregadas sem expor indevidamente indivíduos ou
organizações. Esse resultado é particularmente relevante para órgãos públicos sujeitos à LGPD, que precisam
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equilibrar obrigações de transparência, cooperação interinstitucional e prestação de contas com deveres de
confidencialidade, minimização e segurança no tratamento de dados pessoais (Brasil 2018).

Assim, do ponto de vista prático, o trabalho aponta para a possibilidade de construir pipelines de
governança em que previsões, perfis de recorrência e camadas de DP são integrados a sistemas de apoio à
decisão, alimentando painéis gerenciais, relatórios regulatórios e fluxos operacionais de resposta a incidentes.

6.3 LIMITAÇÕES

Apesar da robustez metodológica e da reprodutibilidade dos resultados, algumas limitações devem ser
explicitadas, delimitando o escopo de generalização da pesquisa.

Uma primeira limitação diz respeito à própria base empírica utilizada. A PRC concentra incidentes
reportados em um contexto específico (principalmente Estados Unidos) e está sujeita a vieses de subnotifica-
ção, atrasos de comunicação e mudanças de política de divulgação ao longo do tempo. Isso impacta tanto a
modelagem preditiva quanto a análise de sobrevivência, podendo produzir estimativas conservadoras ou
distorcidas para determinados setores ou períodos. A extrapolação dos resultados para outras jurisdições,
como o contexto brasileiro, requer, portanto, adaptações e validações adicionais.

Uma segunda limitação relaciona-se à não estacionariedade das séries temporais e às mudanças de
regime. Incidentes de violação de dados são influenciados por fatores tecnológicos (novas vulnerabilidades,
adoção de nuvens e APIs), regulatórios (novas normas, sanções) e socioeconômicos (crises, guerras, novas
modalidades de fraude) que podem alterar abruptamente o padrão de incidência. Embora a dissertação tenha
utilizado métricas como o expoente de hurst e procedimentos rigorosos de preparação, os modelos treinados
em um regime podem perder desempenho quando o contexto se altera de forma significativa, exigindo
re-treinos periódicos, monitoramento de desempenho e ajustes dinâmicos.

Uma terceira limitação refere-se aos recortes com baixa contagem de incidentes. Em alguns setores e
intervalos, o número de eventos observados é reduzido, elevando a incerteza das estimativas de sobrevivência
e a sensibilidade a outliers. Essa limitação é intrínseca à natureza dos dados e demanda cautela ao interpretar
curvas de sobrevivência e estatísticas derivadas em segmentos com amostras pequenas.

Por fim, o eixo de privacidade diferencial depende fortemente do desenho das consultas (contagens,
agregações), da classificação dos atributos (sensíveis, identificadores, quase-identificadores) e da hipótese
adotada para a sensibilidade global ∆f (Jin et al. 2021). Pequenas mudanças nesses elementos podem
alterar o balanço utilidade–privacidade. Adicionalmente, riscos de implementação, tais como canais laterais
de tempo ou imprecisões de ponto flutuante, podem comprometer garantias formais se não forem mitigados
por práticas de engenharia seguras e auditorias independentes.

Essas limitações não invalidam os resultados, mas indicam que eles devem ser lidos como evidências
condicionadas a um determinado contexto de dados, hipóteses e escolhas de modelagem, o que reforça a
importância de replicação, extensão e validação cruzada em ambientes distintos.
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6.4 TRABALHOS FUTUROS

Os eixos desenvolvidos nesta dissertação abrem um amplo conjunto de possibilidades para aprofun-
damento teórico e aplicação prática em contextos organizacionais, regulatórios e operacionais diversos.
Uma das primeiras direções de continuidade envolve a ampliação e integração de bases de incidentes,
incorporando informações provenientes de autoridades reguladoras, órgãos setoriais e repositórios nacionais.
A harmonização de taxonomias de tipos de incidente, setores e níveis de severidade permitirá reduzir vieses
de reporte, fortalecer a robustez das estimativas e viabilizar análises comparativas entre países e domínios
distintos.

Outra frente relevante diz respeito à exploração de portfólios híbridos e modelos explicáveis. A
combinação de arquiteturas neurais, como LSTM e TCN, com modelos estatísticos e ensembles baseados
em árvores pode articular desempenho preditivo e interpretabilidade de maneira mais equilibrada. A
incorporação de técnicas de explicabilidade, incluindo métodos baseados em SHAP e diferentes métricas de
importância de variáveis, aproxima a modelagem das exigências de auditoria, transparência e governança
típicas da administração pública.

O tratamento da não estacionariedade também representa uma oportunidade de expansão. O apro-
fundamento em técnicas de detecção de mudanças de regime change point detection, validação temporal
mais estrita e estratégias de re-treino contínuo permitiria alinhar o ciclo de vida dos modelos a processos
recorrentes de revisão de políticas de segurança e renegociação de contratos de serviços tecnológicos. Esse
aprimoramento metodológico contribui para maior resiliência em ambientes em constante mutação.

A análise de sobrevivência pode igualmente ser estendida mediante o uso de modelos multivariados,
como o modelo de riscos proporcionais de Cox e outras abordagens que incorporam covariáveis de forma
explícita. Quando houver disponibilidade de atributos explicativos em nível organizacional e operacional,
tais modelos permitirão quantificar efeitos de variáveis como tipo de ataque, vetor de intrusão, porte
institucional e maturidade em segurança sobre o tempo até um novo incidente, ampliando o valor analítico
das estimativas.

No eixo de privacidade diferencial, uma vertente promissora envolve a comparação entre mecanismos
alternativos — como o Gaussiano e o staircase — e diferentes estratégias de composição do orçamento de
privacidade. Avaliações específicas para cenários de alta entropia ou atributos com baixa contagem podem
gerar recomendações operacionais mais refinadas para órgãos reguladores e equipes técnicas responsáveis
pela publicação de estatísticas sensíveis.

A consolidação de boas práticas e ferramentas de implementação também merece destaque. A elaboração
de guias técnicos, verificações independentes de código, toolkits e fluxos de auditoria voltados à aplicação
segura de privacidade diferencial em ambientes produtivos poderá fortalecer a mitigação de canais laterais,
aprimorar o reporte de parâmetros e padronizar a documentação de garantias (Jin et al. 2021). A criação de
referenciais direcionados à administração pública tem potencial para acelerar a adoção responsável dessas
técnicas nos órgãos governamentais.

Por fim, recomenda-se aprofundar a investigação sobre o impacto da privacidade diferencial em modelos
preditivos. A análise sistemática dos efeitos da proteção de dados no desempenho de algoritmos de previsão
e classificação, tanto em nível agregado quanto em recortes setoriais, permitirá documentar de forma robusta
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o trade-off entre utilidade e privacidade em diferentes cenários operacionais. Essa linha de continuidade
conecta diretamente o eixo preditivo ao eixo de proteção de dados, aproximando a pesquisa de casos
concretos de uso no setor público e privado.

6.5 CONSIDERAÇÕES FINAIS

A dissertação atingiu o objetivo de articular, em um único estudo, três eixos complementares — previsão
temporal, análise de recorrência e privacidade diferencial — em uma abordagem integrada de governança de
violações de dados, com aderência explícita aos princípios e diretrizes da LGPD (Brasil 2018). Ao combinar
modelagem preditiva, análise de sobrevivência e experimentos controlados com DP, o trabalho oferece
uma contribuição tanto conceitual quanto aplicada para o campo de segurança da informação e proteção de
dados.

Do ponto de vista acadêmico, a pesquisa consolida um delineamento experimental reprodutível para
comparação de modelos preditivos, introduz a análise de sobrevivência como eixo relevante para com-
preender recorrência de incidentes e quantifica, em termos de deslocamento distributivo e degradação de
acurácia, o impacto de parâmetros de DP sobre dados tabulares sensíveis. Sob a perspectiva prática, os
resultados delineiam um caminho factível para que organizações públicas e privadas avancem de uma
postura predominantemente reativa para uma abordagem proativa, baseada em evidências e alinhada a
requisitos regulatórios, na gestão de violações de dados.

Em síntese, ao integrar técnicas de previsão, análise temporal e mecanismos formais de proteção de
dados em um mesmo arcabouço, esta dissertação contribui para a construção de uma cultura de decisão
informada, na qual resiliência cibernética, conformidade regulatória e transparência responsável deixam
de ser objetivos concorrentes e passam a ser dimensões complementares de uma mesma estratégia de
governança.
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